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A quarter-wave impedance-matching element inserted between two dissimilar media allows full-power
transmission, but this phenomenon occurs only when the mode of the incident and transmitted waves remains
unaltered, either longitudinal (L) or transverse (T). Here, we report our asymptotic bimodal quarter-wave
impedance-matching theory for full-power mode-converting transmission. It requires that two coupled quarter
waves should be simultaneously formed inside a matching element possessing specific anisotropy for phase
matching and L-to-T (T-to-L) mode conversion. Simulations using designed metamaterial matching elements
show that nearly full mode-converting transmissions can be realized within a single medium or between two
dissimilar media. We expect that our theory can be critically useful for medical and industrial ultrasonic
applications wherever highly efficient mode conversion and high-powered transverse waves are required.
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Quarter-wave impedance matching achieves full-power
transmission between two dissimilar media [1–9]. Because
of the unique full transmission phenomenon, the impedance-
matching concept has been widely investigated in a number
of studies including some recent studies [10–17]. However,
this well-known conventional impedance-matching concept is
only applicable for mode-preserving transmission involving a
single mode. Here, we aim to explore whether the impedance-
matching concept can be generalized to achieve full-power
transmission between two dissimilar modes (specifically, the
longitudinal and transverse modes). Thereby, we investigate a
generalized impedance-matching concept which can be used
to realize full-power mode-converting transmission.

Before discussing the generalized impedance-matching
phenomenon for mode-converting transmission, we start with
the conventional phenomenon involving no mode conversion,
as depicted in Fig. 1(a). The incident harmonic longitudinal
(L) wave of frequency f from an isotropic medium A hav-
ing the characteristic impedance ZA

L can be fully transmit-
ted to another isotropic medium B having the characteris-
tic impedance ZB

L (ZA
L �= ZB

L ), provided the following well-
known conditions are satisfied in the quarter-wave impedance-
matching element:

ZL =
√

ZA
L ZB

L , (1a)

d = λL/4, (1b)

where ZL and λL are the characteristic impedance and wave-
length of the L wave in the impedance-matching element,
respectively. The conditions stated by Eqs. (1a) and (1b)
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suggest that the conventional impedance-matching concept is
valid only when the wave mode type before and after the
matching element remains unaltered. Therefore, they cannot
be used directly as similar conditions for the case of mode-
converting transmission that will be explored here.

Contrary to the case in Fig. 1(a), Figs. 1(b) and 1(c)
describe an unusual wave phenomenon converting an inci-
dent L wave to a transmitted transverse (T) wave with full
(100%) power transmission. Here, we consider acoustic waves
propagating in solids because they can carry L and T modes
simultaneously due to the atomic bindings [18–20]. The aim
of this study is to investigate whether the impedance-matching
concept that is established for the classical mode-preserving
case can be generalized for the mode-converting case. If that
is the case, we aim to find the corresponding conditions.
In investigating this phenomenon, our postulation is that
the wave phenomenon occurring in the full mode-converting
transmission may be analyzed as a problem to match the char-
acteristic impedances of the incident L (or T) and transmitted
T (or L) wave modes. The mode-converting phenomenon
even within a single isotropic medium may be viewed from
this generalized impedance-matching concept because the T
wave impedance ZT = √

ρ0c66 (ρ0: mass density; c66: shear
stiffness) always differs from the L wave impedance ZL =√

ρ0c11 (c11: longitudinal stiffness).
Recently, the transmodal Fabry-Perot resonance based

method [21,22] was proposed for mode-converting transmis-
sion from an L to a T wave mode. Although no L wave mode
is transmitted, the incident L-mode power cannot be 100%
transmitted to the T mode in this method. This partial trans-
mission is inevitable, because the constructive interference
mechanism can only preserve the displacement magnitude of
the incident wave without overcoming the intrinsic impedance
mismatch between L and T waves. Although mode-conversion
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FIG. 1. Illustration of possible quarter-wave impedance match-
ing for full-power transmission. (a) The classical case of mode-
preserving transmission involving a single mode with a conven-
tional quarter-wave impedance-matching element; (b), (c) general-
ized cases of mode-converting transmission involving two different
wave modes within the same medium and between two dissimilar
media, respectively. The arrows in the sketches indicate the direc-
tions of polarization.

phenomena have been much explored (see, e.g., [23–26]),
the converting efficiency through designing mode convertors
based on Snell’s critical angle is very low [18]. If such
mode convertors were made of double- or triple-negative
metamaterials [27–29], complete mode conversion might be
theoretically possible, but such negative metamaterials are
nearly impossible to fabricate because very restrictive con-
ditions must be satisfied between the metamaterial and the
background medium.

Now, we examine the possibility to achieve the full mode-
converting transmission from the perspective of impedance
matching. Because the impedance matching for the mode-
preserving case requires the formation of a quarter wave
inside the matching element, we postulate that a similar phase-
matching mechanism could be possible even in the mode-
converting case involving two different modes. With this pos-
tulation, we first consider the case described in Fig. 1(b). Here,
we assume that the matching element is made of a general
anisotropic medium with its stiffness coefficients C11, C66,
and C16 (longitudinal, shear, and longitudinal-shear coupling
stiffness coefficients, respectively) and density ρ. Note that
no mode conversion is possible for plane-wave incidence if
C16 = 0. The material properties of the background isotropic
medium are denoted by c11, c66, and ρ0 (or Young’s modulus
E0 and Poisson’s ratio ν0). In this work, we will mainly
consider the mode-converting transmission under an incident
L wave, but the obtained results are equally applicable for the
case of an incident T wave.

For a harmonic wave excited at frequency ω = 2πf ,
the following two wave numbers, k = α and k = β, in an
anisotropic medium can be expressed in terms of ω and the
material properties by using the Christoffel equation (disper-

sion equation):

α =

√√√√ρω2(C11 + C66) − ρω2
√

(C11 − C66)2 + 4C2
16

2
(
C11C66 − C2

16

) ,

(2)

β =

√√√√ρω2(C11 + C66) + ρω2
√

(C11 − C66)2 + 4C2
16

2
(
C11C66 − C2

16

) .

The analysis of the polarization vectors (P k
x , P k

y ) (k =
α, β) shows that both waves with k = α and k = β exhibit
skew polarizations, implying that they are neither purely
longitudinal nor purely transverse:

P k
x = Xk√

1 + |Xk|2
, P k

y = 1√
1 + |Xk|2

, (3a)

where

Xk = − C16k
2

C11k2
x − ρω2

= −C66k
2 − ρω2

C16k2
(k = α, β ). (3b)

Therefore, each mode has nonzero horizontal (longitudi-
nal) ux and vertical (transverse) uy displacement components.
This skew polarization field pattern is inevitable for mode
conversion. Because α < β, the corresponding modes will be
referred to as the fast-skew and slow-skew modes, respec-
tively.

The L-to-T (TT) and L-to-L (TL) transmission power ratios
and the L-to-T (RT) and L-to-L (RL) reflection power ratios
with respect to the input L wave power are given by (under
the plane strain assumption):

TT = ξ
∣∣CT

LT

∣∣2
, TL = ∣∣CT

LL

∣∣2
,

RT = ξ
∣∣CR

LT

∣∣2
, RL = ∣∣CR

LL

∣∣2
, (4)

where CR
LL, CR

LT, CT
LL, and CT

LT denote the reflection and

transmission coefficients, and ξ
�= (β0c66)/(α0c11)(see the

Supplemental Material [30] for more detailed derivations).
The symbols α0 and β0 refers to the Land T wave numbers in
the background isotropic medium. If the full mode-converting
transmission is possible, the following conditions must be
identically satisfied:

TT = 1, TL = RT = RL = 0, (5)

and, equivalently,∣∣CT
LT

∣∣ =
√

1/ξ, CT
LL = CR

LT = CR
LL = 0. (6)

The conditions given by Eq. (6) imply that the scattering
matrix S must have [30]

S41 = 0, (7a)

S21 = 0, (7b)

S22 = 0. (7c)

Because the impedance matching for the classical mode-
preserving transmission requires the formation of a quar-
ter wave inside the matching element [sin kd = ±1, i.e.,
Eq. (1b)], we postulate that a similar phase-matching mecha-
nism would be valid in the mode-converting case. Since there
are two wave modes, the fast-skew and slow-skew modes, the
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phase-matching conditions should be simultaneously satisfied
for both of them:

sin(αd ) = ±1, sin(βd ) = ∓1. (8)

Using Eq. (8), one can derive the following condition,
which we call the “bimodal” quarter-wave phase-matching
condition (Supplemental Material [30]):

d = mnFS
λFS

4
, (9a)

d = mnSS
λSS

4
, (9b)

where m = 1, 3, 5, · · · ; λFS and λSS are the wavelengths of
the fast-skew and slow-skew modes, respectively; and the
coprime integers nFS and nSS must satisfy

nSS/2 − nFS/2 = odd. (9c)

If the fundamental bimodal quarter-wave frequency (with
m = 1) is fBQW, Eq. (9) states that the same phenomenon
would repeatedly occur at f = fBQW, 3fBQW, 5fBQW, · · · .
By solving Eqs. (9) and (2), one can derive the relations
between the material properties (Cij , ρ) of the anisotropic
slab for the bimodal phase-matching condition:

C11 + C66 = 16ρf 2
BQWd2

(
1

n2
FS

+ 1

n2
SS

)
, (10a)

√
C11C66 − C2

16 = 16ρf 2
BQWd2

nFSnSS

. (10b)

Based on Eq. (8) or Eq. (9), we can show that the condition
given by Eq. (7a) is equivalent to the following condition:

ρ

√
C11C66 − C2

16 = ρ0
√

c11c66. (11)

The physical meaning of Eq. (11) can be clearly extracted
if we introduce the so-called “bimodal” impedances Z̃ and Z̃0

defined as

Z̃ = ρ

√
C11C66 − C2

16, (12a)

Z̃0 = ρ0
√

c11c66 =
√

(ρ0c11)(ρ0c66). (12b)

In terms of Z̃ and Z̃0, Eq. (11) is written in compact form
as

Z̃ = Z̃0. (12c)

Therefore, the condition given by Eq. (11) or (12c) can
be called the bimodal impedance-matching condition. Clearly,
the condition (12c) can be viewed as a generalized version of
the conventional impedance-matching condition in Eq. (1a)
that is only valid for unimodal transmission.

Using Eqs. (7b) and (7c), one can obtain the following
relation:

P α
y P β

x = − βC66+αC11

(α + β )(C11 + C66)
. (13)

The use of Eq. (3) yields another expression for P α
y P

β
x :

P α
y P β

x = C11 − C66

2
√

(C11 − C66)2 + 4C2
16

− 1

2
. (14)

Equating Eqs. (13) and (14) yields

C11 = C66, (15a)

C16 = 0. (15b)

By using Eqs. (3) and (15a), one can find that

P α
x = P α

y = 1√
2
, P β

x = −P β
y = 1√

2
. (16)

Therefore, Eq. (15a) physically means that the fast-skew
and slow-skew modes inside the anisotropic slab are polarized
by 45° and −45°, respectively. Therefore, the condition in
Eq. (15a) can be called the polarization condition.

The analysis above shows that unlike the conventional
unimodal transmission, the full mode-converting transmission
requires that the matching element possess specific anisotropy
as stated by Eqs. (10a), (10b), (12c), (15a), and (15b). How-
ever, there is no possible combination of (C11, C66, C16, ρ) that
can satisfy these five equations simultaneously. Accordingly,
one condition must be relaxed to obtain nontrivial material
properties and thus we propose to relax Eq. (15b). Relaxing
the C16 = 0 condition to the condition of a small nonzero C16

would result in weak longitudinal-shear coupling.
Solving Eqs. (10a), (10b), (12c), and (15a) for (C11, C66,

C16, ρ) yields

C11 = C66 = Z̃0

2ρ

(
nSS

nFS
+ nFS

nSS

)
, C16 = Z̃0

2ρ

(
nSS

nFS
− nFS

nSS

)
,

(17a)

ρ =
√

Z̃0nFSnSS

4fBQWd
. (17b)

The amount of the relaxation may be quantified in terms of
a small parameter ε defined as

ε = 2C16

C11 + C66
= n2

SS − n2
FS

n2
SS + n2

FS

. (18)

Clearly, Eq. (15b) can be asymptotically satisfied as nFS

and nSS → ∞ because ε → 0.
At this point, it is worth summarizing the conditions that

have been derived for the full mode-converting transmission:
(a) the bimodal quarter-wave phase-matching condition,

Eq. (9);
(b) the bimodal impedance-matching condition, Eq. (12);
(c) the polarization condition, Eq. (15a);
(d) the weak mode-coupling condition with a sufficiently

small ε.
To interpret the physical significance of these conditions,

we note that the bimodal quarter-wave phase-matching and
polarization conditions enable the incident longitudinal wave
to become a transverse wave at the existing side of the
anisotropic quarter-wave converter. On the other hand, the bi-
modal impedance-matching condition ensures the full-power
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transmission through the converter involving mode conversion
(Supplemental Material [30]).

Using the conditions (a–c) above, we can write the trans-
mission and reflection coefficients explicitly in terms of ε as

CR
LL(fBQW) = (ξ 2 − 1)(

√
1 + ε − √

1 − ε)
2

(ξ − 1)2(
√

1 + ε − √
1 − ε)

2 + 4ξ (
√

1 + ε + √
1 − ε)

2 ,

CR
LT(fBQW) = 2(ξ + 1)ε

(ξ − 1)2(1 − √
1 − ε2) + 4ξ (1 + √

1 − ε2)
,

CT
LL(fBQW) = S11 + S12C

R
LL,

CT
LL(fBQW) = S31 + S34C

R
LT, (19a)

where

S11(fBQW) = −j

4

[(
1 − ε

1 + ε

)− 1
4

−
(

1 − ε

1 + ε

) 1
4

](
ξ

1
2 − ξ− 1

2
)
, S12(fBQW) = −j

4

[(
1 − ε

1 + ε

)− 1
4

−
(

1 − ε

1 + ε

) 1
4

](
ξ

1
2 + ξ− 1

2
)
,

S31(fBQW) = −j

2

[(
1 − ε

1 + ε

) 1
4

+
(

1 − ε

1 + ε

)− 1
4

]
ξ− 1

2 , S34(fBQW) = −j

4

[(
1 − ε

1 + ε

) 1
4

−
(

1 − ε

1 + ε

)− 1
4

](
ξ

1
2 + ξ− 1

2
)
. (19b)

With the weak mode-coupling condition (d), one can show
that

lim
ε→0

CR
LL(fBQW) = 0, lim

ε→0
CR

LT(fBQW) = 0,

lim
ε→0

CT
LL(fBQW) = 0, lim

ε→0
CT

LT(fBQW) =
√

1/ξ . (20)

Therefore, the conditions given by Eq. (6) are shown to be
asymptotically satisfied. According to Eq. (4),

lim
ε→0

RL(fBQW) = 0, lim
ε→0

RT(fBQW) = 0,

lim
ε→0

TL(fBQW) = 0, lim
ε→0

TT(fBQW) = 1. (21)

The asymptotic behavior of TT and TL discussed above
is demonstrated in Fig. 2 as ε goes to zero. Two different
cases are presented for the background media of aluminum
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T T
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0.07680.24620.32430.47060.8 ... ...

FIG. 2. The asymptotic behavior of TT and TL as a function of
ε = (n2

SS − n2
FS)/(n2

SS + n2
FS) at f = fBQW, 3fBQW, · · · . Here, we

varied nFS only while nSS = nFS + 2 to facilitate plotting.

(ν0 = νAl = 0.33) and silicone rubber (ν0 = νSR = 0.49). For
both cases, TL and TT approach zero and 1, respectively, at
f = fBQW as ε → 0.

In that no natural material can satisfy the extreme proper-
ties stated by Eq. (17), the bimodal matching element must
be designed using metamaterials. Here, we try to design a
nonresonant metamaterial unit cell by cutting two elaborately
perpendicular elliptical slits [see Fig. 3(a)]. We assume that
the unit cell size l is much smaller than the matching element
width d.

Figure 3 depicts the realized full mode-converting trans-
mission phenomenon and the metamaterial of the bimodal
matching element inserted in an aluminum background
medium. The single-phased unit cell is made in a steel base
medium with the geometric parameters listed in Fig. 3(a).
The design procedure with the selected parameters of (nFS,
nSS) = (25, 27) is presented in the Supplemental Material
[30]. With the effective stiffness coefficients calculated by
the homogenization method [31], one can find that the bi-
modal impedance-matching condition is nearly satisfied with
Z̃/Z̃0 = 0.9992, as required by Eq. (12c). The bimodal
quarter-wave phase-matching condition at frequency fBQW is
also satisfied with (4d/λFS, 4d/λSS) = (25.0029, 27.0020).

Figure 3(b) plots a snapshot of the displacement field at
fBQW under a time-harmonic L wave incidence prescribed
by ux = sin(2πfBWQt ) at x = −d/2 (t is time). It clearly
shows that the incident L wave is nearly completely mode
converted. The calculated vertical displacement amplitude
|uy| after transmission is 1.4070, which is sufficiently close
to the theoretical value |CT

LT| = √
1/ξ = 1.4080 [see Eq. (6)].

Figure 3(c) shows the power transmission curves as a function
of frequency f . At f = fBQW and 3fBQW, the ratio TT reaches
almost unity while TL is nearly zero. We also carried out
finite element simulations by modeling the matching element
with the detailed microstructures shown in Fig. 3(a) (with
l = d/300). The phenomenon occurring at f = 2fBQW, ex-
hibiting TL ≈ 1 and TT ≈ 0, is explained in the Supplemental
Material [30].
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FIG. 3. The realized full mode-converting transmission phe-
nomenon and the metamaterial unit cell of the bimodal quarter-wave
impedance-matching element inserted in an aluminum (Al) back-
ground medium. (a) The unit cell geometry and effective material
properties of the designed anisotropic metamaterial. The base mate-
rial is steel (Fe). (b) A snapshot of the displacement field under an
L wave of frequency fBQW incidence at x = −d/2. (c) Transmission
power ratios through the designed matching element as a function of
frequency f ; lines: analytical results using effective material prop-
erties; dots: numerical results using detailed microstructures. EAl =
71 GPa, νAl = 0.33, and ρAl = 2700 kg/m3; EFe = 213 GPa, νFe =
0.286, and ρFe = 7900 kg/m3. fBQW = 169.91 kHz, d = 10 cm.

It is remarked that even in a nearly incompressible medium
such as silicone rubber, the proposed theory achieves full
mode-converting transmission [30], but the transmodal Fabry-
Perot resonance [22] can only realize a low-efficiency mode-
converting transmission because of the significant intermodal
impedance mismatch.

Let us now consider the case in Fig. 1(c), where the materi-
als of the incident and transmitted sides are dissimilar. For the
full mode-converting transmission from medium A carrying
the L wave to medium B carrying the T wave, the (asymptotic)
theory of bimodal quarter-wave impedance matching estab-
lished above remains valid except for the bimodal impedance-
matching condition. Namely, Eq. (12b) should be replaced by
a more general formula:

Z̃0 = Z̃
AL-BT
0 =

√
ρA

0 cA
11ρ

B
0 cB

66. (22)

Here, we introduced the superscript AL-BT to indicate that
the L wave incident from medium A is to be converted to the
T mode to medium B. Therefore, Z̃

BL-AT
0 =

√
ρB

0 cB
11ρ

A
0 cA

66 �=
Z̃

AL-BT
0 , implying that the bimodal matching element designed

for the AL-BT transmission cannot realize the BL-AT trans-
mission. However, for the BT-AL transmission, the required
bimodal impedance Z̃

BT-AL
0 is equally given by Eq. (22), owing

to the time-reversal symmetry. In addition to the redefinition
of the bimodal impedance, the parameter ξ is redefined as
ξ =

√
(ρB

0 cB
66)/(ρA

0 cA
11).

Figures 4(a) and 4(b) present the results for transmission
from aluminum (Al) to lead (Pb) and from Pb to Al, respec-
tively. The metamaterial unit cells have the same configura-
tions as illustrated in Fig. 3(a) while their detailed geometric
parameters are listed in Fig. 4. The base medium of the
metamaterials is steel and the chosen values of (nFS, nSS) are
(25, 27). At f = fBQW, the impedance ratios are found to be
Z̃AlL-PbT/Z̃

AlL-PbT
0 = 0.9967 and Z̃PbL-AlT/Z̃

PbL-AlT
0 = 0.9996,

which are nearly equal to 1. The bimodal quarter-wave
phase-matching condition at frequency fBQW is satisfied
with (4d/λFS, 4d/λSS) = (24.9947, 27.0034), and (24.9979,
27.0043), respectively, for the AlL-PbT and PbL-AlT cases.

The displacement fields and the L-to-T power transmis-
sion ratios plotted in Fig. 4 support the (nearly) full mode-
converting transmission phenomenon. The vertical displace-
ment amplitude after transmission |uy| calculated from the
numerical results is nearly equal to the ideal theoretical result
|CT

LT| = √
1/ξ for an incident L wave of unit magnitude:

AlL-PbT case: 1.4543 (simulation), 1.4572 (theory);
PbL-AlT case: 1.6893 (simulation), 1.6901 (theory).
The bottom plots in Fig. 4 clearly show the repeated peaks

at f = fBQW, 3fBQW, · · · , with TT = 0.9987 for the AlL-PbT

case and TT = 0.9975 for the PbL-AlT case, which confirm the
realization of the (nearly) full mode-converting transmission.
We can also show that TL at f = 2fBQW, 4fBQW, · · · , is TL =
1 − RL = 4ζ/(1 + ζ )2 with ζ =

√
(ρB

0 cB
11)/(ρA

0 cA
11), which

becomes 0.9676 for both the cases considered here.
In this study, an asymptotic theory of bimodal quarter-wave

impedance matching was established for full mode-converting
transmission from longitudinal (transverse) to transverse (lon-
gitudinal) waves. The derived impedance-matching condition
requires that Z̃ = ρ

√
C11C66 − C2

16 of the matching element
should be equal to Z̃0 = Z̃

AL-BT
0 =

√
ρA

0 cA
11ρ

B
0 cB

66 of the back-
ground media A and B carrying L and T modes, respectively.
This condition degenerates to the classical matching condition
for the case of unimodal transmission. The phase-matching
conditions for two L-T coupled modes state that the matching
element width should be multiples of their quarter waves,
but the multiplicities cannot be arbitrary. It also shows that
100% mode-converting transmission is only asymptotically
possible when C16 of the matching element approaches zero.
However, the matching element satisfying the asymptotic
bimodal matching conditions is shown to achieve nearly full
mode-converting transmission.
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FIG. 4. The realized full mode-converting transmission phenomenon through bimodal impedance-matching elements between two
dissimilar isotropic media of lead (Pb) and aluminum (Al). (a) AlL-PbT case with fBQW = 170.165 kHz, and (b) PbL-AlT case with
fBQW = 167.648 kHz. In the transmission plots, lines: analytical results using effective material properties; dots: numerical results using
detailed microstructures. d = 10 cm; EPb = 16 GPa, νPb = 0.44, and ρPb = 11 340 kg/m3.
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