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Thermodynamic stability limit of the crystalline state from the Gibbs perspective
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Understanding the superheating of crystals may serve as essential information for unraveling the mechanisms
of homogeneous melting. Superheated crystals have been observed in experiments for decades and have broad
implications in nanoscale embedded devices; however, the full extent of the metastable superheated crystalline
state within equilibrium thermodynamic changes remains uncertain. Here, we investigate this problem from a
geometrical perspective of the Gibbs’s volume-entropy-internal energy thermodynamic surface. We find that
in a homogeneous melting process, the limit of the superheated crystal can be defined as the state at which
the crystal’s internal energy or enthalpy, depending on whether the constraint condition is constant volume or
pressure, equals the value of this property at the state where heterogeneous freezing begins. We demonstrate
that the thermodynamic foundations of several different melting simulation methods, which previously were
understood as mostly independent from each other, can be unified and elucidated from the same rigorous and
quantitative perspective of the Gibbs surface. By tracking the trajectories of atoms relative to their equilibrium
positions, we have identified the mechanisms of cooperative diffusion in the superheated face-centered-cubic
Lennard-Jones crystal. Such diffusive motion is undergone in a manner that hops toward the first-nearest
neighbor while keeping the crystalline structure unchanged.
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I. INTRODUCTION

The melting of crystals is one of the most common phase
transitions and is a continuously active research area; nev-
ertheless, the fundamental mechanisms and theories about
melting are still not completely known [1–3]. A longstanding
challenge regarding the melting of crystals is understanding
the nature of the superheating of crystals [4–6]. Compared
with other metastable phenomena of first-order phase transi-
tions, such as the supercooling and superheating of liquids [7],
the superheating of crystals is rarely observed at the macro-
scopic scale and is much less studied. However, it has recently
been discovered that the hysteresis effect of crystals is very
clear in nanoscale processes and plays a crucial role in the
functioning of some materials, e.g., antifreeze proteins [8] and
phase-change logic device [9]. Therefore, a more thorough
understanding of the stability limits for the crystalline state
is important for obtaining better insights into the mechanism
of melting and for developing novel devices that can exploit
the overheating properties of materials.

It is well known that at ambient pressure, the normal melt-
ing of a pure crystal, also called heterogeneous melting, typ-
ically occurs at a characteristic temperature, i.e., the melting
point (Tm). Heterogeneous melting is preferentially initiated at
free surfaces or at other defects, which are almost inevitable
for most naturally occurring crystals [10–13]. Under certain
circumstances, melting of the surface can be impeded by
experiments [14–18]. In contrast, bulk melting starting from
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the interior of crystals is named homogeneous melting. One
method to achieve homogeneous melting is to heat the crystal
from the interior with a focused beam of light (e.g., pulsed
laser), which may initiate a relatively immense superheating
that lasts for only a small amount of time (∼nanoseconds)
[14–16]. A transient superheating with an exceptionally high
temperature can be achieved during pulsed melting due to the
ultrafast heating rate; in this case, nonequilibrium intermedi-
ate states cannot be entirely excluded [2]. Another technique
is to coat a single crystal with a high-melting-point layer,
and with this technique, metastable superheated crystalline
states have been detected under uniform thermal conditions
at a much longer timescale (∼minutes) [2,17,18]. Here, we
restrict our discussion to the thermodynamic changes within
consistent equilibrium crystalline states. Subsequently, a fun-
damental question arises: During homogeneous melting, is
there a threshold value for the degree of superheating beyond
which the metastable solid phase is forced to melt?

The early melting theories were used to delimit the crys-
talline state, and the liquid state focused on phenomenological
criteria [19,20]. The Lindemann criterion [19,21] states that
the vibration of atoms reaches a critical fraction with respect
to the neighboring distance at the instability limit. The Born
criterion [20] suggests that the shear modulus of the crystal
will vanish when melting occurs. However, no limit of super-
heating can be formulated directly from these theories. The
first pioneering work that explicitly defined the stability limit
of a superheated crystal was conducted by Fecht and Johnson
[22]. They followed the Kauzmann argument [23] for a super-
cooled liquid and proposed two candidates for the superheat
limit of the crystal, i.e., the isentropic and isenthalpic tempera-
tures, at which the entropies and enthalpies of the superheated
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crystal and the liquid phase are equal. Shortly after Fecht
and Johnson, Tallon [24] introduced two additional limits
by investigating the volume of a superheated crystal, and he
postulated a hierarchy of catastrophes for the crystalline state
and argued that the rigidity catastrophe, at which the zero
rigidity coincides with the volume of the freezing point, is the
ultimate bound of superheating because it preempts all other
instabilities. Recently, Gallington and Bongiorno [25] hypoth-
esized that the limits of a superheated crystal and supercooled
liquid are degenerate in the enthalpy-entropy diagram, which
means that the two metastable states have equal enthalpy and
entropy. In addition to the above limits defined under the
condition of constant pressure, Belonoshko et al. [26] also
discovered an isochoric limit from computational simulations.
They found that the internal energy of the crystal at the limit of
superheating is equal to the internal energy of its liquid at Tm

at the same volume. This discovery has stimulated a widely
used method, called the Z method, to determine Tm, but its
physical basis is still unknown [27]. To date, many theoretical
limits have been proposed [22,24–26]; nevertheless, a few key
questions remain unanswered, such as what is the relationship
between the limit of superheating in homogeneous melting
and the equilibrium melting point in heterogeneous melting,
what are the ultimate expressions for the isobaric and iso-
choric limits, and, more importantly, what are the perspicuous
thermodynamic pictures behind these expressions?

In this work, we hypothesize that the above questions
can be answered from a geometrical perspective of the ther-
modynamic surface initially introduced by Gibbs in 1873
[28]. To confirm this conjecture, we develop a method to
construct the volume-entropy-internal energy surface for a
Lennard-Jones (LJ) system [29] from computational simula-
tions. We choose an LJ system as the model system because
its thermodynamic properties can be accurately determined
and easily reproduced. By investigating the phase transition
paths in different thermodynamic variable spaces, we obtain
expressions for the limits of superheating under isochoric
and isobaric conditions simultaneously. We interpret various
Tm-determination methods from the geometrical perspective,
and we verify the proposed expressions through specifically
designed molecular dynamics (MD) simulations. The super-
heat limit of an LJ crystal at constant pressure is calculated
and compared with different previously proposed expressions.
Finally, the microscopic mechanism of homogeneous melting
is discussed.

II. METHODS

A. Construction of the Gibbs surface

In Gibbs 1873 paper [28], he introduced a three-
dimensional surface, which he called the thermodynamic sur-
face, expressing the relationship between the volume, entropy,
and internal energy of a substance with an invariable compo-
sition. According to Gibbs, the equilibrium thermodynamic
states of a substance with an invariable composition are
regulated by the fundamental equation dU = −PdV + T dS,
which suggests a geometrical surface in three-dimensional
space, i.e., the V SU surface. Once the V SU surface is known,
the basic properties of an equilibrium state can easily be

derived, including V , S, P , T , U , A, H , and G, denoting
the volume, entropy, pressure, absolute temperature, inter-
nal energy, Helmholtz free energy, enthalpy, and Gibbs free
energy, respectively. Our first task is to construct the Gibbs
surface with computational methods. To this end, there are
two main difficulties. The first is finding an analytic form
for the U (V, S) function. The second relies on obtaining
the values of entropy for a large number of state points. To
overcome the two difficulties, we adopt a method (i.e., the
Gibbs thermodynamic surface method, hereafter called the
GTS method for short) to simplify this task. Rather than
finding a bivariate function for the fundamental equation,
we reduce our objective to finding a univariate function for
U (S) at a constant V . By differentiating the internal energy
with respect to temperature at constant volume, we know that
(∂U/∂T )V = CV , where CV is the heat capacity at constant
volume. As the temperature goes to infinity, all vibrational
modes in a solid are fully activated, in which case the theorem
of equipartition of energy states can be applied; therefore, the
heat capacity is 3kB for one atom (i.e., the Dulong-Petit law),
where kB is the Boltzmann constant. For temperatures that
approach melting, the thermal energy is high enough versus
the energy required to excite the vibrational modes, so the
value of heat capacity CV is nearly constant. By differentiating
the pressure with respect to temperature at constant volume,
we have (∂P/∂T )V = (∂P/∂U )V (∂U/∂T )V = γCV /V , in
which we need to introduce the definition of Grüneisen param-
eter γ = V (∂P/∂U )V . Based on observations in geophysical
disciplines and ceramics science [30], an empirical law, ργ =
constant, is often used for solids with high density (e.g.,
oxides, silicates) at high temperatures (T > �), where �

is the Debye temperature evaluated by measuring acoustic
velocities and ρ is the density. If this law holds true, then
(∂P/∂T )V = constant when the unit mass per particle m is
taken to unity (i.e., m = 1, V = 1/ρ). A general theory of
the heat capacity and Grüneisen parameter of liquids has not
been established. Here, we just assume that their behavior
near the phase-transition temperature is similar to that of the
solid, which is consistent with our findings of the P -V -T and
U -V -T relationships in the molecular dynamics simulations.
As a result of the above justification of assumptions, when
temperature is not far from Tm, (∂U/∂T )V and (∂P/∂T )V
can be approximately regarded as constants. Therefore, we
assume that the internal energy and pressure change linearly
with temperature under isochoric conditions. These assump-
tions are mostly adequate when studying the solid-liquid
transition of LJ systems within the pressure range investigated
in this work. First, at temperatures around the melting point,
we can assume that the internal energy is linearly depen-
dent on the temperature under a constant volume condition,
which is

U (T )|V =constant = aT + b. (1)

By substituting T = (∂U/∂S)V into Eq. (1), we derive the
U (S) function at constant volume:

U (S)|V =constant = c × exp(S/a) + b. (2)

In principle, with the knowledge of the coefficients a, b,
and c in Eq. (2) for a number of different constant vol-
umes, the Gibbs surface can be constructed. Among the three
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coefficients, a and b can be determined by fitting Eq. (1) to
the results of canonical ensemble (i.e., NVT ensemble) MD
simulations. By choosing a reference state on the surface, c

can be calculated using the following equation:

c= aTr

exp
[
(aTr+b) − Ur + TrSr + ∫ V

Vr
p(V )dV

] − exp(aTr )
,

(3)

where V is one volume in the set of constant volumes; Vr , Tr ,
Ur and Sr are the volume, temperature, internal energy, and
entropy at the reference state, respectively; a and b are the
same as in Eq. (1); and p(V ) is a function at the constant refer-
ence temperature Tr , which is determined by fitting a number
of volume-pressure data pairs to an empirical isothermal
equation of state (EOS). The volume-pressure data pairs can
be obtained from fitting the linear P (T ) relations at different
volumes. To construct the Gibbs surface for a single phase, the
absolute position of the reference state is immaterial; however,
for determining the phase transition of two phases, a constant
shift should be made along the entropy axis to ensure that
the primitive surfaces of the two phases share the same zero
point. The amount of entropy shift (δS) can be determined in a
variety of ways that require some additional methods [31–34].
In these ways, only one or two states containing the infor-
mation of entropy must be known beforehand, which greatly
reduces the effort in the calculations of entropy or free energy.
More details on the choice of the reference state and the
entropy calibration are presented in the Supplemental Material
(SM) [35].

B. Details of molecular dynamics simulations

The classical MD simulations in this work are performed
using the LAMMPS package [36]. The interparticle interaction
of the system is governed by the LJ potential [29]:

φ(r ) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (4)

where r is the interparticle distance and σ and ε are param-
eters of the potential. In this work, all quantities are reported
in reduced units; for example, the units of volume, entropy,
energy, pressure, temperature, density, and time are σ 3, kB ,
ε, ε/σ 3, ε/kB , σ 1/3, and (mσ 2/ε)1/2, respectively. In reduced
units, σ = ε = m = kB = 1. In real units, σ , ε, m, and kB are
replaced by the corresponding physical values of a particular
material (e.g., σ = 3.405 × 10−10 m, ε = 1.654 × 10−21 J,
m = 6.634 × 10−26 kg for argon).

1. GTS method calculations

The GTS method calculations are performed using a series
of NVT ensemble MD simulations with the Nosé-Hoover
thermostat. Seven different densities are sampled for each
phase (ρ = 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, and 1.20 for
the solid phase, and ρ = 0.80, 0.85, 0.90, 0.95, 1.00, 1.05,
and 1.10 for the liquid phase). At each density, five tempera-
tures are sampled. Accordingly, 70 different thermodynamic
states have been sampled altogether. For each single state,
the system is run 30 000 time steps under periodic boundary
conditions with a time step of 1.25 × 10−3. (If the parameters

of argon are replaced in the reduced units, the corresponding
time step is 2.725 fs.) The first 20 000 steps are used for
equilibration. The remaining steps are averaged to obtain the
equilibrium properties. The initial configuration of the system
is a 5 × 5 × 5 supercell of the face-centered-cubic (fcc) lat-
tice, which contains 500 particles. The liquid configuration
is achieved by heating the solid system to a high temperature
that ensures complete melting. The long-range interactions are
included using the Ewald method. We use the fourth-order
virial expansion equation to represent the p(V ) relation in
Eq. (3). The entropy is calibrated using a fixed point on the
melting curve. The following values are used for the reference
state: ρr = 0.90 (Vr = 1.11), Sr = 8.200, and Tr = 2.081 for
the solid phase, and ρr = 0.80 (Vr = 1.25), Sr = 7.781, and
Tr = 1.067 for the liquid phase.

2. Z method calculations

The Z method was proposed by Belonoshko et al. [26]
in 2006 and received its name from the characteristic shape
of the isochore plotted on the pressure-temperature diagram.
In this method, the system starts from a perfect lattice con-
figuration, and the simulation is performed in the micro-
canonical ensemble (i.e., NVE ensemble). While keeping
the volume constant, the kinetic energy of the system is
gradually increased. By projecting the pressure-temperature
data pairs of the system onto a two-dimensional diagram as
the kinetic energy is increased, we can trace the pathway
that the system underwent. The pathway first increases in
a solid-state region. It crosses the melting curve and then
enters the superheating region while preserving a metastable
solid state. The magnitude of the kinetic energy eventually
exceeds a critical value at which the system suddenly melts,
and the values of pressure and temperature of the system
exactly drop down to the melting curve. The state of the
system when it reaches the critical total energy is called the
limit of superheating. The temperature at the superheating
limit is defined as TLS . On further increase in the kinetic
energy, the pathway increases again in the liquid-state region.
Finally, the points belonging to this pathway form an isochore
with a shape that looks similar to the letter Z. By observing
the behavior of the energy increasing process, the authors
discovered an important relation: at the same volume, the total
energies at the limit of the superheating of the solid branch and
at the equilibrium melting point of the liquid branch are equal.
This can be written as the following equation:

U solid(V, TLS ) = U liquid(V, Tm). (5)

The Z method calculations in this study are performed at
a constant volume of V = 0.9614 (the corresponding density
is ρ = 1.0402). The initial configuration of the system is
built from a 5 × 5 × 5 supercell of a perfect fcc crystal that
contains 500 particles. The total number of time steps is 0.4
million with a time step 1.14 × 10−4 (equivalent to 0.25 fs
if the system is substituted by argon). A number of MD
simulations with different constant internal energies are run
under the NVE ensemble. In each run, the system is provided
with an initial kinetic energy, which is determined by the
initial temperature. Therefore, the total energy of the system
is tuned by specifying the initial temperature, which is set
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to be approximately twice the desired temperature, in the
form of the normal distribution of particle velocities. Then,
the system evolves under a constant internal energy without
any external intervention until it reaches full equilibrium. The
last 1

10 length of the simulation is averaged to obtain the
equilibrium properties. To identify the drop in temperature
from the superheat limit (TLS) to the equilibrium melting
point (Tm) described in Eq. (5), we perform two rounds of
MD simulations. The first round of simulations is performed
around an initial guess of the melting point and sampled by
a few state points using a coarse temperature interval (�T =
0.1). A discontinuity in internal energy (or pressure) can be
identified after the first round of simulations. The second
round of simulations is performed around the discontinuity
identified in the first round, and the state points are sampled
using a fine-temperature interval (�T = 0.01).

3. Isobaric-isenthalpic ensemble calculations

The isobaric-isenthalpic ensemble (constant pressure and
constant enthalpy ensemble), also called the NPH ensemble,
calculations are performed under a constant pressure of P =
5.0. The procedure of this method is similar to that of the
Z method, except that the enthalpy of the system is kept as
a constant rather than the internal energy. We start from a
perfect fcc crystal with 500 particles in the simulation box. A
number of MD simulations with different constant enthalpies
are run under the NPH ensemble. The idea is simply to rescale
the initial velocities of the particles and let the system equili-
brate freely under constant N , P , and H . The initial velocities
are determined by an initial temperature, which is twice the
desired temperature (the equilibrium temperature after the
simulation will be approximately the desired temperature but
not necessarily the same). The NPH ensemble simulation is
performed under a given hydrostatic pressure. To avoid the
enthalpy (i.e., energy) drift that typically occurs in a long
simulation, we provide the time step a sufficiently small value.
The total number of time steps is 1.6 million with a timestep of
5.7 × 10−5 (equivalent to 0.125 fs if the system is substituted
by argon). The last 0.2 million steps are averaged to obtain
the equilibrium properties. To identify the drop in temperature
from the superheating limit to the equilibrium melting point,
we perform three rounds of MD simulations with a minimum
temperature interval �T = 0.002.

C. Microscopic motion analysis

When analyzing the microscopic motion of atoms in the
simulation, there are two distinct approaches: one is the atom-
focused observation, and the other is the position-focused
observation. Here, we use camera shooting as an analogy to
explain the difference between the two approaches. The atom-
focused observation refers to tracking a certain atom with a
moving camera. We take consecutive images at regular inter-
vals and calculate the displacement of the atomic coordinates
over time from the images. The atom’s hopping information
is obtained by examining whether the atomic displacement
exceeds a given threshold between two configurations. The
position-focused observation is to keep the camera still, so
that it is focused on a certain reference position (i.e., one
of the equilibrium or ideal positions of the crystalline sites).

Similarly, images are taken at regular intervals. After each
image is taken, we calculate the distances between all atoms in
the field of view and the reference position. The atom with the
smallest distance is defined as the occupant of the reference
position at this moment. The hopping information of the atom
is obtained by observing the flow of the occupant.

The main disadvantage of the atom-focused observation
is that some parameters need to be specified artificially, and
these parameters will seriously interfere with the accuracy and
uniqueness of the analysis results. The first parameter is the
threshold of the atomic displacement, which is the criterion
for determining whether an atom has hopped. The choice of
this threshold is somewhat empirical and technical. Some a
priori knowledge of the relative amplitude of the atomic vibra-
tion with respect to the nearest-neighbor distance is needed.
To set a reasonable value, many trials are needed since a minor
change in this parameter can cause a large statistical deviation
in the analysis results. Moreover, the threshold also needs to
be adjusted according to volume changes (such as thermal
expansion), which will also require artificial interference.
The second parameter is the time interval for calculating the
atomic displacement between two configurations. The choice
of this time interval has a great impact on the result because
the duration of atomic hopping is on a timescale equivalent to
this interval. If this time interval is set too small, a hopping
may be missed since the displacement will be too small to be
recorded.

However, the position-focused observation does not re-
quire an artificial parameter of the displacement threshold;
and the time of the atomic hopping is small enough compared
to the time at which the atom occupies a certain position,
which makes the information that is acquired in this way
insensitive to the setting of the observation time interval.
Therefore, the second way yields results that are more reliable
and less ambiguous, and the results of this approach are more
convenient for subsequent quantitative analysis and visualiza-
tion. In this paper, we use the position-focused way to analyze
the microscopic motion of atoms in superheated crystals.

III. RESULTS AND DISCUSSION

A. Transition paths and metastability limits

In the T PG space, the coexistence of two phases is rep-
resented by the crossing curve of the primitive T PG sheets
of the two phases. Projecting the crossing curve onto the
temperature-pressure plane results in the so-called melting
curve [solid curve in Fig. 1(a)]. The intersection point of
two T G curves in an isobaric plane [point E in Fig. 1(b)]
is the melting point (Tm) defined for heterogeneous melting
at constant pressure. This geometrical picture is exactly what
the following expression reflects:

Gsolid
E (P, Tm) = G

liquid
E (P, Tm). (6)

From Gibbs perspective, a single point on the melting
curve [square in Fig. 1(a)] diverges into a common tangent
line in spaces other than T PG, which is shown as a solid
straight line in Figs. 1(c) and 1(e). In this way, the original
superposed but inherently different coexisting states repre-
sented by a crossing curve in the T PG space will be distinctly
represented by a developable surface in the V SU space or
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 1. Solid-liquid phase transition boundaries and paths of the
LJ system presented from different perspectives. View from the (a)
temperature-pressure diagram, (b) temperature-Gibbs free energy
diagram, (c) entropy-volume diagram, (d) entropy–internal energy
diagram, (e) entropy-pressure diagram, and (f) entropy-enthalpy
diagram. Point E represents a heterogeneous melting point. Paths
A′C′ and A′′C′′ are the stable regimes of the coexisting states of two
phases. Points E′ and E′′ designate arbitrary points moving reversibly
along A′C′ and A′′C′′ during a heterogeneous process. Paths A′B′ and
A′′B′′ are the superheated metastable solid regimes. Points A′ and
A′′ are the lower termini of coexisting states that are in a complete
crystalline phase. Points C′ and C′′ are the upper termini of coexisting
states that are in a complete liquid phase. Points B′ and B′′ are
the limits of superheated crystalline states during a homogeneous
process. Color scheme: crystalline solid phase (blue), liquid phase
(red), and coexistence of two phases (black).

SPH space. Their projections onto the horizontal planes
are shown as gray shaded areas in Figs. 1(c) and 1(e). The
boundaries of the shaded areas are called the limit of absolute
stability by Gibbs, and they are formed by the terminal points
of the common tangent lines.

By investigating the geometrical paths in the isochoric
plane of V SU space [Fig. 1(d)] and the isobaric plane of SPH

space [Fig. 1(f)], thermodynamic expressions comparable to
Eq. (6) can be established to locate the limit of metastabil-
ity. In Figs. 1(d) and 1(f), two phase transition situations
are shown: (i) If the initial configuration of the system is
heterogeneous, which means that the system has some type
of imperfectness that disrupts the neat arrangement of crystal
sites (e.g., free surfaces, interfaces, dislocations, grain bound-

aries, and so forth), the phase transition will pass through the
most stable states that always possess the maximum value of
entropy. The intermediate states during the transition along
the path A′-E′-C′ or the path A′′-E′′-C′′, representing the co-
existence of two phases, can change slowly and reversibly. (ii)
If the initial configuration is homogeneous, which means that
the crystal has a uniform nature throughout in composition
and structure without a free surface, the phase transition will
be hindered due to the energy barrier to form a critical-size nu-
cleus. The system can persist in the metastable regime until its
internal energy or enthalpy reaches a critical value that equals
the value at the terminus of the coexisting state. After reaching
the critical value, a spontaneous transition from the metastable
state to the stable state is forced to occur. In contrast to the
heterogeneous process, this transition occurs catastrophically
and irreversibly. The state immediately before this transition
is defined as the limit of metastability.

Consequently, depending on the constant condition con-
straint, two thermodynamic expressions can be derived:

U solid
B′

(
V, T u

l+
) = U

liquid
C′ (V, Tm+), (7)

H solid
B′′

(
P, T h

l+
) = H

liquid
C′′ (P, Tm). (8)

In Eqs. (7) and (8), the first quantity in the parentheses is the
constraint condition. T u

l+ and T h
l+ denote the temperatures at

the limit of the superheated crystal under isochoric and iso-
baric conditions, respectively. In the isochoric condition, the
transition is from point B′ to point C′. As the isochoric plane
passes through different common tangent lines in Fig. 1(c),
A′C′ is a curved line with varying tangents, as shown in
Fig. 1(d). Therefore, the temperature at point C′ is higher than
the temperature of other points on A′C′. To distinguish this
temperature from other melting points, it is denoted as Tm+ in
Eq. (7). In the isobaric condition, the transition is from point
B′′ to point C′′. The isobaric plane passes through only one
common tangent line in Fig. 1(e), and A′′C′′ is a straight line
with a single slope. Therefore, the temperatures of all melting
points on A′′C′′ are identical and denoted as Tm in Eq. (8).

The thermodynamic variables used to plot Fig. 1 for the
solid and liquid LJ system were calculated with the coeffi-
cients of Eq. (2) derived from the computational approach
introduced in Sec. II A and the SM [35] of this study, i.e., the
GTS method. Values of the thermodynamic variables at points
A′, A′′, B′, B′′, C′, C′′, and E are listed in Table I. Point E
actually represents a number of superimposed thermodynamic
states that, although having the same pressure and tempera-
ture, are completely different. In Table I, we list the values of
the thermodynamic variables of point E in the two end states,
namely, the completely solid state and completely liquid state.
The former state is equivalent to the thermodynamic state
represented by point A′′, while the latter is equivalent to the
state represented by point C′′. In principle, they should have
equal thermodynamic variables, but, in fact, their data have a
slight difference in Table I. This is because the initial natural
variables are different in the four thermodynamic potentials
(i.e., U , A, H , G), so numerical errors are caused by the
different sequence of thermodynamic potentials used when
calculating thermodynamic variables of different states. To
our knowledge, V SU surfaces were only constructed using
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TABLE I. Values of the thermodynamic variables at points A′, A′′, B′, B′′, C′, C′′, and E.

V (σ 3) S (kB ) P (ε/σ 3) T (ε/kB ) U (ε) A (ε) H (ε) G (ε)

A′ 0.9614 5.597 7.372 1.235 −5.042 −11.952 2.046 −4.864
B′ 0.9614 7.148 14.597 2.156 −2.478 −17.887 11.555 −3.854
C′ 0.9614 7.292 17.070 1.809 −2.477 −15.668 13.934 0.744
A′′ 0.9821 5.370 5.000 1.073 −5.431 −11.192 −0.520 −6.281
B′′ 1.0450 6.522 5.000 1.365 −4.338 −13.243 0.887 −8.019
C′′ 1.0721 6.675 5.000 1.075 −4.474 −11.647 0.887 −6.287
Ea 0.9821 5.370 5.004 1.073 −5.430 −11.192 −0.516 −6.278
Eb 1.0727 6.675 4.969 1.073 −4.477 −11.639 0.854 −6.309

aThe end state of point E in a completely solid phase.
bThe end state of point E in a completely liquid phase.

experimental data previously, either by hand [37] or by com-
puter visualization [38]; this work is the first in which a V SU

surface is constructed completely from theoretical calculation.

B. Interpretations of methods in melting simulations

In the realm of computational methods of melting simu-
lation, it was long ago recognized that the heat-until-melts
(HUM) method would significantly overestimate the melting
point (Tm) because of the hysteresis effect during the first-
order phase transition [39]. A straightforward approach to
determine the Tm that intrinsically overcomes the hysteresis
problem is based on the thermodynamic definition of Tm

[Eq. (6)]. This category of methods requires calculating the
free energies of the solid phase and liquid phase as functions
of temperature at a given pressure; therefore, it is often
termed the free-energy method. Although it has a strict ther-
modynamic basis, the full implementation of the free-energy
method from first principles has been restricted to a small
number of simple systems (e.g., monoatomic materials) due
to the complex setup and high-precision demand of such
methods [40,41]. The second category of methods is based
on inspecting the dynamical evolution of the system under
certain constrained external conditions. Different statistical
ensembles have been used to predict Tm in practical simu-
lations [26,42–44]. According to the initial configuration of
the system setup, that is, whether the solid-liquid interface
exists in the initial system, such methods can be classified as
two-phase (or coexistence) methods and one-phase methods.
In addition, there is also a third category of methods that
acts as a bridge between the first two categories of meth-
ods. Such a third method is called the reference coexistence
method [45,46] and essentially consists of performing two-
phase coexistence simulations with a reference energy model
and, subsequently, performing thermodynamic integration via
free-energy concepts all the way up to the energy model
of interest. So far, the different simulation melting methods
were understood mostly independently from one another. In
the following part, we unify and elucidate the underlying
thermodynamic foundations for some of these methods in
the second category from the same rigorous and quantitative
perspective.

First, if the initial configuration of the method has only
one phase, then it is called a one-phase method. The method
developed by Belonoshko et al. [26] is an example of such

a method. Following the computational procedure of this
method, a “Z”-shaped isochore will appear in the pressure-
temperature diagram (hence, it was named the Z method),
and the lower turn point of the isochore exactly drops to the
melting curve and has internal energy equivalent to that of
the higher turn point of the isochore (Fig. 2). Based on this
surprising behavior discovered in the NVE ensemble simu-
lations, an empirical formula that defines the isochoric limit
of superheating was established [see Eq. (5)]. Belonoshko
et al.’s formula is essentially identical to the equation that we
proposed in Eq. (7), but the latter reveals more information.
From Eq. (7), we know that (i) the melting point found by
the Z method is actually point C′ in Fig. 1(d), at which the
liquid phase has the maximum melting temperature (Tm+) on
the curve A′C′ and starts to freeze heterogeneously when the
temperature is lowered further; (ii) the superheat limit TLS

defined in the Z method is actually the temperature of point
B′ in Fig. 1(d), which has the same internal energy as point
C′; and (iii) the “Z”-shaped isochore is just the manifestation
of the path A′-B′-C′, which represents the homogeneous
melting under constant volume conditions, on the pressure-
temperature diagram.

FIG. 2. Illustration of the Z method calculations for the LJ
system. The results of MD simulations under the NVE ensemble
(constant volume, V = 0.9614 σ 3) are shown as triangles. The
melting curve is obtained from the GTS method of this study, which
is in good agreement with previous calculations by Morris and Song
[47], Mastny and Pablo [48], Sousa et al. [49], and Pedersen [50].
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After we know that the thermodynamic relation expressed
in Eq. (7) can be observed in the NVE ensemble simulations,
which has been confirmed by calculations with the Z method,
we may envision a similar one-phase method to be performed
in the NPH ensemble, through which the relation expressed in
Eq. (8) will be observed. According to the path A′′-B′′-C′′ in
Fig. 1(f), which represents homogeneous melting under con-
stant pressure conditions, it is expected that the crystal should
melt at the isobaric limit of superheating; then, in the pressure-
temperature diagram, it should suddenly drop to a point on the
melting curve, whereas in the volume-temperature diagram, it
should drop to a point on the liquid branch of the limit of
absolute stability. The two states between the drops should
have equivalent enthalpy. Note that in the theory of Tallon’s
rigidity criterion [24], this equivalent quantity is hypothesized
to be volume. To check this hypothesis with the LJ system, we
first predict the melting point Tm, the limit of superheating T h

l+
defined in Eq. (8), and the limit of superheating T r

m defined by
Tallon, which are shown as circles, squares, and diamonds,
respectively, in Figs. 3(a) and 3(b). Then, we perform a series
of one-phase MD simulations at a constant pressure (P = 5.0
ε/σ 3) under the NPH ensemble. We find that the equilibrium
properties of the MD simulations, shown as triangles in Fig. 3,
indeed drop to Tm from T h

l+ rather than from T r
m.

This finding supports our proposition in Eq. (8). We have
derived the limit of absolute stability for the LJ system from
the Gibbs thermodynamic surface approach and plotted it in
the entropy-volume diagram [Fig. 1(c)] and entropy-pressure
diagram [Fig. 1(e)]. Now, drawing the limit of absolute sta-
bility on the volume-temperature diagram [Fig. 3(c)] shows
a very good agreement with previous calculations [48–50].
Similar to the isochore formed in the pressure-temperature
diagram of the Z method calculations, the isobar of the NPH
ensemble calculations in Fig. 3(c) also exhibits a “Z” shape in
the volume-temperature diagram. As we expected, the lower
turn point of the isobar lies exactly on the liquid branch of
the limit of absolute stability. Thus, this simulation method
can be used as a new Z method analogous to the original
Z method but performed in the NPH ensemble. We have
tested the effects of system size and duration of simulations
on the new method. The results show that the Z method
under constant pressure has a simple running process and can
be applied to a small system (e.g., 256 atoms); therefore, it
is ideally suitable to be performed by ab initio molecular
dynamics simulation. The main problem of this method is
that, as pointed out by Alfè et al. [27], the waiting time (a
time before melting occurs) strongly depends on the excess
energy of the crystal above the superheating limit and on
the system size. This problem makes it difficult to estimate
a sufficient time to wait for a melting to occur in the sim-
ulation. If the simulation time is too short to exceed the
waiting time, the final liquid temperature will be overesti-
mated. However, the probability distribution of waiting time
is consistent with a rare-event process. The sufficiency of the
simulation length and the location of superheating limit are
difficult to evaluate from the method itself. In some cases
(e.g., high pressure), the waiting time may be exceptionally
long [51].

Second, if the initial configuration of the method has a
predefined solid-liquid interface, it is termed a two-phase (or

(a) (b)

(c)

FIG. 3. Illustration of the one-phase MD simulations of the LJ
system under the NPH ensemble. (a) View from the temperature-
enthalpy diagram, (b) view from the temperature-volume diagram,
and (c) a broader view from the temperature-volume diagram show-
ing the limit of absolute stability altogether. Tm, T h

l+, and T r
m are

the temperatures at the melting point, the isobaric limit defined in
this work, and the rigidity limit defined by Tallon [24], respectively,
which are correspondingly marked as circles, squares, and diamonds
in (a) and (b). The MD simulations are performed at the constant
pressure P = 5 ε/σ 3, and the results are shown as triangles. The
solid branch (blue line) and liquid branch (red line) of the limit of
absolute stability are obtained from the GTS method of this study,
and they are in good agreement with previous calculations by Mastny
and Pablo [48], Sousa et al. [49], and Pedersen [50].

coexistence) method [42–44,52]. In reality, there are various
implementations of this method. If the value of the internal
energy is properly chosen in the case of the NVE-ensemble
implementation, then after evolving to an equilibrium melting
point, there are still two phases that coexist in the system. By
altering the internal energy (or volume), a new equilibrium
point on the melting curve will be established. When the
internal energy exceeds the proper interval, the coexisting
system will completely transform into a single phase [42].
Another widely used two-phase approach is implemented in
the isobaric-isothermal ensemble (i.e., NPT ensemble), where
irrespective of how close the temperature approaches the
melting point, only a single phase (either solid or liquid) can
be observed in the final equilibrium system. Thus, the melting
point can be bracketed only by progressively narrowing the
upper and lower temperature bounds [43]. In addition to the
above two commonly used approaches, implementations of
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the two-phase method in the NPH ensemble [44] and NVT
ensemble [53] are also occasionally used.

In practice, numerous studies have successfully determined
the Tm using variations of the two-phase method; however, the
underlying thermodynamic origins of these methods have not
yet been clearly interpreted in a unified framework. Here, we
want to emphasize that they are merely different manifesta-
tions of the two heterogeneous melting paths [i.e., the paths
A′-E′-C′ in Fig. 1(d) and A′′-E′′-C′′ in Fig. 1(f)] in different
statistical ensembles. Therefore, it is easy to understand why a
coexisting phase in the final equilibrium state of the NVE [42],
NPH [44], or NVT [53] ensemble simulations is expected
to be observed, while only a single phase is observed in
the case of the NPT ensemble simulation [43]. The reason
for this result lies in the fact that in the former three cases,
the system is stable within a finite thermal interval (i.e.,
internal energy interval or enthalpy interval), but in the NPT
case, the system can be stable only at a single temperature;
therefore, an infinitesimal thermal fluctuation is sufficient to
alter its state. Moreover, it is understandable why coexistence
may occur over a small range of temperatures in the NVE
or NVT ensemble simulations but occurs only at a single
temperature in the NPH ensemble simulations. The reason for
this behavior has been incorrectly attributed to the finite-size
effect [42]; however, as we explained in the previous section,
this behavior is actually based on the tangents of the transi-
tion paths A′C′ and A′′C′′. In this view, the melting points
determined by different approaches, although they all fall on
the melting curve, may represent completely different states.
To confirm this view, we slice an isochoric plane in the V SU

space. We first predict the right interval where the two phases
can coexist. Then, we perform a series of two-phase MD
simulations under the NVE ensemble using different internal
energies between the predicted interval. The phase separation
is distinguished by the coloring of liquidlike and solidlike
particles whose colors are associated with their local bond
orientational order parameters [54]. After the evolution, as
expected, the proportion of the two phases and the equilibrium
properties are all in good agreement with our predictions (SM
[35]).

C. Comparison with other theoretical limits

As we mentioned in Sec. I, until now, only a few thermody-
namic expressions could be written to define the temperature
at the limit of superheating [22,24–26]. Comparing the differ-
ent theoretical limits for the LJ system would be interesting.
In the case of the constant volume condition, we have shown
that our isochoric criterion defined in Eq. (7) is equivalent to
Belonoshko et al.’s criterion [26]. In the case of the constant
pressure condition, we have calculated the various isobaric
limits for the LJ system at a fixed pressure (P = 5.0 ε/σ 3). As
shown in Fig. 4(g), the isobaric limits pertaining to different
criteria are structured in a hierarchical order: from the outer-
most to the innermost are Fecht and Johnson’s isentropic tem-
perature (T s

i ) [Fig. 4(a)], Tallon’s isochoric temperature (T v
m)

[Fig. 4(c)], Fecht and Johnson’s isenthalpic temperature (T h
i )

[Fig. 4(b)], Tallon’s rigidity temperature (T r
m) [Fig. 4(d)], our

isenthalpic temperature (T h
l+) [Fig. 4(f)], and Gallington and

Bongiorno’s degenerate temperature (Ts) [Fig. 4(e)]. Here,

(a) (b)

(f)

(c) (d)

(e)

(g)

FIG. 4. The entropy, enthalpy, and volume of liquid and crys-
talline LJ systems as functions of temperature in the stable and
metastable regimes at a constant pressure (P = 5 ε/σ 3). Data are
obtained from the GTS method of this study. The temperatures at
the isobaric limit of superheating are determined according to the
following criteria: (a) Fecht and Johnson’s isentropic criterion, T s

i

[22]; (b) Fecht and Johnson’s isenthalpic criterion, T h
i [22]; (c) Tal-

lon’s isochoric criterion, T v
m [24]; (d) Tallon’s rigidity criterion, T r

m

[24]; (e) Gallington and Bongiorno’s degenerate criterion, the limit of
superheating Ts , and the limit of supercooling Tl [25]; (f) this work’s
isobaric criterion defined in Eq. (8), T h

l+; and (g) a hierarchical view
of all previous temperatures, in which φ = (T − Tm)/Tm defines the
ratio of the overheating or undercooling magnitude to the equilibrium
melting temperature Tm. Color and line schemes: crystalline phase
(blue line), liquid phase (red line), stable phase (solid line), and
metastable phase (dotted line); the dashed horizontal and vertical
lines are guides for the eye.

T h
l+ denotes our result calculated according to Eq. (8). Our

temperature is the innermost bound among all these limits
except Ts . It is clear that Ts is lower than T h

l+ because the tan-
gent at Gallington and Bongiorno’s degenerate point [i.e., the
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crossing point of the red curve and the blue curve in Fig. 1(f)]
is smaller than the tangent at our superheating limit [i.e., point
B′′ in Fig. 1(f)]. However, Gallington and Bongiorno’s crite-
rion requires the phase transition to occur directly between a
superheated crystalline state and a supercooled liquid state.
It is difficult to imagine why the system can overcome the
free-energy barrier of nucleation and transform into another
metastable state, but it does not change to a more stable
coexistence state under that condition. We conjecture that the
state at Ts , as the limit of the crystalline state, is practically
invisible in both simulations and experiments.

Lu and Li [55] proposed a kinetic limit based on the
analysis of homogeneous nucleation behavior for melting in
superheated crystals. They compared the various foregoing
isobaric limits with their kinetic limit for aluminum and found
that the instability temperature defined by the homogeneous
nucleation catastrophe is the lowest one, which occurs slightly
earlier than Tallon’s rigidity catastrophe. The tendency of the
kinetic limit for aluminum is quite similar to our isobaric limit
for the LJ system. Verifying whether this is a coincidence or
whether there is a close connection between the two limits is
a very interesting topic. In addition, Jin et al. [56] monitored
the atomic-scale motions of a surface-free LJ crystal during
melting using MD simulations and revealed a simultaneous
violation of both Lindemann’s vibrational criterion [19] and
Born’s shear modulus criterion [20] at the kinetic limit. If the
limit that we proposed in this work from the thermodynamic
perspective indeed coincides with the kinetic limit based on
the classical homogeneous nucleation theory, then it would
imply that the thermodynamic, kinetic, vibrational, and me-
chanical limits actually converge in a homogeneous melting
process.

D. Microscopic mechanism of homogeneous melting

For heterogeneous melting, the crystals are melted via a
nucleation process. In the nucleation process, small nuclei
of the product phase form in the parent phase by thermal
fluctuations. According to the classical nucleation theory
(CNT), if the size of the nuclei exceeds a critical radius,
they tend to grow larger; otherwise, they tend to shrink.
Atoms at the surfaces or other defects have a higher free
energy than those in a perfect crystal. All kinds of defects
facilitate to lower the free-energy barrier in CNT; therefore,
heterogeneous melting takes place preferentially at the defec-
tive sites (e.g., free surfaces, grain boundaries, dislocations,
vacancies, interstitials). However, CNT is not fully applicable
for homogeneous melting in defect-free crystals. According to
a direct observation of the homogeneous nucleation process
in melting for the colloidal system by Wang et al. [57], the
homogeneous melting process can be divided into two stages:
the incubation stage and the nucleus growth and coalescence
stage. During the incubation stage, the superheated crystals
still maintain a complete crystalline structure and there is no
formation of a critical liquid nucleus in the crystal. Wang et al.
[57] found that CNT can be applied for weak superheating in
the second stage, but it would fail to explain the formation
of multimer attachment at strong superheating in the second
stage and fail to predict the types of nucleation precursors in
the incubation stage.

The microscopic mechanism of the initial incubation stage
of homogeneous melting is still under debate. The controversy
is mainly about the form of nucleation precursors. In the
atomic system, current experimental methods are unable to
obtain this information because this stage occurs on very
small spatial and temporal scales. As an alternative, computer
simulation showed that various types of nucleation precursors
are possible [58–62]. In this study, we analyzed the micro-
scopic motions of atoms using the position-focused method
introduced in Sec. II C. Three concepts are used to monitor
the hopping history of all atoms on a series of observed images
and are named the Position-ID, Atom-ID, and Image-ID. The
Position-ID is the index of the idealized atomic coordinate
in the perfect crystal. The Atom-ID is the index of each
atom. The Image-ID is the index of the image in the order
of observation. All indices are counted from 0. The output file
stores information about the initial atom and all subsequent
changes of atoms in a position and the changing moment (i.e.,
at which Image-ID, which Atom-ID moves out or moves in
some Position-ID). The information recorded in the above
format can be easily converted into the DOT language. After
processing by the graph visualization software GRAPHVIZ

[63], we can draw a picture containing all the atoms that
have hopped and the relationship between them. The picture
is named the hopping map (Fig. 5). In the hopping map, a
position is represented by a box, an atom is represented by a
circle, and they are connected by a line with an arrow. The
direction of the arrow represents the direction of the atom’s
movement. An arrow from the box to the circle means an
atom is leaving the position, otherwise indicating entering the
position. The labels in the box and circle represent Position-ID
and Atom-ID, respectively, and the labels on the edge of
the line represent Image-ID, which also indicate the time
sequence when the hopping occurs. The advantage of drawing
such a graph is that it is easy to distinguish between atoms
belonging to different hopping clusters, and furthermore the
hopping order and cooperation of atoms in each cluster can
be clearly identified. We can also selectively slice a fragment
from the hopping cluster, highlight the atoms in the fragment
on each frame of image, and finally generate a movie. In this
way, the microscopic process of the cooperative movement of
these atoms can be visually observed.

Based on the observation of the hopping map and movie
and the analysis of the atomic coordinates involved in hop-
ping, we can now summarize the following findings:

(1) For deeply superheated crystals, atoms are able to
move collectively in a diffusive way in addition to vibrations
near the equilibrium positions.

(2) At least for the system of this study (i.e., the fcc LJ
crystal), the unit step of the diffusive motion of an atom
is performed in a manner that hops toward the first-nearest
neighbor (1NN) with a timescale on the order of 0.1 to 1.0 ps.

(3) According to the final position of the atomic hopping,
it can be divided into an unstable hopping and a stable hop-
ping. Unstable hopping may also be called temporary hopping
and means that the atom returns to the original position very
quickly after hopping [Fig. 5(a)]. Stable hopping, also known
as permanent hopping, means that the atom stays in a new
position stably after hopping [Fig. 5(b)]. We can think of a
temporary hop as a failed attempt to make a permanent hop.
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(a) (b) (c)

(d)

(e)

FIG. 5. Illustration of the hopping map schemes. In the hopping map, Position-ID, Atom-ID, and Image-ID are labeled as P_xxx, A_xxx,
and I_xxx, respectively, where xxx are replaced with the index of their ID which is counted from zero. In this example, the system has 2048
atoms and 500 images. According to the final position of the atomic hopping, it can be classified as (a) unstable hopping which quickly returns
to original position and (b) stable hopping which occupies new position permanently. When the two situations are both present, it is named
(c) unstable-stable mixed hopping. (d) An example of the closed loop. Five atoms participated in the map, among which four atoms undergo
stable (permanent) hopping, i.e., A_822, A_845, A_1872, A_861, while one atom undergoes unstable (temporary) hopping, i.e., A_806. (e)
Snapshots of the movie that show the hopping mechanism of the closed loop viewed from the [110] direction, (left) initial state at t = 0.02 ps,
(right) final state at t = 10 ps. Only atoms involved in the stable hoppings are highlighted with larger colored spheres, smaller black dots show
the idealized positions of the perfect fcc crystal. The full version of the hopping map and movie can be found in the SM [35].

The two hopping situations could take place for the same
group of atoms; thus, in that situation, it may be called a
mixed hop [Fig. 5(c)]. Atoms pushed away by atoms that
are permanently hopped will also permanently hop, causing
a chain hop and forming a loop.

(4) According to the form of the loop, it can be divided
into a closed loop and an open loop. Closed loop means that
a cluster of atoms that have hopped during the observation
period forms a closed path [Figs. 5(d) and 5(e)]. Open loop
means that the atomic hopping has not yet formed a closed
path during the observation period. An open loop can also be
thought of as a closed loop in progress. As the observation
time increases, the open loop may close finally, or multiple
open loops may coalesce, leading to the formation of liquid
nuclei, and eventually lead to melting. In this sense, the
open loops can be regarded as the nucleation precursors of
homogeneous melting.

(5) The transition state during the occurrence of atomic
hopping can produce interstitial sites or vacancy defects;
however, this transition state is inherently an unstable struc-

ture with a very short lifetime and disappears immediately
upon formation.

In contrast to static defect models (e.g., vacancy-mediated
or interstitial-mediated model [58]), the self-diffusion motion
(loops or rings) mediated model is a dynamic defect model.
When perfect crystals are strongly superheated, the dynamic
defects, acting as precursors of melting before formation and
growth of liquid nuclei, appear and disappear repeatedly and
randomly in time and space. Notably, the dynamic defect
model described above has been discovered by previous simu-
lation studies [25,59,61], although there are some differences
in the methods used to capture the information about atomic
hopping. At present, a mature theory that connects the su-
perheat limit and the atomic microscopic motion is still an
open question. As demonstrated in the pioneering simulation
studies, statistics on the form and number of dynamic defects
can provide many valuable results. No doubt, more detailed,
systematic research needs to be done next. In that research, we
believe that the thermodynamic definition of the superheating
limit proposed in this paper, a method of constructing the
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thermodynamic surface, and thermodynamic quantities ob-
tained by the thermodynamic surface approach (among which
entropy may be the most important one as it plays a special
role in linking the macroscopic property and microscopic
states of substances), may serve as essential information for
revealing the microscopic mechanism of homogeneous melt-
ing ultimately.

IV. CONCLUSION AND PERSPECTIVES

In conclusion, we can present our answer to the ques-
tion posed at the beginning of this paper. Considering the
equilibrium thermodynamic changes, the metastable limit
of homogeneous melting is the state at which one type of
the superheated crystalline phase’s thermodynamic potential
reaches a critical value, which is equivalent to the value of
the liquid phase referring to the state where heterogeneous
freezing begins. Depending on whether homogeneous melting
occurs under an isochoric or an isobaric condition, the ther-
modynamic potential is the internal energy or the enthalpy,
respectively. Although some works have been conducted to
explore the nucleation process of homogeneous melting and
found that the assumption of the classical nucleation theory
(CNT) is violated at the strong superheating regime [3],
the microscopic mechanism of the initial incubation stage
of the liquid nucleus in the vicinity of the superheat limit
is still under debate [57–62,64]. Therefore, an unambiguous
definition and determination of the superheating limit are
crucial for investigating the fundamental mechanism of crystal
melting. We believe that our findings in this work may serve
as essential information for unraveling such a mechanism. In
the past, examining this question was primarily of theoretical

interest since superheating of a crystal is rarely achieved at the
macroscopic scale. However, as demonstrated in the example
of ultrafast logic devices based on phase-change materials
(PCMs) [9], this situation is rapidly changing due to the
advancement of assembly and fabrication technologies at the
nanometer scale. This implies that the knowledge about the
limit of superheating of crystals might be of practical use in
many nanoscale engineering disciplines, for which the prop-
erties of superheated crystalline materials are predominant.
Finally, because of its strength in interpreting and predicting
the correlations between different melting simulation meth-
ods, we expect that the Gibbs thermodynamic surface ap-
proach adopted in this study will be useful for improving the
efficiency in calculating the melting properties of substances
from first principles, which will have broad applications in the
geophysical, planetary, and material sciences.
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