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First-principles study of interaction energies of atomic defects in bcc ferromagnetic iron
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A comprehensive calculation of the solute formation energies, solute-solute and vacancy-solute binding
energies in bcc iron is reported. An extended set of solutes with atomic numbers 1 to 54 has been considered.
We used the projector augmented wave method of density functional theory with the generalized gradient
approximation for the exchange-correlation energy functional. The prominent results are the following: (1)
formation energies of solutes from fourth and fifth periods vary with their atomic numbers such that they reach
maxima near the ends of the periods and a minimum in between, with a local increase near Cu and Ag (like a
quasiparabolic valley). Solutes from second and third periods show similar trend like the elements near the ends
of the fourth and fifth periods. (2) The size factors of the solutes also show similar variation with their atomic
numbers like their formation energies. These trends corroborate the relatively smaller formation energies and
size factors of the common alloying additions to Fe (such as 3d , 4d , and sp elements) as compared to solutes
that lack solubility (such as Li, Na, K, Rb, He, Ne, Ar, Kr, Xe, F, Cl, Br, I, Mg, Ca, Sr, Ag, Cd, In, Y). (3)
The solubilities estimated from our formation energies are found to be in reasonable agreement with those from
the phase diagram database. (4) Solute-solute and vacancy-solute binding energies are found to vary with the
atomic number of the solutes in a manner inverse to solute formation energies and solute size factors, reaching
strong binding energies near the ends of the periods which generally include the insoluble elements. (5) Another
trend revealed by our work is that the size factors of isoelectronic sets of solutes increase down the groups with
associated increase of formation energies, and strength of solute-solute and vacancy-solute binding energies. (6)
A significant correlation is found between our vacancy-solute binding energies of 3d and 4d elements and the
corresponding diffusion coefficients from literature whereby solutes with strong binding energies have higher
diffusion coefficients and vice versa.
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I. INTRODUCTION

In nuclear power plants, stainless steels are the predom-
inant structural materials. Ferritic and ferritic-martensitic
steels are known to offer better dimensional stability than
austenitic steels under neutron irradiation. The operating tem-
peratures of these steels are however limited to about 600 ◦C.
In order to achieve higher operating temperatures, oxide
dispersion strengthened (ODS) steels have been developed
[1,2]. These modern steels are multicomponent alloys (with
about 20 components [2]: Fe, C, Mn, P, Si, Ni, Cr, Mo,
V, Ti, Co, Cu, Al, B, W, Zr, N, O, Y) made up of Fe-Cr
ferrite matrix in which a homogeneous distribution of small
precipitate particles is created by ball milling and subsequent
consolidation process involving either hot extrusion or hot
isostatic pressing. These ODS steels have superior creep re-
sistance and stability under irradiation, attributed to the finest
oxide particles densely dispersed in the ferrite matrix with
high dislocation density. These nanoprecipitates have been the
subject of many characterization studies. They are found to be
extremely stable even at high temperatures close to the solidus
of the ferrite matrix. Stability of the microstructure of these
steels under irradiation is also important for their long-term
service in nuclear environment. Some experimental studies
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suggest that the nanoparticles are stable under irradiation but
other studies report their dissolution. Thus the evolution of
size and population of these dispersed nanoparticles is not
well understood [3].

Formation of precipitates is governed by diffusion kinetics
of solute atoms in the solvent matrix. Vacancy and solute for-
mation energies and solute-solute and vacancy-solute binding
energies are important parameters controlling the diffusion
of solute atoms hence nucleation, growth, and coarsening of
precipitates [4–9]. First-principles electronic structure calcu-
lations offer the most accurate means to develop an atomic
level understanding of the interactions of solutes and point de-
fects in solids [4,10]. Modeling of clustering of atomic defects
and swelling also suggests that accurate characterization of
the interactions of solutes with point defects is important [10–
16]. Fu et al. have shown that the unusually high solubility
of oxygen atoms and nucleation of stable oxygen-enriched
nanoparticles in defect-containing Fe is determined by the
formation and binding energies of vacancies, oxygen, and
other solutes present in iron [17].

Given these connections between formation and binding
energies of atomic defects and diffusion kinetics and hence
evolution of microstructure and mechanical properties of
steels, several researchers have studied the interactions of
solute elements with point defects in body-centered cubic
(bcc) iron employing first-principles computational methods
[18–20] based on the electronic density functional theory
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(DFT). These studies have however considered mainly transi-
tion metals and sp elements. Further, the specifications of the
DFT calculations employed in previous works on this topic
are not consistent among themselves. Olsson et al. and You
et al. have carried out their electronic structure calculations
under constant volume conditions [18,20]. Gorbatov et al.
have done the calculations by Green function method with
atomic sphere approximation which preclude relaxation of
ionic coordinates. They themselves have indicated that the
vacancy-solute binding energies of certain solutes (Sc, Ti, Mo)
are extremely sensitive to the extent of structural relaxation
included in the calculations [19]. Partly relaxed or un-relaxed
calculations can thus give different results [21–25].

We in this work go beyond the set of solute elements
considered in the previous works and make a large database
of predictions of solute formation energies, solute-solute, and
vacancy-solute binding energies for an extended set of 53
different solute elements, with atomic numbers 1 to 54, in
bcc ferromagnetic iron using DFT total energy calculations
with complete relaxation of structural degrees of freedom
(ionic coordinates, shape and size of the unit cell) and uniform
specifications of k-mesh, plane-wave basis cutoff energy and
size of the simulation cell. Then we analyze the results of
our calculations to identify physical trends in the formation
and binding energies of the solutes. We would like to note
here that although the alkali metals and noble gas atoms do
not generally alloy with iron, knowledge of their energetics
in iron matrix will be useful to see trends in the solution
behavior of atoms in iron. Further, nuclear fission products
(including those from molten salt reactors) include elements
from alkaline earth, alkali, halogen and noble gas elements.
For modeling interaction of these fission products with steel
cladding as well as for modeling nuclide distribution be-
tween steelmaking phases upon melting of sealed radioactive
sources hidden in scrap, knowledge of their solute formation
energies are useful [26,27]. Furthermore, oxygen and yttrium
atoms are practically immiscible in Fe but ODS steels are
produced through mechanical alloying. Similarly, ion-beam
mixing is used to mix immiscible Ag, In, and Na in Fe [28,29].
Ion implantation is also used for similar purposes [30,31].
For modeling of such alloying approaches, energetics of these
solutes will be useful.

We note further that interactions of self-interstitial atom
defects with vacancies and solute elements are also important
for a robust understanding of atomic transport in steels [16].
In this work, we do not, however, consider self-interstitial
atom defects. The paper is organized as follows. After the
introduction in Sec. I, the computational scheme is outlined
briefly in Sec. II. In the Results, Sec. III, we show that the
solute formation energies, solute size factors, solute-solute
and vacancy-solute binding energies vary with the atomic
number of the solute atoms in an orderly manner revealing
several fundamental trends. Summary of results is given in
Sec. IV.

II. COMPUTATIONAL METHOD

We have considered all elements with Z = 1 to 54 as solute
atoms in bcc Fe. H, C, N, and O were considered as interstitial
solute atoms and other atoms as substitutional solutes. Among

FIG. 1. BCC 3 × 3 × 3 supercell with labeled atoms to define
atomic defect configurations. Labels 1, 2, and 3 represent substi-
tutional sites. Labels 4 to 12 represent octahedral interstitial sites.
Solute-solute nearest-neighbor pair configuration was obtained by
substituting the Fe atoms at sites 1 and 2 with the given solute atoms.
Vacancy-solute first and second nearest-neighbor pairs were formed
by placing the given solute atom at site 2 or 3, respectively, while
site 1 is made vacant. A single interstitial atom defect was formed
by placing the atom at site 4. Configurations of pairs of interstitial
atoms were created by placing them at pairs of sites 5-6, 5-7, 5-8, 5-9,
5-10, 5-11, and 5-12, respectively, in accordance with Domain et al.
[34]. Vacancy-interstitial pairs were formed by removing the atom at
site 1 and placing an interstitial atom at site 4 or 5, respectively, for
1nn and 2nn configurations [34]. Tetrahedral interstitial sites are not
indicated.

the interstitial solute atoms, H has been considered as a tetra-
hedral interstitial solute while the other atoms as octahedral
interstitial solutes in accordance with their site preference
[32–37]. In order to create point defects in bcc iron, we have
used the supercell method. Point defects were introduced into
the supercell by adding and/or removing appropriate atoms.
An isolated vacancy was created by removing a Fe atom at a
given lattice site. Substitutional atom defects were created by
replacing a single Fe atom with a solute atom. Substitutional
solute-solute pair defects were formed by replacing a pair of
nearest-neighbor Fe atoms with a pair of solute atoms. Substi-
tutional vacancy-solute pairs were created by removing a Fe
atom at a given site and replacing a Fe atom with a solute atom
at a nearest-neighbor (1nn) or a next-nearest-neighbor (2nn)
site. Interstitial solute-solute pairs were formed by placing
them at nearest-neighbor or further neighbor interstitial sites.
This is illustrated in Fig. 1. Vacancy-interstitial atom pairs
were formed by removing a Fe atom at a given site and placing
the solute at a nearest or next-nearest octahedral interstitial
site. A similar procedure is followed for tetrahedral interstitial
solute H.

Our calculations involve two important energetic quanti-
ties, formation and binding energies. The formation energy
of a defect is a measure of the amount of energy needed
to form the defect. The binding energies are a measure of
strength of attractive or repulsive interaction. The vacancy

144104-2



FIRST-PRINCIPLES STUDY OF INTERACTION … PHYSICAL REVIEW B 98, 144104 (2018)

and solute formation energies and solute-solute and vacancy-
solute binding energies were computed from the following
expressions [18,21,38]. The formation energy for a vacancy,
E�

f , (where � denotes a vacancy) in bcc iron is calculated
from

E�
f = E(FeN−1�1) − N − 1

N
E(FeN ), (1)

where E(FeN−1�1) is the total energy of an iron supercell
with N lattice sites containing a single vacancy and (N − 1)
Fe atoms. E(FeN ) is the total energy of bcc iron supercell with
N lattice sites without vacancy defect.

The expression for the formation energy of a substitutional
solute, EX

f , (where a solute atom is denoted by X) is given by
[38]

EX
f = E(FeN−1X1) −

[
N − (

1 + m
n

)]

N
E(FeN )

− 1

n
E(FemXn), (2)

where E(FeN−1X1) is the total energy of the iron supercell
with N lattice sites containing a solute X and (N − 1) Fe
atoms. FemXn is the reference phase in our calculation of
solute formation energy. It is the second phase with which
the solid solution phase is in equilibrium (with a common
boundary in the phase diagram). It can be a compound phase,
elemental crystal, molecules or atoms. Information regarding
the second phases in the Fe-X binary systems were obtained
from ASM alloy phase diagrams database [39–41]. E(FemXn)
is the total energy of FemXn. For an interstitial solute (denoted
again by X), the expression for EX

f is the same except that
(N − 1) and (1 + m

n
) are replaced by N and ( m

n
), respectively.

The binding energy of a substitutional solute-solute (X-X)
pair configuration is given by

EX-X
b = [E(FeN−2X2) + E(FeN )] − 2[E(FeN−1X1)], (3)

where E(FeN−2X2) is the total energy of the iron supercell
with N sites containing a pair of substitutional solutes X and
(N − 2) Fe atoms. The expression for the binding energy of a
pair of interstitial solutes is given by

EX-X
b = [E(FeNX2) + E(FeN )] − 2[E(FeNX1)], (4)

where E(FeNX2) is the total energy of the iron supercell with
N lattice sites containing a pair of solutes at interstitial sites
and N Fe atoms. E(FeNX1) is the total energy of the iron
supercell of N lattice sites containing N Fe atoms and a solute
X at an interstitial site.

For the vacancy-solute (�-X) interaction, the binding en-
ergy of a substitutional solute configuration is given by

E�-X
b = [E(FeN−2X1�1) + E(FeN )]

− [E(FeN−1X1) + E(FeN−1�1)], (5)

where E(FeN−2X1�1) is the total energy of the iron supercell
of N lattice sites containing a substitutional solute X, a
vacancy (�) and (N − 2) Fe atoms. For an interstitial solute,
the vacancy-solute binding energy is given by

E�-X
b = [E(FeN−1X1�1) + E(FeN )]

− [E(FeNX1) + E(FeN−1�1)], (6)

where E(FeN−1X1�1) is the total energy of the iron supercell
of N lattice sites containing a vacancy at a substitutional
site, a solute at an interstitial site and (N − 1) Fe atoms.
With these definitions, negative values of Eb denote binding
configurations.

In addition to chemical interactions, the size of the solute
atoms also influences the interaction energies of the atomic
defects. Therefore, the size factor of solute, SF(X), in bcc iron
has been computed using the definition from Hepburn et al.
[10],

SF (X) = �V

Vave
= VX − Vave

Vave
, (7)

where Vave = V (FeN−1X1 )
N

and VX = V (FeN−1X1)
− N−1

N
V (FeN ). V (FeN−1X1) and V (FeN ) are calculated

equilibrium volumes of FeN−1X1 and FeN supercell systems,
respectively. Size factors of interstitial solutes are defined in
a similar manner.

The total energies required in the calculations of formation
and binding energies defined above were computed using
3 × 3 × 3 bcc supercells of 54 lattice sites. Previous DFT
works on this topic indicate that a 3 × 3 × 3 supercell is
generally adequate [18,24,32,37,42,43]. The DFT total energy
calculations have been performed using the Vienna ab initio
simulation package (VASP) [44,45]. Projector augmented wave
(PAW) potentials [46,47] were used for all the elements con-
sidered in this work. For the exchange-correlation functional,
the generalized gradient approximation by Perdew, Burke,
and Ernzerhof (PBE) [48] was used. All the total energy
calculations were fully relaxed with respect to volume as
well as all cell-internal and cell-external degrees of freedom,
converged to 10−8 eV. Methfessel-Paxton order 1 smearing
[49] of the Fermi surface was used with a smearing width of
σ = 0.2 eV. It is known that the spin-unpolarized (nonmag-
netic) state of bcc Fe is higher in energy than the magnetic
state and spin-polarized calculations are necessary to establish
its ferromagnetic ground state [24]. The energy difference be-
tween the spin-unpolarized and spin-polarized state of Fe can
influence the formation and binding energies of solute atoms.
Therefore spin-polarized calculations have been performed
for all supercells representing pure bcc ferromagnetic iron
and bcc iron matrix with vacancy, solute, solute-solute, and
vacancy-solute defects. A cutoff energy of 500 eV was used
for the plane-wave expansion of the electron wave functions.
Extensive tests of k-point sampling have indicated that an
extremely dense grid of k points is required for converged
atomic defect calculations. Therefore an 8 × 8 × 8 k-point
mesh generated using the Monkhorst-Pack scheme was used
to sample the Brillouin zone. In addition to the total energy of
the system, spin-polarized calculations provide the local mag-
netic moments of the atoms, which can be used to establish
the accuracy of our calculations.

With these specifications, the lattice parameter and mag-
netic moment of bcc Fe were predicted to be 2.84 Å and
2.23 μB/atom, respectively. These values are in good agree-
ment with the experimental values of 2.86 Å and 2.2 μB/atom
[50]. Further, the vacancy formation energy E�

f = 2.18 eV
obtained from our calculation is in good agreement with
the previously published theoretical values of 2.18 eV [51]
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and 2.17 eV [32] as well as with the positron annihilation
experimental value of 2.0 ± 0.2 eV [52].

As defined in Eq. (2), computation of the solute formation
energies (also known as heat or enthalpy of solution) requires
total energies of the pure solute elements or the second
phases which exist in equilibrium with the solid solution phase
besides the total energies of Fe supercells without/with the
solute atoms. Therefore a set of high-precision calculations
were performed to determine the total energies of all the perti-
nent elements and compounds in their respective ground-state
structures [39–41]. Spin-polarized calculations have been per-
formed for the elements and compounds according to their
respective magnetic order. Appendix gives further details of
the calculation of the total energies of all the elements and
compounds that were used as reference states.

III. RESULTS AND DISCUSSION

A. Solute formation energies, size factors, and magnetic
moments

In Table I, we have collected all the results of our com-
putations of solute formation energy (EX

f ), and solute-solute

and vacancy-solute binding energies (EX-X
b and E�-X

b ) in bcc
iron for solutes with atomic numbers 1 to 54 along with their
size factors [SF(X)] and magnetic moments (μB). For com-
parison, Table I includes also results from literature, within
parentheses, wherever available. We first examine the solute
formation energies, EX

f . Solute formation energies are useful
to understand solid state solubility and alloying behavior.

We would like to emphasize a point here: it is a common
practice in DFT calculations of formation energy of solute
atoms in iron to choose the perfect crystal of the solute
element as the reference system [10,18,20,43]. However, this
choice is pertinent only if the pure solute element is actually
the second phase existing in equilibrium with the solid so-
lution phase. This is indeed true for systems such as Fe-Li,
Fe-Na, Fe-Mg, Fe-K, Fe-Ca, Fe-Mn, Fe-Cu, Fe-Rb, Fe-Sr,
Fe-Ru, Fe-Ag, Fe-Cd, and Fe-In [39]. But for systems such
as Fe-Be, Fe-B, Fe-C, Fe-N, Fe-O, Fe-Al, Fe-Si, Fe-P, Fe-
S, Fe-Sc, Fe-Ti, Fe-V, Fe-Cr, Fe-Co, Fe-Ni, Fe-Zn, Fe-Ga,
Fe-Ge, Fe-As, Fe-Se, Fe-Y, Fe-Zr, Fe-Nb, Fe-Mo, Fe-Tc,
Fe-Rh, Fe-Pd, Fe-Sn, Fe-Sb, Fe-Te, and Fe-I, second phases,
other than the solute elements, exist [39]. For these systems,
solute formation energies obtained using pure crystals as a
reference system can give unphysical equilibrium solubility
[38]. For instance, the solute formation energies of Ti, V,
Zr, Nb, Al, Si, P, Ga, Ge, and As from Olsson et al. [18],
You et al. [20] and Murali et al. [43] give unphysically
huge equilibrium concentration of these solutes (regarding the
estimation of the equilibrium concentration of solutes, Eq. (6)
and the discussion following it in Murali et al. [43] could
be referred). Therefore, in our work, we have obtained the
formation energies of solute atoms with respect to the second
phases wherever they are pertinent. Details of the calculation
for the reference systems are given in the appendix.

We have compared our formation energies of solutes with
literature where the reference state used is the same as in
our work. The literature data are often from computational
methods. Experimental data of energetics of atomic defects in

iron are generally scarce and a comparison of our results with
experiments is made wherever possible. We see from column
1 in Table I that our solute formation energy of H (0.194 eV)
is in good agreement with a prior DFT result of 0.21 eV [32]
and the experimental result of 0.30 eV [64]. For He atoms,
the agreement between our work and literature (4.35 versus
4.19 [55] and 4.30 eV [57]) is again very good. For solutes O,
Ne, Ar, Cr, Mn, Cu, Ru, Ag, Cd, and In also, our formation
energies are in good agreement with literature (within 15%).
Only for Xe, our formation energy deviates appreciably from
literature. The difference is likely due to the approximate
Lennard-Jones empirical potential used in the literature. Al-
though formation energies of other solutes are reported in
the literature, they generally correspond to elemental crystal
reference states rather than the second phases. Therefore they
are not compared with our solution energies.

In order to see whether our solute formation energies
predict reasonable solid state solubility, we have computed
the equilibrium concentration of the solute atoms Ceq by using
their formation energies (EX

f ) in the ideal solution expression
for solubility Ceq = exp(−EX

f /kBT ) [38,43]. Here, kB is the
Boltzmann constant and T is temperature, set to 800 K. The
results are listed in Table II. Table II lists also the solubility
read from phase diagrams [39]. It should be noted that accu-
rate solubility can be expected if EX

f in the above expression
is replaced by respective free formation energies. Calculating
the entropic contributions of electrons, phonons, magnons,
and configurational degrees of freedom of the solid solution
and the second phases to obtain the free formation energy for
all the 53 Fe-X binary systems is beyond the scope of this
work. In Table II, solubility is left blank for systems for which
phase diagrams are not available.

The important result from our calculation of solute for-
mation energies computed with reference to the correspond-
ing second phases, rather than with respect to pure crystals
of solute elements, is that the unphysically huge solubility
predicted for certain solutes is now avoided/corrected (Ti, V,
Zr, Nb, Al, Si, P, Ga, Ge, As). We see further from Table II
that, except for V, As, and Tc, the solubility predicted by our
solute formation energies are generally an underestimation
compared to those from phase diagrams. This is reasonable
because our solubility formula assumes the infinite dilution
limit (small solubility limit and negligible interaction between
the solute atoms) and ignores entropic contributions to so-
lution free formation energy [38,43]. The overestimation of
solubility of V and Tc can be related to the fact that the corre-
sponding second phases (FeV and FeTc) are the Frank-Kasper
σ phases which are difficult to model. We have used one of the
likely site occupancies reported for the σ -FeCr phase [65] to
model FeV and FeTc phases. The reason for overestimation
of As solubility is not clear. We have performed total energy
calculations for Fe2As in its antiferromagnetic structure in
accordance with literature [66]. Our calculated lattice param-
eters of Fe2As match with experimental values.

Figure 2 displays the formation energies of solute atoms
(EX

f ) in bcc Fe. We see that the formation energies of solute
elements from fourth and fifth periods vary with their atomic
numbers such that they reach maxima near the ends of the
periods and minima in between, with a local hump near Cu
and Ag (like a quasiparabolic valley). Solutes from second
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TABLE I. Formation and binding energies of vacancy (�) and solute atoms (X) in bcc iron. All the energies are in eV. Size factor of the
solute atoms [SF(X)] and magnetic moments (μB ) are also listed. For comparison, results from the literature are given within parentheses
wherever available.

X EX
f SF(X) μB EX-X

b E�-X
b (1nn) E�-X

b (2nn)

H 0.194(0.21) [32] −0.650 −0.023(−0.05) [53] −0.026(−0.03) [54] −0.565(−0.57) [32] −0.094
He 4.350(4.19) [55] 0.104 0.010(0.05) [55] −1.140(−0.37) [56] −0.784(−0.80) [57] −0.573(−0.50) [57]
Li 0.982 0.075 −0.078 −0.208 −0.235 −0.032
Be 0.395 −0.144 −0.138 −0.085 −0.134 −0.158
B 1.694 −0.31 −0.140 −0.127(−0.05) [35] −0.236(−0.20) [35] −0.382(−0.39) [35]
C 0.471 −0.063 −0.146(−0.24) [58] 0.672(0.94) [34] −0.521(−0.41) [36] −0.052(0.16) [36]
N 0.210 −0.022 −0.111(−0.14) [58] 0.882(1.19) [34] −0.786(−0.74) [36] −0.244(−0.17) [36]
O 1.236(1.24) [43] 0.176 0.044 0.272(0.40) [59] −1.535(−1.41) [36] −0.945(−1.02) [36]
F 0.750 0.377 0.170 −0.821 −1.110 −1.240
Ne 5.706(5.76) [56] 0.620 0.018 −1.464(−0.75) [56] −1.118(−5.41) [56] −0.396
Na 3.435 0.630 −0.040 −0.60 −0.672 −0.013
Mg 0.971 0.466 −0.053 −0.142 −0.445 0.068
Al −0.100 0.205 −0.077 0.087(0.09) [20] −0.307(−0.31) [20] 0.017(0.02) [20]
Si −0.160 −0.021 −0.089 0.290(0.24) [20] −0.292(−0.29) [20] −0.118(−0.11) [20]
P 0.460 −0.095 −0.054 0.209(0.21) [20] −0.367(−0.37) [20] −0.256(−0.25) [20]
S 0.760 0.068 0.020 −0.490(−0.51) [20] −0.535(−0.53) [20] −0.359(−0.34) [20]
Cl 2.546 0.603 0.138 −1.124 −1.184 −0.600
Ar 7.819(8.03) [56] 1.047 0.175 −1.287(−1.25) [56] −1.688(−5.83) [56] −0.745
K 6.963 1.427 0.059 −1.484 −1.819 −0.843
Ca 3.251 1.008 −0.116 −0.510 −1.276 −0.310
Sc 1.122 0.591 −0.407(−0.25) [19] 0.159(0.35) [60] −0.641(−0.41) [19] 0.171(0.10) [19]
Ti 0.054 0.323(0.32) [18] −0.797(−0.65) [18] 0.237(0.24) [18] −0.236(−0.23) [18] 0.188(0.18) [18]
V −0.286 0.223(0.15) [18] −1.273(−1.21) [18] 0.227(0.23) [18] −0.052(−0.05) [18] 0.102(0.09) [18]
Cr −0.162(−0.14) [18] 0.219(0.15) [18] −1.803(−0.16) [18] 0.256(0.24) [18] −0.043(−0.06) [18] 0.001(−0.01) [18]
Mn 0.182(0.21) [18] 0.234(0.02) [18] −2.015(−0.40) [18] 0.035(−0.06) [18] −0.192(−0.19) [18] −0.096(−0.14) [18]
Co −0.033 0.102(0.03) [18] 1.699(1.72) [18] 0.045(0.04) [18] 0.031(0.03) [18] −0.101(−0.11) [18]
Ni 0.176 0.266(0.15) [18] 0.890(0.88) [18] −0.001(−0.02) [18] −0.086(−0.12) [18] −0.204(−0.21) [18]
Cu 0.722(0.72) [18] 0.211(0.15) [18] 0.116(0.11) [18] −0.224(−0.25) [18] −0.237(−0.27) [18] −0.181(−0.16) [18]
Zn 0.353 0.319 −0.085 −0.148(−0.14) [60] −0.320(−0.33) [61] −0.091
Ga 0.138 0.331 −0.182 0.065(0.12) [20] −0.382(−0.39) [20] −0.080(−0.06) [20]
Ge −0.086 0.301 −0.121 0.270(0.28) [20] −0.435(−0.44) [20] −0.128(−0.15) [20]
As −0.271 0.286 −0.070(−0.05) [62] 0.283(0.29) [20] −0.510(−0.52) [20] −0.202(−0.22) [20]
Se 0.930 0.397 −0.019 −0.121(−0.11) [20] −0.636(−0.62) [20] −0.281(−0.30) [20]
Br 2.738 0.719 0.064 −0.717 −0.914 −0.379
Kr 8.158 1.165 0.194 −1.156 −1.562 −0.554
Rb 7.928 1.623 0.050 −1.305 −1.947 −0.818
Sr 4.884 1.473 −0.075 −0.743 −1.839 −0.772
Y 2.171 1.196 −0.302(−0.20) [19] −0.097(0.20) [59] −1.325(−0.78) [19] −0.225(−0.02) [19]
Zr 1.128 0.889(1.05) [18] −0.715(−0.53) [18] 0.226(0.32) [18] −0.699(−0.67) [18] 0.121(0.06) [18]
Nb 0.231 0.679(0.79) [18] −0.775(−0.70) [18] 0.299(0.38) [18] −0.331(−0.32) [18] 0.192(0.13) [18]
Mo 0.036 0.521(0.52) [18] −0.804(−0.75) [18] 0.256(0.28) [18] −0.144(−0.13) [18] 0.153(0.10) [18]
Tc 0.084 0.436(0.48) [18] −0.558(−0.52) [18] 0.056(0.08) [18] −0.100(−0.11) [18] 0.080(0.02) [18]
Ru 0.293(0.32) [18] 0.426(0.40) [18] 0.326(0.33) [18] 0.070(0.08) [18] −0.077(−0.09) [18] 0.018(−0.02) [18]
Rh 0.062 0.542(0.58) [18] 0.690(0.70) [18] 0.124(0.16) [18] −0.114(−0.12) [18] −0.070(−0.07) [18]
Pd 0.483 0.732(0.81) [18] 0.470(0.40) [18] −0.015(0.02) [18] −0.232(−0.25) [18] −0.160(−0.16) [18]
Ag 1.802(1.93) [18] 0.906(0.92) [18] 0.106(0.01) [18] −0.403(−0.33) [18] −0.448(−0.47) [18] −0.201(−0.20) [18]
Cd 1.768(1.88) [10] 0.921(0.95) [10] −0.067(−0.06) [10] −0.366 −0.600 −0.141
In 1.146(1.24) [20] 0.935 −0.234 −0.110(−0.06) [20] −0.646(−0.68) [20] −0.071(−0.10) [20]
Sn 0.620 0.895 −0.201(−0.08) [62] 0.285(0.39) [20] −0.690(−0.71) [20] −0.051(−0.09) [20]
Sb 0.261 0.837 −0.092(−0.07) [62] 0.601(0.64) [20] −0.675(−0.71) [20] −0.095(−0.10) [20]
Te 0.857 0.833 −0.070 0.577(0.68) [20] −0.746(−0.76) [20] −0.138(−0.18) [20]
I 3.002 0.933 −0.029 0.181 −0.865 −0.234
Xe 8.267(15.45) [63] 1.405 0.132 −0.611 −1.240 −0.433
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TABLE II. Equilibrium concentration of solutes (Ceq) in bcc iron
obtained from our formation energies listed in Table I compared
with the corresponding concentrations from the ASM alloy phase
diagrams (PD) database [39] [Ceq(PD)].

X Ceq Ceq(PD) X Ceq Ceq(PD) X Ceq Ceq(PD)

H 0.060 0.05 K 0.000 0.00 Sr 0.000
He 0.000 Ca 0.000 0.00 Y 0.000 0.00
Li 0.000 0.00 Sc 0.000 0.00 Zr 0.000 0.00
Be 0.003 1.00 Ti 0.450 0.70 Nb 0.040 0.00
B 0.000 0.00 V 57.600 25.00 Mo 0.600 1.00
C 0.001 0.00 Cr 11.000 15.00 Tc 0.295 0.00
N 0.050 0.20 Mn 0.080 2.50 Ru 0.014 2.00
O 0.000 0.00 Co 1.610 30.00 Rh 0.410 8.00
F 0.000 Ni 0.080 5.80 Pd 0.001 0.05
Ne 0.000 Cu 0.000 0.00 Ag 0.000 0.00
Na 0.000 0.00 Zn 0.006 5.00 Cd 0.000 0.00
Mg 0.000 0.00 Ga 0.140 15.00 In 0.000 0.00
Al 4.260 20.00 Ge 3.500 20.00 Sn 0.000 2.00
Si 10.100 28.00 As 49.40 5.00 Sb 0.023 2.00
P 0.001 0.05 Se 0.000 0.00 Te 0.000 1.50
S 0.000 0.00 Br 0.000 I 0.000 0.00
Cl 0.000 Kr 0.000 Xe 0.000
Ar 0.000 Rb 0.000

and third periods show a similar trend to the elements near
the ends of the fourth and fifth periods. The solute formation
energies of H and He are the lowest in the respective groups.
We see further that the substantially positive formation ener-
gies of alkali (Li, Na, K, Rb), noble gas (He, Ne, Ar, Kr, Xe),
alkaline earth (Mg, Ca, Sr), and halogen (F, Cl, Br, I) atoms
are in accord with their immiscibility in bcc iron [67]. Se, Ag,
and Cd too are immiscible in bcc iron [67]. In agreement with
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FIG. 2. Formation energies of solute atoms (EX
f ) in bcc Fe. The

curves are guides to eye. The dashed horizontal line is a guide to eye
delineating negative and positive formation energies.

this, our calculation predicts an appreciably large endothermic
formation energies for these solutes. For elements Al, Si, V,
Cr, Co, Ge, and As, our calculations predict negative solute
formation energies. This is in line with their large solid state
solubility in Fe [67]. For other elements H, Be, B, C, N, O,
P, S, Sc, Ti, Mn, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh,
Pd, In, Sn, Sb, and Te, our calculations predict moderately
positive solute formation energies. Among these, solutes with
appreciable solubility such as H, Be, N, P, Ti, Mn, Ni, Zn, Ga,
Mo, Ru, Rh, Pd, Sn, Sb, and Te have generally relatively lower
formation energies than solutes with negligible solubility such
as B, C, O, S, Sc, Cu, Y, Zr, Nb, Tc, and In.

The interaction among atomic defects in a host matrix
can have different components. The solute formation energy,
presented above, represents the chemical component which
is usually the dominant component. The other component
that is considered along with the chemical component is the
strain component [10,18,23]. The strength of the interac-
tion due to the strain component is to a first approximation
proportional to the size factor of the solute atoms in the
solvent matrix. Therefore we computed the size factors of
the solute atoms [SF(X)] in bcc Fe using Eq. (7), adopted
from Hepburn et al. [10]. Column 2 of Table I lists these size
factors. Comparison of size factors of 3d and 4d transition
metal solute atoms from our work with literature [18] is
generally satisfactory. For the other 37 solute atoms, size
factors are not available in the computational literature and
our work provides them for the first time. Measured size
factors of substitutional elements are reported [68]. Qual-
itative agreement is seen between our calculated and the
measured size factors, including the negative size factors for
Be, P, and Si, despite the significant difference in the solute
concentrations involved. (List of measured SF(X) [68]/100:
Al(0.128), Be(−0.262), Co(0.015), Cr(0.044), Cu(0.175),
Ge(0.165), Mn(0.048), Mo(0.275), Nb(0.176), Ni(0.046),
P(−0.132), Pd(0.622), Ru(0.199), Sb(0.364), Si(-0.079),
Sn(0.677), Te(0.086), Ti(0.144), V(0.105), and Zn(0.211).)

Figure 3 displays the size factors of the solute atoms. We
see that, like formation energies, the size factors of elements
from fourth and fifth periods vary with their atomic numbers
such that they reach maxima near the ends of the periods
and broad minima in between, with a local hump near Ga
and In. The size factors of solutes from second and third
periods show a similar trend to the solutes near the ends of the
fourth and fifth periods. The size factors of H and He are the
lowest in their respective groups. The size factor of B deviates
from this trend. We performed additional calculations of the
solute formation energy and the size factor of B considering
it as an octahedral interstitial solute. While the formation
energy is found to be almost the same (slightly lower) as that
of substitutional B, the size factor is changed significantly
(−0.009 for −0.31). With this size factor, the deviation of B
is thus corrected. But this change in size factor is not useful
to improve the correlations considered in the later sections.
Therefore we proceed with substitutional B.

It is further evident that majority of solute atoms have
positive size factors. That is, the effective size of these solute
atoms in iron matrix is larger than that of iron atoms. This is
in agreement with the increase in the lattice parameter of bcc
iron with the addition of 3d solute elements [24]. Further, the
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FIG. 3. Size factors of solute atoms [SF(X)] in bcc Fe. The
curves are guides to eye.

elements that are identified to be immiscible according to their
solute formation energies (He, Li, B, C, O, F, Ne, Na, Mg, S,
Cl, Ar, K, Ca, Sc, Cu, Se, Br, Kr, Rb, Sr, Y, Zr, Pd, Ag, Cd, In,
Sn, Sb, Te, I, and Xe) also generally have relatively large size
factors. He, Li, C, and S are exceptions. These elements are
immiscible in iron despite their relatively small size factors.
Al, Ti, V, Cr, Mn, Ni, Zn, Ga, Ge, As, Nb, Mo, Ru, and
Rh form another set of exceptions. These elements exhibit
appreciable solubility though their size factors are relatively
large. We will return to the correlation between solute size
factor and formation energies in a later section.

Knowledge of magnetic moments of solute elements in
iron will be useful for selecting alloying additions with desired
magnetic properties. Therefore we have collected the local
magnetic moments of all solute atoms considered in this work.
Our calculated magnetic moments of solutes (μB) are listed in
column 4 of Table I. For 3d and 4d transition metal elements
as well as for H, He, C, N, Sc, As, Y, Sn, and Sb, our calculated
local magnetic moments are found to be in good agreement
with literature [10,18,19,53,55,58,62]. For other solute ele-
ments our work provides their magnetic moments for the first
time. Figure 4 displays the magnetic moments of solutes in
bcc iron. We see that the local magnetic moments are not quite
significant for solutes from the first, second, and third periods
(Z = 1 to 18). Solutes from fourth and fifth periods (Z = 19
to 36 and Z = 37 to 54) have similar magnetic coupling with
host Fe. The 3d and 4d transition metal solutes to the left
of Fe in the periodic table show antiferromagnetic coupling
while those to the right of Fe show ferromagnetic coupling
with the host Fe [69]. The magnetic moments of 3d solutes
are relatively stronger than those of 4d solutes. Further, it is
found that the impurity moments of Ti, V, Cr, Mn, Co, Ni,
and Cu obtained from our calculations are in good agreement
with neutron scattering experiments and first-principles cal-
culations [69]. Rahman et al. have given a mechanism for
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FIG. 4. Local magnetic moments of solute atoms (μB ) in bcc Fe.
The curves are guides to eye.

the antiferromagnetic and ferromagnetic coupling of solute
moments with the host moment for 3d transition metal atoms
[24]. Through comparison of the spin-unpolarized and polar-
ized impurity-site-projected local density of states (as well
as spin density contour plots), they have shown that all 3d

electrons from Sc to Cr impurities occupy local minority spin
bands (minority spin eg states) to achieve charge neutrality
and consequently to align antiferromagnetically to the host
magnetic moments. Additional 3d electrons (from Co, Ni, Cu,
Zn impurities) are forced to enter the t2g majority spin states
and couple ferromagnetically to the host Fe atoms [24]. While
this trend appears to hold for other elements on the left side
of the respective periods, it does not hold for solutes on the
right side. Rather, solutes from Mg to Ar, Zn to Kr, and Cd to
Xe appear to form another group of elements with magnetic
coupling similar to 3d or 4d elements with Fe though with
weaker moments.

B. Solute-solute binding energy

In an alloy, solute atoms can move randomly in all direc-
tions. When they encounter one another, the interaction can be
attractive or repulsive, which would cause either precipitation
or segregation. Therefore it is useful to obtain the binding
energies of pairs of solute atoms in iron. Generally, 1nn solute-
solute interactions are dominant compared to further neigh-
bor interactions for substitutional solutes [18,20]. Therefore
second and further neighbor solute-solute interaction energies
for these solutes have been omitted in our calculations so
as to reduce the demanding computational requirements. For
interstitial solutes C, N, and O, we have considered their
binding energies in seven different configurations. Column 5
of Table I lists nearest-neighbor solute-solute binding energies
(EX-X

b ) for all the solutes along with results from literature.
For 15 solutes, Li, Be, F, Na, Mg, Cl, K, Ca, Br, Kr, Rb, Sr, Cd,
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I, and Xe, solute-solute binding energies are not available in
the literature and our work provides them for the first time. For
the remaining 38 solute atoms, solute-solute binding energies
are available in the literature. For 18 of these 38 solutes,
our calculated binding energies are in good agreement with
literature (within 15%). For the remaining 20 elements (He,
B, C, N, O, Ne, Si, Sc, Mn, Ni, Ga, Y, Zr, Nb, Tc, Rh, Pd, Ag,
In, and Sn), the difference is more than 15%. Out of these 20
solutes, the literature for He-He and Sc-Sc pairs correspond
to different configurations compared to our work. Our work
considers a pair of substitutional He atoms whereas literature
corresponds to a pair of interstitial He atoms [56]. Similarly,
our Sc-Sc pair corresponds to substitutional Sc atoms in a
bcc iron matrix modeled with a 3 × 3 × 3 supercell while
literature corresponds to a pair of Sc atoms in a fixed free
22-atoms cluster based on bcc structure [60] studied using the
Korringa-Kohn-Rostoker Green function method.

Next, we analyze the source of the discrepancy for the
remaining 18 systems (B, C, N, O, Ne, Si, Mn, Ni, Ga, Y,
Zr, Nb, Tc, Rh, Pd, Ag, In, and Sn). For these systems, as
well as for systems where the comparison is satisfactory, the
difference between our work and literature is that we have
performed the calculations using a 54-atom supercell with
zero-pressure conditions using finer k mesh (8 × 8 × 8) and
higher plane-wave energy cutoff (500 eV) but in the literature
the calculations have been generally done using a 128-atom
supercell with constant-volume condition using coarse k mesh
(3 × 3 × 3) and lower plane wave energy cutoff (300 to
350 eV) [18,20,34,35,56,59]. In order to verify whether the
discrepancy in the binding energies is due to the size of the
supercell, we have performed additional calculations for the
oversized alkali and noble gas atoms (Li, Na, K, Rb, He,
Ne, Ar, Kr, and Xe) as their elastic strain fields are expected
to extend beyond the 3 × 3 × 3 supercell. Y, Zr, Pd, and
B are also included in this calculation of the supercell size
convergence test. Table III lists these binding energies.

TABLE III. Solute-solute binding energies (EX-X
b ) of selected

solute pairs for four different supercell sizes (54, 128, 250, 343
atoms). Calculations with 128- 250- and 343-atom supercells were
performed with 6 × 6 × 6, 3 × 3 × 3, and 1 × 1 × 1 k-points meshes
respectively.

X-X 54 128 250 343

Li-Li −0.208 −0.193 −0.197 −0.228
Na-Na −0.681 −0.650 −0.628 −0.678
K-K −1.486 −1.333 −1.280 −1.220
Rb-Rb −1.309 −1.056 −1.020 −1.026
He-He −1.183 −1.172 −1.174 −1.138
Ne-Ne −1.463 −1.500 −1.485 −1.477
Ar-Ar −1.285 −1.216 −1.161 −1.158
Kr-Kr −1.155 −1.000 −0.895 −0.858
Xe-Xe −0.611 −0.365 −0.355 −0.341
Y-Y −0.097 −0.101 −0.045
Zr-Zr 0.226 0.240 0.261
Pd-Pd −0.016 0.017 0.032
B-B −0.125 −0.109 −0.106

TABLE IV. Binding energies (EX-X
b ), in eV, between pairs of

C, N, and O atoms. The calculations were done using a 54-atom
supercell. The distances between the two solute atoms, d (X-X), are
in units of the equilibrium lattice parameter (a). Configuration labels
such as “5-6” mean that the atoms are placed at sites labeled 5 and
6 in Fig. 1. For the C-C and N-N pairs, our binding energies are
compared with Domain et al. [34], given in parenthesis. For the O-O
pair, the literature value is from Jiang et al. [59].

Configuration C-C N-N O-O d(X-X)

5-6 0.672 (0.94) 0.882(1.19) 0.272(0.4)
√

2/2
5-7 0.021 (0.42) 0.148(0.55) −0.292

√
3/2

5-8 1.616 (2.28) 1.514(3.03) 1.277 1
5-9 −0.206 (0.17) 0.028(0.27) −0.402 1
5-10 −0.120 (0.14) −0.029(0.28) −0.028

√
5/2

5-11 −0.226 (0.20) −0.150(0.29) −0.244
√

2
5-12 −0.247 (0.09) −0.294(0.12) −0.301

√
3

It is evident that for Li, Na, He, Ne, and Ar pairs, the
binding energies from the 54-atom supercell are converged to
within about ±0.1 eV with those obtained from the 128-, 250-
and 343-atom supercells. But for K, Rb, Kr, and Xe pairs,
this table indicates that one should use at least a 128-atom
supercell to achieve similar convergence. Nevertheless, the
difference in the binding energies between 54- and 343-atom
supercell calculations is still less than 0.3 eV. For Y, Zr, Pd,
and B pairs also, similar convergence is seen. Further, the
order of the alkali-alkali and noble gas-noble gas binding
energies remains similar between the results from 54- and
343-atom supercells.

Next, we consider the binding energies of interstitial so-
lutes C, N, and O. Since C, N, and O are important interstitials
in steel and since previous calculations of C-C and N-N
binding energies have been generally performed at constant-
volume and lower plane-wave cutoff energy [34,58], we have
calculated these binding energies at zero-pressure condition.
We have included all the seven configurations considered
previously for these pairs of interstitials [34]. The results are
listed in Table IV. We compare our binding energies of C-C,
N-N, and O-O pairs with the corresponding binding energies
from literature. (The C-C and N-N interaction energies from
literature are presented here without minus sign so as to be
consistent with the convention used in this work.) For C-C
pairs, our calculations predict a repulsive interaction up to
third neighbor separation and attractive interaction beyond
this separation, unlike Domain et al. where the interaction is
repulsive even at sixth neighbor separation. It may be noted
that Bhadeshia has studied C-C interactions in iron [70]. One
of the conclusions of this study is that the formation of stable
clusters of carbon atoms in bcc Fe cannot be ruled out when
the distance between pairs of carbon atoms is greater than
the near neighbor separation. N-N pairs also show attrac-
tive interaction from fourth and farther neighbor separations
unlike Domain et al. where the interaction is predicted to
be repulsive up to sixth-neighbor distances. In the case of
O-O pair, our binding energy at the nearest-neighbor distance
(0.272 eV) and that from literature (0.4 eV) [59] both suggest
repulsive interaction. This interaction becomes attractive from
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FIG. 5. Solute-solute binding energies (EX-X
b ) in bcc Fe at

nearest-neighbor positions (1nn). The curves are guides to eye.

second-neighbor distance unlike C-C and N-N pairs where
attractive interaction begins at fourth-neighbor distance.

Thus, besides the nature of interactions, we see that the
magnitude of our interaction energies also shows some dif-
ference with respect to literature. Since the interstitials are
additional atoms in the iron matrix, they can be expected
to have long-ranged strain fields. Therefore we repeated the
C-C and N-N binding energy calculations with 4 × 4 × 4
supercells for configuration “5-12” (see Fig. 1) as it is reported
to be stable [34]. These calculations give binding energies of
−0.11 and −0.12 eV, respectively. The corresponding bind-
ing energies from Domain et al. obtained using 4 × 4 × 4
supercell are −0.16 and 0.03 eV, respectively. This shows that
the binding energies tend to converge with 4 × 4 × 4 supercell
calculations. The remaining difference is likely due to the
constant-volume condition and the lower plane-wave cutoff
energy (�290 eV) employed in their work.

Figure 5 depicts the solute-solute binding energies listed
in column 5 of Table I. We see that the binding energies
show a similar but inverse variation with respect to the atomic
numbers like the solute formation energies in Fig. 2. That is,
strong binding energies occur for solute pairs at the ends of the
periods and weak binding energies for pairs from the middle
of the periods. Further, the relatively strong binding energies
(< −0.2 eV) obtained for the alkali Li, Na, K, Rb, alkaline
earth, Ca and Sr, halogen F, Cl and Br, noble gas elements
He, Ne, Ar, Kr, Xe, and Cu, Ag, Cd, and S atoms suggest that
the driving force for their segregation rather than remaining
in solution is quite high, which is in agreement with their
immiscibility or limited solubility in bcc iron [67]. Molecular
dynamics simulation of He clustering and bubble formation in
bcc Fe has shown that isolated He atoms are highly mobile and
they aggregate into clusters [71]. Our EHe-He

b indeed suggests
clustering of He atoms in Fe.

Our results of solute-solute binding energies further sug-
gest that pairs of 3d and 4d atoms from Ti to Ni and Zr to
Pd show a tendency to repel each other while Cu, Zn, Ag,
and Cd have a tendency to cluster, in agreement with previous
theoretical studies [5,18]. Among Al, Si, P, and S, S is less
soluble in bcc Fe [67]. Accordingly, we obtain an attractive
S-S binding energy while repulsive binding energies for Al,
Si, and P pairs. You et al. have predicted that S, Se, and In
with attractive EX-X

b tend to phase separate. Al, Si, P, Ga, Ge,
As, Sn, Sb, Te, with repulsive EX-X

b tend to be distributed
uniformly in the matrix [20]. Our EX-X

b values confirm both
the predictions. We also observe that EX-X

b are small for H,
Be, Al, Mn, Co, Ni, Ga, Y, Tc, Ru, and Pd. Several of these
solutes (Al, Co, Ni, Ga) are known to form an extended solid
solution in bcc Fe.

C. Vacancy-solute binding energy

As mentioned earlier, the vacancy-solute binding energy is
one of the important factors controlling diffusion and solubil-
ity of solutes and hence clustering or nucleation of precipitates
[17,23,72,73]. In other words, the diffusion coefficients of
solute atoms depend on their binding energies with vacan-
cies through migration energies [35,37,74,75]. Vacancy-solute
binding energies are also useful for modeling and predicting
mechanical behavior of steels under irradiation [76]. There-
fore we have computed the binding energies of vacancy-solute
(�-X) pairs inserted in a bcc Fe matrix at 1nn and 2nn posi-
tions. These energies are listed respectively in columns 6 and
7 in Table I. There are reports of vacancy-solute interaction
energies for 38 of the 53 solute atoms considered in this work
[18–20,32,35,36,56,57,61]. For the other 15 solutes, i.e., Li,
Na, K, Rb, Be, Mg, Ca, Sr, F, Cl, Br, I, Kr, Xe, and Cd, our
work provides their binding energies for the first time. For
H, Ne, Ar, and Zn, only 1nn pair E�-X

b are available from
literature. Our work provides both the 1nn and 2nn E�-X

b .
For C, N, and O, our computed E�-X

b are in good agree-
ment with Barouh et al. [36] as well as with the experimental
binding energy of −0.41 eV for �-C pair [77]. We find further
that the binding of these interstitial solutes becomes stronger
progressively from C to N to O (−0.521 eV, −0.786 eV,
−1.535 eV), which is in agreement with Fu et al. [17]. For
the other elements also, the comparison of E�-X

b between our
work and literature is quite satisfactory except for Ne, Ar, Sc,
Co, Y, and Pd.

We would like to note that for Al, Si, Ti, V, Cr, Mn,
Co, Ni, Cu, Pd, and Sb, E�-X

b in bcc Fe are available from
muon spin rotation experiments (−0.185 to −0.400, −0.230,
−0.160, < −0.105, < −0.105, −0.150, −0.140, −0.215,
−0.140, −0.210, and −0.455 eV, respectively [78,79]. A
minus sign is included to these binding energies to make
them consistent with the convention in our work). For these
solutes, the comparison between our binding energies and
experiments is very good except for Cu. Our calculation
[18,61] overestimates E�-Cu

b compared to measurements. We
also note that experimental E�-X

b is largest for Sb among the
solutes listed above. Our computed E�-X

b values reproduce
this trend exactly. Among Si, P, Cr, Mn, Ni, and Cu, Messina
et al. have shown that E�-X

b is strongest for P and weakest
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FIG. 6. Vacancy-solute binding energies (E�-X
b ) in bcc Fe at

nearest-neighbor positions (1nn).

for Cr [72]. Our calculations (Table I) are in accord with
this. Further, between Cr and Mo, the E�-X

b is predicted to
be relatively strong and attractive for Mo in agreement with
Olsson et al. [18] and Garbatov et al. [19]. These results are
confirmed by a study of defects in iron-based binary alloys
by Mossbauer and positron annihilation spectroscopies [80].
For Co and Ni, E�-X

b from literature shows that their 2nn
interaction is stronger than 1nn interaction [18,72,73]. Our
binding energies reproduce this trend exactly.

Now consider the binding energies of Ne, Ar, Sc, Co, Y,
and Pd to vacancy where the comparison is less satisfactory.
For Sc and Y, the discrepancy between our binding energy and
literature [19] is possibly due to the Green function method
with atomic sphere approximation used in their work which
precludes relaxation of ionic coordinates. But the trend that
E�-X

b is stronger for Y than for Sc is retained. For Ne and Ar,
we have verified our binding energies with calculations using
a 128-atom supercell. Binding energies from these calcula-
tions (−1.063 and −1.616 eV, respectively) are found to be in
agreement with those obtained using a 54-atom supercell. We
think the discrepancy between our work and literature [56]
for these solutes is due the lower plane-wave cutoff energy
(350 eV) and PW91, rather than PBE, exchange-correlation
functional, and the constant volume condition used in their
calculations.

Figures 6 and 7 show the binding energies of vacancy-
solute pairs at 1nn and 2nn positions in bcc Fe, respectively.
We see that, like the solute-solute binding energy in Fig. 5,
the binding energies of vacancy-solute pairs show an approxi-
mately inverse variation with respect to the atomic numbers
of the solutes compared to the solute formation energies
in Fig. 2. It is evident that both 1nn and 2nn E�-X

b show
similar variation with atomic numbers of the solutes. We
also note that 1nn binding energies of elements from fifth
periods are generally stronger than those of elements from the
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FIG. 7. Vacancy-solute binding energies (E�-X
b ) in bcc Fe at

next-nearest-neighbor positions (2nn).

fourth period, whereas the 2nn binding energies of 3d and sp

elements from the fourth period are generally stronger than
those of the corresponding elements from the fifth period. We
further see from Figs. 6 and 7 that the E�-X

b at 1nn is attractive
(exothermic) for all solutes except Co while the 2nn E�-X

b

have become repulsive (endothermic) for some solutes (Al,
Mg, Sc, Ti, V, Cr, Zr, Nb, Mo, Tc, and Ru). Comparison of
Fig. 6 with 5 also shows that E�-X

b at 1nn is attractive for
all solutes unlike EX-X

b , which are repulsive for many solute
pairs.

Figure 7 shows that the 2nn E�-X
b is repulsive for early

transition metal solutes and attractive for late transition metal
solutes in agreement with literature [18]. We see that the
strongest vacancy-solute binding occurs for solutes K, Rb, Sr,
Ar, Kr, Ca, O, Y, and Xe, and the weakest binding for solutes
V, Cr, Co, Ni, and Ru. This suggests that the solutes K, Rb, Sr,
Ar, Kr, Ca, O, Y, and Xe, when present in bcc Fe matrix, will
trap vacancies strongly. This is known to be true for O and Y
[17,81].

Figure 8 is a graph of 1nn E�-X
b for 3d and 4d transition

metal atoms from our work plotted with respect to their
corresponding calculated diffusion coefficients by Messina
et al. [73]. It is interesting to note that our E�-X

b of 4d solutes
show an inverse parabolic variation to their calculated tracer
diffusion coefficients at 1100 K [73] (see their Fig. 9). For the
3d transition metal solutes a similar correlation is evident too.
This observation suggests that E�-X

b of other solutes predicted
in our work would provide a guide to judge their diffusion
coefficients.

Gorbatov et al. have earlier considered E�-X
b and diffusion

in iron. They have identified that the attractive 1nn E�-X
b of

most of the solutes correlate well with the experimental data
on impurity diffusion coefficients, which are systematically
higher than the Fe self-diffusion coefficient [19]. Our E�-X

b

for an extended set of solute elements show that the attractive

144104-10



FIRST-PRINCIPLES STUDY OF INTERACTION … PHYSICAL REVIEW B 98, 144104 (2018)

Ti V Cr Mn Fe Co Ni Cu

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

V
ac

an
cy

-s
ol

ut
e 

bi
nd

in
g 

en
er

gy
 (e

V
)

Binding energy

10-16

10-15

10-14

10-13

Diffusion coefficient-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

Zr Nb Mo Tc Ru Rh Pd Ag10-16

10-15

10-14

10-13

D
iff

us
io

n 
co

ef
fic

ie
nt

(m
2 /s

)

FIG. 8. Vacancy-solute binding energies of 3d and 4d transition
metal atoms in bcc Fe at nearest-neighbor positions from our work
plotted against the corresponding calculated diffusion coefficients
from Messina et al. [73] (their Fig. 9).

1nn vacancy-solute interaction is generally retained. This ap-
pears to be in agreement with the observation that in iron even
the oversized solute atoms have higher diffusion coefficients
than self-diffusion coefficients as well as with the suggested
absence of slow diffusers among the common solute additions
to bcc Fe [4,81].

D. Discussion

Next, we analyze the formation and binding energies of
solutes and their size factors to see if they are correlated.
We begin with a discussion of the effect of solute size on
its formation energy. Figure 9 shows our calculated formation
energies of solute atoms as a function of their size factors in
bcc iron [EX

f versus SF(X)]. The horizontal dotted line at the
solute formation energy of 1 eV is a guide to eye separating
data points below and above 1 eV. The vertical dotted line at
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FIG. 9. Formation energy vs size factor of solute atoms [EX
f vs

SF(X)] in bcc Fe. The dashed lines are guides to eye indicating a
correlation between the formation energy and the size factor of solute
atoms along columns in the periodic table. Note that we have drawn
only a few lines to illustrate this correlation though it exists along
other groups as well.

size factor 1 separates data points below and above 1. The
solute atoms that form alloys with iron generally have size
factors below 1 and formation energies below 1 eV whereas
elements that do not normally alloy with iron (Li, Na, K, Rb,
He, Ne, Ar, Kr, Xe, F, Cl, Br, I, Mg, Ca, Sr, Ag, Cd, In, and
Y) [67] generally have solute formation energies above 1 eV.
Many of the later also have size factors above 1. That is, a
correlation between solute formation energies and size factors
exists for some elements but is absent for other elements. For
example, the size factors of solutes He, Li, S, and Co are near
0.1. But their formation energies change from about 4 eV to
about −0.03 eV.

Other trends also emerge from Fig. 9. By compar-
ing isoelectronic sets of solutes (i.e., solutes in the same
column or group of the periodic table, H/Li/Na/K/Rb,
Be/Mg/Ca/Sr, Sc/Y, Ti/Zr, V/Nb, Cr/Mo, Mn/Tc, Fe/Ru,
Co/Rh, Ni/Pd, Cu/Ag, Zn/Cd, B/Al/Ga/In, C/Si/Ge/Sn,
N/P/As/Sb, O/S/Se/Te, F/Cl/Br/I, and He/Ne/Ar/Kr/Xe), one
can see a clear trend that the size factor increases down the
groups with an associated increase in the solute formation
energy, indicated by dashed lines drawn as a guide to eye.
Solutes H, B, C, N, and O are exceptions to this trend. This
graph thus shows that the solute size factor and its influence
on the solute formation energy are quite appreciable along
the groups rather than across the periods. Another physical
trend that may be noticed is that the rate of increase of
solute formation energy with the size factor is less along
V/Nb, Cr/Mo, Mn/Tc, Co/Rh, and Ni/Pd groups compared
to alkali, alkaline earth, halogen, and noble gas atoms. The
higher rate of increase of solute formation energies with size
factors, for instance, for alkali elements or noble gas atoms,
is likely because the strain component (size factor) of the
interactions is more dominant than the chemical component.
This also indicates, for instance, that the solubility of He in
iron will increase appreciably with high pressure compared to
the solubility of Nb or Mo.

Figure 10 is a graph of vacancy-solute binding versus
solute size factor in bcc iron [E�-X

b vs SF(X)]. The horizontal
dotted line at E�-X

b = −0.8 eV is a guide to eye separating
data points below and above −0.8 eV. It is evident that the
common alloying elements in steel have their vacancy-solute
binding energies above −0.8 eV and size factors within −0.25
and 1. The relatively weak vacancy-solute binding energies
of these solute atoms are likely due to their strong bonding
with the Fe atoms. Because of this strong X-Fe bonding, it
is unfavorable for a solute atom to be placed near a vacancy,
since this will result in fewer X-Fe bonds. The data points
with binding energies below about −0.8 eV include solutes
O, F, Ne, Cl, Ar, K, Ca, Br, Kr, Rb, Sr, Y, I, and Xe. Several
of these solutes also have large size factors.

The strong E�-X
b with associated SF (X) seen for some of

these solutes (Ar, Kr, Xe, K, Rb, Ca, Sr, and Y), in an overall
sense, may be understood by a simple physical argument:
placing large impurity atoms in the Fe matrix induces a
significant strain on the surrounding Fe atoms. A vacancy next
to this large impurity allows the impurity to relax towards
the vacancy and hence away from the other neighboring Fe
atoms. Thus a vacancy in a 1nn position to a large impurity
helps to relieve the strain, producing an energy lowering of
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the �-X pair, and hence a stronger binding energy. However,
this mechanism is inadequate to explain the relatively small
E�-X

b of solutes with relatively large size factors such as Ag,
Cd, In, Sn, Zr, and Sb, and the large binding energies of O and
F with relatively small size factors.

Figure 10 reveals other correlations as well. Isoelectronic
sets of solutes (i.e., H/Li/Na/K/Rb, Be/Mg/Ca/Sr, Sc/Y, Ti/Zr,
V/Nb, Cr/Mo, Mn/Tc, Fe/Ru, Co/Rh, Ni/Pd, Cu/Ag, Zn/Cd,
B/Al/Ga/In, C/Si/Ge/Sn, N/P/As/Sb, O/S/Se/Te, F/Cl/Br/I,
and He/Ne/Ar/Kr/Xe) reveal a clear trend that the strength of
vacancy-solute binding energies increases with increasing size
factor down the columns, indicated by dashed lines. We see
also that the rate of increase of vacancy-solute binding with
the size factor is less along V/Nb, Cr/Mo, Co/Rh, and Ni/Pd
groups. Solutes H, B, C, N, and O are exceptions. Mn/Tc, and
halogen and noble gas atoms (F, Cl, Br, I, He, Ne, Ar, Kr, and
Xe) also show deviations from this trend. For halogen and
noble gas elements, E�-X

b increases initially (from F to Cl,
and from He to Ar) with the size factors and then decreases
with further increase in the size factors (Cl to I, and Ar to Xe).
This may be understood as follows: these atoms behave more
like hard spheres in the iron matrix (unlike, for instance, alkali
elements with a strong tendency to loose electrons). The size
factors of F and Cl as well as He, Ne, and Ar are relatively
smaller that they can relieve their stresses by relaxing to the
nearby vacancy site. But this is not effective for solutes with
size factors beyond certain limit (Br and I as well as Kr and
Xe), which manifests in the reduction of �-X binding. The
deviation of Mn/Tc is likely due to the complex magnetic
property of Mn, which is missing from our DFT calculation.
We will consider the vacancy-interstitial solutes interaction
later.

Figure 11 is a graph of vacancy-solute binding energy ver-
sus solute formation energy (E�-X

b versus EX
f ). The vertical

and horizontal lines are guides to eye. It is apparent that E�-X
b

is correlated to EX
f , similar to E�-X

b versus SF(X) (Fig. 10). It
is further evident that most of the common alloying elements
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have their solute formation energies below 1 eV with vacancy-
solute binding energies between 0.1 and −0.8 eV. Insoluble
solute atoms with large formation energies such as He, Li, Ne,
Na, Cl, Ar, K, Ca, Br, Kr, Rb, Sr, Y, Ag, Cd, In, I, and Xe have
strong binding energy with vacancy. O and F are also insoluble
in iron but their EX

f are moderate like those of common
alloying elements. Nevertheless, their binding energies with
vacancy are strong like those of insoluble atoms. H, B, C, N,
O, Mn/Tc, halogen, and noble gas atoms are exceptions. We
relate the deviations seen with the later elements to the same
reasons discussed in the previous paragraph. The recurrent
exceptions of interstitial solute atoms with respect to the
several groupwise correlations considered above remains to
be explained. On the other hand, the experimental solution
enthalpy and size factor of C in bcc Fe (solution enthalpy
0.60 to 0.78 eV and 1.10 eV as reported in Refs. [22,37],
respectively, and size factor 0.781 as reported in Ref. [82])
lead to further deviation of C from the groupwise correlation
(in Fig. 9). Comparison of experimental size factors of C, Si,
Ge, and Sn (0.781, −0.078, 0.165, and 0.677) [68,82] also
leads to similar conclusion. That is, the deviations of H, B,
C, N, and O from the groupwise trends is real. Thus our
computed energetics of atomic defects in bcc Fe reveal several
fundamental trends and will be useful for identifying solutes
or combination of solutes with desired diffusion property that
can be used to optimize the coarsening kinetics and creep
strength of steels.

IV. SUMMARY AND CONCLUSIONS

In order to understand the atomic level properties of steels,
we have performed an extensive set of first-principles elec-
tronic structure calculations of the formation and binding
energies of atomic defects (vacancy, solute atoms, solute-
solute, and vacancy-solute pairs) in ferromagnetic bcc iron.
An extended set of solute elements with atomic numbers from
1 to 54 have been considered. Our calculations reveal several
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trends in the formation and binding energies of solutes and
their size factors. (1) It is found that the formation energies
of solutes from fourth and fifth periods vary with their atomic
numbers such that they reach maximum near the ends of the
periods and minimum in between, with a local hump near
Cu and Ag (like a quasiparabolic valley). Solutes from the
second and third periods show similar trends like the elements
near the ends of the fourth and fifth periods. The common
solute additions to Fe (3d, 4d, and sp elements) are found
to possess moderate formation energies. Large endothermic
formation energies are obtained for solutes that lack solubility
in Fe (alkali, halogen, noble gas, alkaline earth, Se, Ag, an
Cd atoms). (2) Like formation energies, the size factors of
the solute elements also vary with their atomic numbers such
that they reach maximum near the ends of the periods and
minimum in between. The majority of solute atoms have
positive size factors, i.e., their effective sizes in the iron matrix
are higher than that of iron atoms. Immiscible solute atoms
generally possess relatively large size factors. (3) Solubilities
estimated from our formation energies are found to be in
reasonable agreement with those from the phase diagram
database.

(4) The solute-solute and vacancy-solute binding energies
vary with the atomic number of the solutes in a manner inverse
to the formation energies and size factors. That is, strong
binding energies occur for solute-solute or vacancy-solute
pairs at the ends of the periods and weak binding energies
for pairs from the middle of the periods. We also find that
the 1nn solute-solute binding is repulsive for many solute
pairs while vacancy-solute binding is always attractive. (5)
The size factors of isoelectronic sets of elements increase
down the groups with an associated increase of the formation
energies. The strength of the solute-solute and vacancy-solute
binding energy increases with the size factors of solutes down
the groups. (6) Comparison of our predicted vacancy-solute
binding energies of 3d and 4d transition elements with their
corresponding calculated diffusion coefficients from literature
shows a significant correlation whereby solutes with strong
binding energies possess higher diffusion coefficients and vice
versa. This in turn indicates that our predicted vacancy-solute
binding energies of other solutes are useful to estimate their
diffusion coefficients.
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APPENDIX: GROUND-STATE TOTAL ENERGY OF
REFERENCE SYSTEMS

For the calculation of solute formation energies in bcc
Fe, the total energies of the elemental solutes (X) or Fe-X

binary compounds, whichever is in equilibrium with the solid
solution phase (Fe), are required. For this, we performed a set
of high-precision calculations for the ground-state structure
of all the pertinent elements and compounds. The crystal
structures of the elements and compounds include body cen-
tered cubic (bcc), face centered cubic (fcc), hexagonal close
packed (hcp), tetragonal, orthorhombic, and trigonal symme-
tries with nonmagnetic, ferromagnetic, or antiferromagnetic
orders. The ground-state crystallographic parameters were
determined through full relaxation of the unit cell and atomic
positions. To ensure that the total energies and lattice pa-
rameters were determined accurately, we used a plane-wave
cutoff energy of 500 eV, a high-density Monkhorst-Pack
k-point grid to sample the Brillouin zone, and an energy
tolerance of 10−8 eV. We tested convergence with respect to
k-point mesh for each system beginning with a coarse mesh,
and k-point meshes used for all the systems are listed in
Table V. With these settings, the lattice parameters of most
of the elements and compounds were reproduced within ±2%
of experimental lattice parameters, which are also listed in
Table V.

For H, F, Cl, and Br, the spin-polarized electronic energy of
their free diatomic molecules has been used as their reference
state energy. We have performed these free molecular calcula-
tions by placing a single diatomic molecule in a 7 Å cubic cell
and optimized the bond length. Optimized bond lengths (0.75,
1.42, 1.99, 2.32 Å) were found to be in good agreement with
their respective experimental bond lengths (0.74, 1.41, 1.99,
2.27 Å).

For noble gas atoms, the spin-polarized electronic en-
ergy of their free atoms has been used as their reference
state energy. These free atom calculations were performed
by placing a single atom at the center of a 12-Å cubic
cell.

Spin-polarized calculations were performed for all the
crystalline systems with ferromagnetic or antiferromagnetic
order. For FeO, FeS, Fe2Ti, Fe2As, Fe2Nb, FeSn, FeSb, and
Fe1.12Te, antiferromagnetic calculations have been performed
in accordance with their respective literature [66,83–89]. For
Cr, a commensurate antiferromagnetic spin structure has been
assumed [90]. Specifying the AFM unit cell of FeI2 in the
DFT calculation is not straightforward. Therefore calculations
were performed with the FeCl2-type AFM order [91]. For Mn,
a nonmagnetic calculation in the bcc structure with 58 atoms
(α-Mn) was performed. The total energy of Mn was then cor-
rected by 28 meV, the energy by which its antiferromagnetic
state is reported to be more stable than the nonmagnetic state
[10].

Further, the second phases are not always line compounds.
FeBe2, FeO, Fe3Al, FeS, Fe2Ti, FeV, FeCo, Fe3Zn10, Fe3Ga,
Fe3Ge, Fe2Zr, Fe2Nb, FeTc, FeRh, FePd, FeSb, and Fe1.12Te
all exhibit significant homogeneity range. Some of them also
have complex magnetic structure and multiple or partial site
occupancies. The total energies of these phases were com-
puted for the crystallographic parameters given in the litera-
ture [40,41]. Determining the minimum energy composition
of these phases over their respective homogeneity range is
beyond the scope of this work.
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TABLE V. Calculation details for the ground-state total energy of elemental (X) and binary Fe-X phases considered as reference systems
for the formation energy of solutes (X) in bcc Fe. Space group, magnetic order, lattice parameters (a, b, c) (Å), k mesh, and valence electron
configurations of the solutes (X) in their respective VASP-PAW potentials are listed. Space groups are given along with space group numbers in
parentheses. Labels NM, FM, and AFM denote nonmagnetic, ferromagnetic, and antiferromagnetic orders, respectively. Calculated equilibrium
lattice parameters are compared with experimental values given in parentheses. Measured crystal structure data of the elements and Fe-X binary
compounds were taken from Pearson’s handbook of crystallographic data [40] and Pauling file [41]. The size of the simulation box used for
free atom and free molecule systems is also denoted by “a.”

Phase Space group Magnetic order Lattice parameter k mesh Valence shell of X

H Free molecule NM a = 7 1 × 1 × 1 1s1

He Free atom NM a = 12 1 × 1 × 1 1s2

Li Im-3m (229) NM a = 3.440(3.510) 17 × 17 × 17 2s12p0

FeBe2 P 63/mmc (194) FM a = 4.175(4.212) 7 × 7 × 7 2s22p0

c = 6.794(6.853)
Fe2B I4/mcm (140) FM a = 5.054(5.117) 9 × 9 × 9 2s22p1

c = 4.236(4.252)
Fe3C Pnma (62) FM a = 5.021(5.078) 11 × 11 × 11 2s22p2

b = 6.740(6.733)
c = 4.480(4.519)

Fe4N Pm-3m (221) FM a = 3.795(3.795) 7 × 7 × 7 2s22p3

FeO Fm-3m (225) AFM a = 4.312(4.321) 17 × 17 × 17 2s22p4

F Free molecule NM a = 7 1 × 1 × 1 2s22p5

Ne Free atom NM a = 12 1 × 1 × 1 2s22p6

Na Im-3m (229) NM a = 4.200(4.290) 17 × 17 × 17 3s13p0

Mg P 63/mmc (194) NM a = 3.200(3.210) 17 × 17 × 17 3s23p0

c = 5.200(5.210)
Fe3Al Fm-3m (225) FM a = 5.744(5.800) 7 × 7 × 7 3s23p1

FeSi P 213 (198) FM a = 4.450(4.484) 9 × 9 × 9 3s23p2

Fe3P I -4 (82) FM a = 9.051(9.107) 4 × 4 × 7 3s23p3

c = 4.382(4.460)
FeS P 63/mmc (194) AFM a = 3.410(3.448) 15 × 15 × 15 3s23p4

c = 5.710(5.744)
Cl Free molecule NM a = 7 1 × 1 × 1 3s23p5

Ar Free atom NM a = 12 1 × 1 × 1 3s23p6

K Im-3m (229) NM a = 5.30(5.33) 17 × 17 × 17 3p64s1

Ca Fm-3m (225) NM a = 5.53(5.58) 17 × 17 × 17 3s23p64s2

Fe2Sc P 63/mmc (194) FM a = 4.920(4.937) 9 × 9 × 7 3s23p64s23d1

c = 8.066(8.038)
Fe2Ti P 63/mmc (194) AFM a = 4.705(4.757) 7 × 7 × 5 3p63d34s1

c = 7.811(7.829)
FeV P 42/mnm (136) FM a = 8.987(8.965) 5 × 5 × 9 3p63d44s1

c = 4.580(4.633)
Cr Im-3m (229) AFM a = 2.88(2.91) 17 × 17 × 17 3p63d54s1

Mn I -43m (217) NM a = 8.57(8.91) 6 × 6 × 6 3p64s23d5

Fe Im-3m (229) FM a = 2.84(2.86) 17 × 17 × 17 3p64s13d7

FeCo Pm-3m (221) FM a = 2.846(2.856) 17 × 17 × 17 3d84s1

FeNi P 4/mmm (123) FM a = 2.520(2.533) 17 × 17 × 17 3d84s2

c = 3.581(3.582)
Cu Fm-3m (225) NM a = 3.63(3.61) 17 × 17 × 17 3d104s1

Fe3Zn10 I -43m (217) FM a = 8.976(8.978) 5 × 5 × 5 3d104s2

Fe3Ga Pm-3m (221) FM a = 3.658(3.679) 17 × 17 × 17 4s24p1

Fe3Ge P 63/mmc (194) FM a = 5.142(5.160) 9 × 9 × 9 4s24p2

c = 4.224(4.210)
Fe2As P 4/nmm (129) AFM a = 3.635(3.634) 6 × 6 × 3 4s24p3

c = 5.920(5.985)
FeSe P 4/nmm (129) FM a = 3.600(3.710) 13 × 13 × 9 4s24p4

c = 5.880(6.010)
Br Free molecule NM a = 7 1 × 1 × 1 4s24p5

Kr Free atom NM a = 12 1 × 1 × 1 4s24p6

Rb Im-3m (229) NM a = 5.59(5.67) 17 × 17 × 17 4p65s1
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TABLE V. (Continued.)

Phase Space group Magnetic order Lattice parameter k mesh Valence shell of X

Sr Fm-3m (225) NM a = 6.02(6.08) 17 × 17 × 17 4s24p65s2

Fe17Y2 P 63/mmc (194) FM a = 8.481(8.462) 5 × 5 × 5 4s24p65s24d1

c = 8.257(8.282)
Fe2Zr Fd-3m (227) FM a = 7.043(7.017) 9 × 9 × 9 5s24d15p1

Fe2Nb P 63/mmc (194) AFM a = 4.774(4.840) 9 × 9 × 9 4p65s14d4

c = 7.793(7.895)
Fe2Mo P 63/mmc (194) FM a = 4.675(4.745) 9 × 9 × 9 4p65s14d5

c = 7.797(7.734)
FeTc P 42/mnm (136) FM a = 9.105(9.130) 5 × 5 × 9 4p65s14d6

c = 4.885(4.788)
Ru P 63/mmc (194) NM a = 2.73(2.71) 17 × 17 × 17 4p65s14d7

c = 4.32(4.28)
FeRh Pm-3m (221) FM a = 3.016(2.989) 17 × 17 × 17 4p65s14d8

FePd P 4/mmm (123) FM a = 2.738(2.722) 17 × 17 × 17 5s14d9

c = 3.751(3.715)
Ag Fm-3m (225) NM a = 4.160(4.080) 17 × 17 × 17 5s14d10

Cd P 63/mmc (194) NM a = 3.050(2.980) 17 × 17 × 17 5s24d10

c = 5.700(5.620)
In I4/mmm (139) NM a = 3.33(3.25) 17 × 17 × 17 5s25p1

c = 4.96(4.95)
FeSn P 6/mmm (191) AFM a = 5.290(5.297) 7 × 7 × 7 5s25p2

c = 4.430(4.481)
FeSb P 63/mmc (194) AFM a = 3.980(4.060) 15 × 15 × 15 5s25p3

c = 5.028(5.130)
Fe1.12Te P 4/nmm (129) AFM a = 3.679(3.812) 5 × 5 × 3 5s25p4

c = 6.505(6.251)
FeI2 P -3m1 (164) AFM a = 4.015(4.040) 7 × 7 × 5 5s25p5

c = 7.108(7.375)
Xe Free atom NM a = 12 1 × 1 × 1 5s25p6
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