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A quantitative descriptor of local atomic environments is often required for the analysis of atomistic data.
Descriptors of the local atomic environment ideally provide physically and chemically intuitive insight. This
requires descriptors that are low-dimensional representations of the interplay between atomic geometry and
electronic bond formation. The moments of the local density of states relate the atomic structure to the electronic
structure and bond chemistry. This makes it possible to construct electronic structure based descriptors of the
local atomic environment that have an immediate relation to the binding energy. We show that a low-dimensional
moments-descriptor is sufficient as the lowest moments, calculated from the closest atomic neighborhood, carry
the largest contributions to the local bond energy. Here, we construct moments-descriptors that project the space
of local atomic environments on a two-dimensional map. We discuss in detail the separation of various atomic
environments and their connections in the map. The distances in the map may be related to energy differences
between local atomic environments as we show by analytic considerations based on analytic bond-order
potentials and by numerical assessment using tight-binding and density-functional theory calculations. Possible
applications of the proposed moments-descriptors include the classification of local atomic environments in
molecular-dynamic simulations, the selection of structure sets for developing and testing interatomic potentials,
as well as the construction of descriptors for machine-learning applications.
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I. INTRODUCTION

Descriptors are frequently employed in the statistical anal-
ysis of physical and chemical properties of materials. For
example, local bond-order parameters are used in structure
identification [1,2], parametrizations of interatomic interac-
tions utilize the bispectrum [3], smooth overlaps of atomic
positions [4], or atom-centered symmetry functions [5–7], to
name just a few. Molecular properties are predicted based
on the Coulomb matrix [8], Fourier series of atomic radial
distribution functions [9], and the bag of bonds method
[10]. Materials properties are evaluated from combinations of
atomic quantities [11–13], partial radial distribution functions
[14], or structural and electronic fingerprints [15]. Descriptors
are further used in the classification of structural properties in
structure maps [11] and property maps [12,13,15].

Here we show that the moments of the density of states
(DOS) may serve as robust descriptors of the local atomic
structure that allow for an intuitive grouping and classification
of atomic environments in a map. The local electronic DOS
intimately relates the energy on the one hand to the atomic
structure on the other hand. The formal relation between
the moments of the DOS and the local crystal structure was
introduced explicitly with the moments theorem [16]. The
moments theorem enables the computation of the moments
of the local DOS without the computationally expensive cal-
culation of the eigenspectrum and is used for linear scaling
expansions of the band energy [17–26] and more recently also
to define difference vectors between pairs of crystal structures
[27]. Moments-based expansions exploit that in general the
lowest moments of the DOS have the largest contribution

to the cohesive energy [25,26] and therefore are, together
with geometrical constraints, critical in the determination of
low-energy atomic environments.

In the present paper, we exploit the fact that the lowest
moments have in general the largest contribution to the energy,
which allows us to project the space of atomic environments
on a two-dimensional (2D) map. The 2D map of local atomic
environments can be sampled with high-throughput density
functional theory (DFT) calculations and may be employed
for scanning local atomic environments, for example for the
selection of crystal structures for testing or developing inter-
atomic potentials, the separation or classification of crystal
structures, and the comparison of existing descriptors in a
low-dimensional space. The paper is organized as follows.
In Sec. II we introduce the moments of the density of states
and discuss how they may serve as descriptors. This allows us
to set up a 2D map of local atomic environments in Sec. III.
In Sec. IV we relate structural energy differences in the map
to differences in structural stability obtained by tight-binding
(TB) and DFT calculations. In Sec. V an outlook on possible
applications of the map of local atomic environments and the
moments-descriptors is given, and in Sec. VI we conclude our
findings.

II. MOMENTS-DESCRIPTORS

In electronic structure calculations such as DFT or TB,
the electronic DOS is usually obtained by diagonalizing the
Hamiltonian Ĥ . The Hamiltonian thereby contains the com-
plete information required for characterizing the electronic
structure of a material and depends in particular on the
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positions of the atoms as well as their chemistry. Therefore,
the moments of the DOS incorporate information on the
atomic structure as well as the chemistry of a material. The
moments of the DOS are explicitly linked to the crystal
structure and chemistry through the moments theorem. We
summarize the moments theorem [16] for a local, orthonormal
set of basis functions. The N th moment of the local DOS
ninlm(E) of orbital n with angular momentum l and projection
m on atom i is defined by

μ
(N )
inlm =

∫ ∞

−∞
ENninlm(E)dE, (1)

with the energy E. The moments theorem states that the N th
moment of the local DOS can be computed by summing over
all self-returning paths of Hamiltonian matrix elements of
length N that start and end at orbital inlm,

μ
(N )
inlm =

∑
i1n1l1m1,

i2n2l2m2, . . .

〈inlm|Ĥ |i1n1l1m1〉

× 〈i1n1l1m1|Ĥ |i2n2l2m2〉
× 〈i2n2l2m2|Ĥ | · · · 〉 · · · 〈· · · |Ĥ |inlm〉. (2)

By averaging contributions of different magnetic quantum
numbers, rotationally invariant atomic moments are obtained,

μ
(N )
inl = 1

2l + 1

+l∑
m=−l

μ
(N )
inlm. (3)

The atomic moments are by construction also invariant with
respect to reflection, translation of the atomic structure, and to
permutation of atoms of the same species, and they fulfill the
basic requirements for an atomic scale descriptor [4,5].

As the DOS is strictly positive, we may normalize the
zeroth moment to 1, μ

(0)
inl = 1. The first moment corresponds

to the center of gravity of the DOS,

μ
(1)
inl = Einl. (4)

By an appropriate shift E → E − Einl of the energy scale, we
achieve μ

(1)
inl = 0. The second moment, the root-mean-square

width of the local DOS, is the lowest moment that depends on
the atomic environment,

μ
(2)
inl = 1

2l + 1

∑
mi ′n′l′m′

〈inlm|Ĥ |i ′n′l′m′〉

× 〈i ′n′l′m′|Ĥ |inlm〉. (5)

Through the dependence of the second moment on the Hamil-
tonian matrix, the second moment depends explicitly on the
interatomic distances. As our focus is on the characteriza-
tion of local atomic environments without an explicit scaling
length or density dependence, we need to remove the distance
dependence from the second moment. This is achieved by
homogeneously scaling interatomic distances such that

μ
(2)
inl = 1. (6)

With the above scaling, the third and fourth moments μ
(3)
inl

and μ
(4)
inl (that contribute information on the skewness and

bimodality of the local DOS) are the lowest two moments that
depend explicitly on the local atomic structure.

Instead of working with the third and fourth moments
directly, we rewrite the moments in the form of recursion
coefficients [28]. The recursion coefficients are the matrix
elements of a Hamiltonian that is transformed onto a 1D semi-
infinite chain. With the normalization μ(0) = 1, μ(1) = 0, and
μ(2) = 1, the corresponding recursion coefficients are given
by

a(1) = μ(3), (7)

b(2) =
√

μ(4) − (μ(3) )2 − 1, (8)

with the common index inl omitted. The recursion coef-
ficients a(1) and b(2) are the two moments-descriptors that
we use to span the map of local atomic environments. The
recursion coefficient a(1) measures the skewness of the local
DOS, while the recursion coefficient b(2) is a dimensionless
shape parameter [29], which is smaller than 1 for a bimodal
local DOS and larger than 1 for a unimodal DOS.

The recursion coefficients are independent parameters that
may in principle attain independently any value for a(1) or
any positive value for b(2). This is not true for the moments
that are not independent. For example, from (b(2) )2 � 0 we
immediately obtain

μ(4) � (μ(3) )2 + 1. (9)

Inequalities for higher moments can also be derived [30].
For the computation of the moments-descriptors a(1) and

b(2) for a particular atomic structure, a Hamiltonian Ĥ is
required in the evaluation of Eq. (1). While this Hamiltonian
could be taken from DFT, we focus on obtaining a map of
local atomic environments that may be used for different
materials. We achieve this by using model TB Hamiltonians
[Eqs. (A1) and (A2)] that show good transferability across the
transition metals and the sp-elements, respectively [31,32].
These simple models of the bonding chemistry enable us to
analyze the influence of valence character and band filling
on the binding energy and the resulting structural stability.
Details of the TB models are summarized in Appendix A.
In addition, the choice of a TB model allows for an efficient
calculation of the moments of the local DOS of atom i by
Eq. (2) without computation of the TB eigenspectrum. The
numerical calculation of moments and recursion coefficients
in this work was performed with the BOPFOX program [33].

III. MAP OF LOCAL ATOMIC ENVIRONMENTS

We will next introduce the map of local atomic envi-
ronments and illustrate its efficiency for separating crystal
structures. We will further motivate the descriptors by relating
them to the binding energy in Sec. IV. Figure 1 shows the
d-valent map of local atomic environments that is spanned
by a(1) and b(2), which are computed with the d-valent TB
model. The red filled circles correspond to crystal structures
with only one atomic environment. Other symbols indicate the
differently coordinated atoms in more complex crystal struc-
tures. Furthermore, existence regions for structures with one,
two, or more inequivalent atoms are marked as patterned areas
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FIG. 1. Map of local atomic environments for a d-valent Hamiltonian. Depicted are different crystal structures, transformation paths, and
estimated envelopes that demarcate the regions in which crystal structures with one, two, or more inequivalent atoms may exist. Red filled
circles correspond to crystal structures with only one atomic environment. Additional symbols indicate the position of differently coordinated
atoms in more complex crystal structures; the common names for TCP phases are given next to the symbols. A square pattern shows the region
into which all structures with only one atom in the primitive cell fall. The region of 2D one-atom structures is further marked by diagonal lines.
The existence region of crystal structures that contain a maximum of two atoms in the primitive cell is indicated by vertical lines. This region
includes the region of one-atom cells. Crystal structures with three or more atoms in the primitive cell can in principle reach any position in
the map. Transformation paths between different crystal structures are shown using colored lines. The region around the close-packed phases
(bcc, fcc, hcp) is magnified.

while transformation pathways between different structures
are shown as lines. The envelopes of the existence regions
are estimated from the positions of a large set of random
structures (cf. Sec. III C).

A. Simple crystal structures

The map of local atomic environments provides a clear
separation of simple crystal structures with only one atomic
environment (filled red circles). For the linear chain (linear),
the 2D square lattice (square 2D), and the simple-cubic (sc)
structure, graphene, and diamond, the third moment is zero.
They are therefore placed on the line a(1) = 0 on the right
of the map. The linear chain, the 2D square lattice, and the

simple-cubic structure are ordered according to their dimen-
sionality. They are followed by the dimer, graphene, and
diamond. The dimer, graphene, and diamond have character-
istically lower values of b(2), which leads to their stabilization
in some materials, as we will discuss in Sec. IV B.

Toward the left of the map of local atomic environments
we find the close-packed structures face-centered cubic (fcc),
hexagonal close-packed (hcp), and body-centered cubic (bcc).
The map of local atomic environments places fcc and hcp,
which typically have a very similar cohesive energy, almost
on top of each other. The values of the moments-descriptors
differ only due to their small fourth moment contributions
[25]. The small difference is a result of the different stacking
sequence of ABC for fcc and ABA for hcp, which has a small
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effect on the self-returning paths that reach the third layer
[34].

Among the simple structures, the map places the bcc
structure next to fcc and hcp. Once more this is intuitive as
the three structures are realized in transition-metal elements.
The special body-centered-tetragonal (bct) [35] structure is
close to the close-packed structures. Between the close-
packed structures and the open structures with a(1) = 0 are the
simple-hexagonal and body-centered-tetragonal structure as
well as the 2D close-packed hexagonal lattice (2D hexagonal).

By construction the positions in the map of local atomic
environments may be related to the local density of states of
the different crystal structures: The linear chain, the 2D square
lattice, the simple-cubic structure, the dimer, graphene, and
diamond all have a symmetric DOS (μ(3) = 0). The dimer,
which has a perfect bimodal DOS (b(2) = 0) for s-orbitals,
shows a finite value of b(2) for d-orbitals, and the DOS of
graphene and diamond are even more bimodal. The 2D hexag-
onal lattice has the most skewed DOS among the 2D structures
with one atom in the primitive cell. The bcc structure is more
bimodal and less skewed than fcc and hcp [25].

Some of the simple crystal structures are related by struc-
tural transformation paths that can readily be included in
the map of local atomic environments (cf. Fig. 1). More
details on the different transformation paths are compiled in
Appendix B. All transformation paths starting from the close-
packed structures initially go to the right in the map of local
atomic environments. The two transformation paths lin.-sq.
and lin.-hex.-sq. form a closed area. This area is in agreement
with the estimated envelope of the 2D structures with one
atom in the primitive cell. The trigonal transformation path
connects bcc with the simple-cubic structures. The tetragonal
transformation path from bcc to fcc is almost on top of the
hexagonal transformation from bcc to hcp indicating that the
intermediate structures along both paths are similar to each
other. After approaching fcc, the tetragonal transformation
path abruptly changes its direction toward the special bct
structure. This structure is also reached by the orthorhombic
transformation [35]. The orthorhombic path returns from bct
to bcc along the same path as from bcc to bct. The trigonal
path, the tetragonal path, and the lin.-hex. path also form
parts of the envelope for 3D structures with one atom in the
primitive cell.

B. Crystal structures with multiple inequivalent lattice sites

For structures with several inequivalent atomic environ-
ments, a symbol is displayed in the map for each atomic
environment. We show the different atomic environments
of topologically close-packed (TCP) phases that are briefly
introduced in Appendix C. The moments of the DOS have
been applied to quantify the difference between TCP phases
and to identify trends of the local moments with coordination
number [27,36,37]. The 12-fold coordinated atoms in the TCP
phases are close to the fcc and hcp structures in the map. For
atoms with higher coordination, the absolute values of a(1)

and b(2) increase. The sublattices of the χ -phase also follow
this trend; the 13-fold coordinated site is close to the hcp
structure. We observe a clear trend of coordination in the map
of local atomic environments (see Fig. 1): Atoms with similar

coordination numbers are close to each other, but still can be
distinguished in the map of local atomic environments. Atoms
with high coordination leave the region of simple structures
with one or two atoms in the primitive cells, indicating that
these atomic environments can only occur in combination
with lattice sites of lower coordination.

C. Random structures

We furthermore use randomly generated structures to eval-
uate domains in the map of local atomic environments that
may be covered by structures with one or two atoms in
the primitive cell. Details on the construction of the random
structures are given in Appendix D. The domain of structures
with one-atom cells is surprisingly small. It covers the region
from the linear chain and the simple-cubic lattice at a(1) = 0
to the close-packed bcc and fcc phases. A significant area of
the domain corresponds to 2D structures. For two atoms in the
primitive cell, the one-atom domain is expanded significantly
to lower values of b(2) and comprises the dimer, graphene,
and diamond structures. Crystal structures with three or more
atoms in the cell can in principle reach any point in the map.
Figure 1 also shows that the transformation paths between
simple structures provide envelopes of 2D and 3D structures
with one atom in the primitive cell.

IV. ELECTRONIC STRUCTURE INTERPRETATION
OF MOMENTS-DESCRIPTORS

A. Relation of moments-descriptors to binding energy

We rationalize structural stability across the maps of local
atomic environments by a TB model. We do not account for
charge transfer between atoms or between different orbitals
within an atom (i.e., the promotion energy) or magnetism.
With these approximations, the energy may be written as
[38,39]

U = Ubond + Urep. (10)

To lowest order the repulsive contribution may be assumed to
be pairwise [38,39],

Urep = 1

2

∑
ij

�ij (rij ). (11)

It is possible to estimate the energy difference between two
structures without explicit parametrization of the repulsive
contribution to the energy by making use of the structural en-
ergy difference theorem [40]: if two structures are compared
at identical repulsive energy, the energy difference between
the two structures is given to first order by the difference in
bond energy,

�U ≈ [�Ubond]�Urep=0. (12)

For computing �U one can in many cases [41] assume that
Urep is dominated by the overlap repulsion [29,37,42]

�ij (r ) ∝ β2(r ), (13)

where the distance dependence of β(r ) is proportional to
the distance dependence of the Hamiltonian matrix elements.
From Eq. (5) it then follows that the second moment is
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proportional to the atomic repulsion,

μ(2) ∝
∑

j

1

2
�ij . (14)

By requiring that all structures in the map of local atomic
environments have identical second moments, Eq. (6), the
energy difference between two structures may be estimated
from the bond energy difference �Ubond.

The atomic bond energy may be obtained from integrating
the density of states up to the Fermi level EF,

Ubond,i =
∫ EF

(E − Ei )ni (E) dE. (15)

The analytic bond-order potentials (BOP) provide an expan-
sion of the bond energy in terms of its moments and the Fermi
energy [25,26],

Ubond,i = 2(2l + 1)b(∞)

{
nmax∑
m=0

σ
(m)
i [χ̂

m+2 (φF)

− γ0χ̂m+1 (φF) + χ̂
m

(φF)]

}
, (16)

where b(∞) scales the energy range of the density of states to
the interval ε = [−1, 1]. The expansion coefficients are given
by the Chebyshev moments of the density of states,

σ
(m)
i =

∫ 1

−1
Um(ε)ni (ε) dε, (17)

with the Chebyshev polynomials of the second kind Um, and
they may therefore be obtained from the moments of the
density of states; cf. Eq.(1).

The response functions χ̂n depend on φF, which is defined
by the Fermi energy EF = a(∞) + 2b(∞) cos φF, where a(∞) is
the center of the band, γ0 = (μ(1) − a(∞) )/(2b(∞) ), and

χ̂1 (φF) = 1 − φF

π
+ 1

2π
sin(2φF), (18)

χ̂
n
(φF) = 1

π

[
sin(n + 1)φF

n + 1
− sin(n − 1)φF

n − 1

]
. (19)

The response function χ̂n of order n has n − 2 nodes in the
band. In particular, the third-order response function χ̂3 is
positive for less than half full band and negative for more
than half full band. The fourth-order response function χ̂4 is
negative at the band edges and positive in the band center.

The bond energy Eq. (16) approaches its TB reference
value for nmax → ∞. If the expansion is terminated at nmax =
4, the structural trends across the sp-valent elements may
still be described [42]. Furthermore, the difference between
the bcc and fcc or hcp structure is to lowest order given
by the fourth moment, while resolving the much smaller
energy difference between fcc and hcp requires six moments
(nmax = 6) [25,29]. Higher moments are mainly required for a
quantitative match of the TB reference energy, and in practice
most BOP calculations are performed with nmax = 9.

The expansion of the bond energy Eq. (16) may be applied
to discuss trends in crystal structure stability. When an ex-
pansion coefficient σ (n) is negative, a positive value of the
response function χ̂

m+2 (φF) − γ0χ̂m+1 (φF) + χ̂
m

(φF) will lower
the energy and vice versa. For making contact with the map
of local atomic environments, we take the simplest possible
fourth moment expansion with nmax = 4, a(∞) = a(0) = 0,
and b(∞) = b(1) = 1. Then σ (1) = σ (2) = 0, σ (3) = a(1), and
σ (4) = (a(1) )2 + (b(2) )2 − 1.

At less than half full band the simple metals take the close-
packed structures bcc, hcp, and fcc. These are stabilized over
competing structures by large negative values of a(1) and small
values of b(2). The details of the ordering from bcc Na over
hcp Mg and fcc Al cannot be resolved within the map of local
atomic environments as one cannot expect the simple, nearly-
free-electron metals to be described well within a simple TB
approximation. At half full band the response function χ̂3

is zero while χ̂4 is at its maximum and therefore a small
value of b(1) is favorable and helps to stabilize the diamond
structure. The subtle competition between graphite and the
diamond lattice in carbon is not covered by this argument
as the comparison of the two structures at identical second
moment is not adequate [29,41,43]. Still, graphene is close to
diamond in the d- and sp-map. The dimer, which is stabilized
for hydrogen with its half full s-orbitals, takes the minimum
of b(2) = 0 in an s-valent map (not shown).

The transition metals all take close-packed structures,
broadly due to the attraction provided by the s-electrons,
while the d-electrons determine the details of the crystal struc-
ture. In a map that only takes into account the d-valence, we
may therefore not expect to find the transition-metal structures
at extreme boundaries of the map. Still, the map places them
at large absolute values of a(1) and small values of b(2). As
expected the bcc structure, which is stabilized by the response
function χ̂4 at the center of the d-band, has a smaller value of
b(2) than fcc or hcp, while hcp and fcc show a slightly more
negative value for a(1).

The stability of the TCP phases is more involved, and it
has been discussed in detail in [37,44]. The TCP phases are
stabilized by a combination of average band filling and atomic
size mismatch. The two factors are of different relevance
in the different TCP phases. As the atoms in the different
coordination polyhedra have different second moments, a
direct discussion of the stability of the TCP phases based on
the map of local atomic environments alone is not possible.
We note that the TCP phases show small values of b(2) for the
12-fold coordinated sites, some of them even smaller than bcc,
while the sites with higher coordination show large negative
values of a(1).

For evaluating the difference in the bond energy between
two structures, one needs to take into account that the
Fermi level of the two structures will in general be differ-
ent. A first-order expansion of the bond energy difference
between two structures with the same number of valence
electrons Ne at identical first and second moment leads to
[37,45]

�Ubond = 2(2l + 1)b(∞)
nmax∑
m=3

�σ (m) ˆ̂χ
m

(φF), (20)
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where �σ (m) corresponds to the difference in the expansion
coefficients,

ˆ̂χ
m

(φF) = 1

π

[
2 sin(m + 1)φF

m(m + 2)

− sin(m + 3)φF

(m + 2)(m + 3)
− sin(m − 1)φF

m(m − 1)

]
, (21)

and φF depends on the number of valence electrons Ne.
For nmax = 4 we can now approximate the difference in

energy between two structures as

�Ubond = 2(2l + 1)[ ˆ̂χ3 (φF)�a(1)

+ ˆ̂χ4 (φF)[�(b(2) )2 + �(a(1) )2]], (22)

where we estimate b(∞) = b(1) = 1 and a(∞) = a(1) = 0 as
before. We see that the difference between two structures in
the map of local atomic environments is approximated by a
contribution �a(1) that corresponds to the distance between
the structures projected on the x axis and a second contribu-
tion that corresponds to the square of the distance between
two structures in the map of local atomic environments. The
relevance of the two contributions for the energy difference
is determined by the number of valence electrons through
the response functions Eq. (21). Independent of the detailed
number of valence electrons, this implies in general that
we may expect that the energy difference between pairs of
structures increases with the distance of the structures in the
map.

B. Trends of structural stability from TB

We evaluate the bond energy within the TB approximation
for the set of random structures in Fig. 6(b) by numerical
calculations with the BOPFOX program [33]. We choose a
canonical d-valent TB model [Eq. (A1)] with a band filling
of 4, which is close to the maximum bcc stability [25,37].
The locally averaged bond energy is shown in Fig. 2(a). We
observe a smooth increase of the bond energy from bcc, which
has the smallest bond energy among all structures, to the
linear chain. The overall trend in the map validates our result
from Sec. IV that energy differences between two structures
increase with their distance in the map. The standard error of
the bond energy was obtained from many different random
structures that are projected to a given location in the map
of local atomic environments, and it is displayed in Fig. 2(b).
The standard error is in the order of 1% of the cohesive energy
and hence much lower than the range of energy values in
the map of local atomic environments. In other words, the
two moments-descriptors allow for the separation of crystal
structures that have an energy difference that is greater than
about 1% of the cohesive energy. This demonstrates that
the descriptors of the map of local atomic environments
are excellent predictors for structural stability as a direct
consequence of the relation between geometric environment
and electronic structure provided by the moments theorem,
Eq. (2). This makes our moments-descriptors distinctly differ-
ent from purely geometrical descriptors.

We show the bond energy for an sp-valent TB model
[Eq. (A2)] with different band fillings in Fig. 3. The values

for the bond energy were obtained by averaging over many
random structures at each position in the map. The values of
the atomic recursion coefficients differ from those obtained
for the d-valent TB model, however many features of the
d-valent map of local atomic environments are still present in
the sp-valent map. As the dimer configuration may be a stable
configuration for sp-elements [32], it is an important feature
of the sp-valent map that it positions the dimer apart from
the other crystal structures. For all band fillings we obtain
smooth energy surfaces. As expected at half full band, the
diamond structure has the lowest bond energy. For low band
fillings, the stability is shifted toward the close-packed phases,
while at higher band fillings more open structures are favored
[42].

C. Trends of structural stability from DFT

The 4d and 5d transition metals Mo and W may be
described using a band filling of approximately four d-valence
electrons; cf. the TB calculations in Sec. IV B [37,46]. To
compare to the TB predictions, we performed DFT calcula-
tions for Mo for two-atom random structures with both atomic
positions occupied by Mo atoms. Here an evaluation of the
approximately 90 000 structures that we evaluated for TB
was computationally too demanding and we selected a subset
of the random structures using the following strategy: The
atomic volume of each atom with normalized second moment
μ(2) = 1 may be interpreted as a measure for the homogeneity
of its atomic surrounding, where a small normalized atomic
volume indicates a homogeneous atomic surrounding with
equidistant bond lengths. We select from our set of two-
atom random structures a subset of 521 structures with small
normalized volume that homogeneously covers the existence
region of the two-atom cells. For these structures we calcu-
lated the DFT equilibrium volume, energy, and bulk modulus
with fixed cell shape and atomic positions. We performed
spin-polarized DFT calculations using the VASP software
[47–49] with the projector augmented-wave method (PAW)
[50] with 14 valence electrons (Mo_sv) for molybdenum,
and we employ the generalized gradient approximations
(GGA) [51] to the exchange correlation potential. The cal-
culations were performed with a plane-wave cutoff energy
of 500 eV and Monkhorst-Pack [52] k-point meshes with
linear density not more than 0.1 Å−1. The equilibrium energy
E0, volume V0, and bulk modulus B0 were then obtained by
fitting energy volume curves with volume scalings of ±10%
to the Birch-Murnaghan equation of state. The results are
shown in Fig. 4. We observe that the overall trend of the DFT
equilibrium energy for Mo [Fig. 4(a)] is qualitatively captured
by the bond energy of the corresponding TB calculations
at Ne = 4 [Fig. 2(a)]. The lowest energy is taken by bcc
and the energy increases with distance in the map of local
atomic environments. The bcc structure also takes the smallest
equilibrium volume. The bulk modulus is smooth across the
map of local atomic environments and largest for bcc. The
scattering of the results, in particular at the envelopes of
the existence region, is an artifact of the relatively smaller
number of random structures that we employed in our DFT
calculations [see Fig. 6(b)].
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FIG. 2. Analysis of bond energy [Eq. (15)] of two-atom random structures from the canonical d-valent TB model evaluated for a band
filling of Ne = 4 in the d-valent map of local atomic environments. The left figure shows the averaged bond energy, and the right figure shows
the related standard error that is calculated from different random structures at the same position of the map. Lines correspond to transformation
paths introduced in Fig. 1.

V. OUTLOOK

The moments-descriptors use the moments theorem to pro-
vide a direct link between the local atomic structure and the
local electronic structure that determines the binding energy.
This link is maintained in a 2D descriptor space, as we
demonstrate analytically for the BOPs and numerically for TB
and DFT calculations. Therefore, we expect that our map of
local atomic environments will prove useful in applications
that relate atomic structure and binding energy.

One potential application is the classification of individual
atoms in atomistic simulations like, e.g., molecular dynamics.

The typically very large number of atoms in such simulations
hinders manual analysis and requires tools for automated
identification of processes like nucleation, phase transfor-
mation, or dislocation movement. The computation of the
coordinates in the map of local atomic environments provides
a straightforward approach to identify atoms with similar
atomic environment and to assign atoms to a particular crystal
structure. The representation with low moments ensures that
this computation is feasible also in large-scale simulations.

A second example of a potential application is the devel-
opment and assessment of empirical or semiempirical inter-
atomic potentials. These potentials are typically developed to

FIG. 3. Bond energy [Eq. (15)] in the sp-valent map of local atomic environments as obtained from the canonical sp-valent TB model for
different band fillings. Lines correspond to transformation paths introduced in Fig. 1.
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FIG. 4. DFT calculations of equilibrium energy (left), volume (middle), and bulk modulus (right) for a set of random structures with
two atomic sites, both occupied by Mo atoms in the d-valent map of local atomic environments. Lines correspond to transformation paths
introduced in Fig. 1. The trend of equilibrium energy for Mo obtained by DFT (left) is captured by the bond energy of the corresponding TB
calculations at Ne = 4 [Fig. 2(a)].

describe the binding energy of a set of reference structures
but often exhibit limited transferability to other structures.
The challenges are therefore (i) the identification of reference
structures in the development of the potential, and (ii) the
anticipation of transferability of the interatomic potential.
Both aspects can be addressed by the map of local atomic
environments as it projects the space of atomic environments
on a 2D space, which enables an extensive and homogeneous
sampling of atomic environments.

A third potential application is to use the moments-
descriptors for a set of atomic environments directly as fea-
tures for machine-learning to predict, e.g., the DFT formation
energy from the atomic structure. The descriptors incorporate
domain knowledge of interatomic bond formation, as demon-
strated by the smooth DFT data in Fig. 4, and they capture
about 99% of the cohesive energy of our TB calculations
(cf. Sec. IV B).

VI. CONCLUSION

We introduce moments-descriptors for local atomic envi-
ronments based on the local electronic density of states. The
moments depend on the local atomic environment and deter-
mine the bond chemistry. We use the lowest two structure-
dependent moments of the electronic density of states as
obtained from canonical sp- and d-valent TB models to span
a 2D map of local atomic environments. We employ the map
of local atomic environments for the discussion of crystal
structures. We show that structures with one or two atoms in
the primitive cell are bound to specific regions of the map. By
making use of the analytic BOP expansion, we argue that the
lowest energy structure for a specific material should be found
close to the boundaries of these regions. We further show
that the energy difference between two structures depends on
the distance between the structures in the map, and we carry

out extensive TB and DFT calculations to demonstrate this
numerically.

For structures with several inequivalent lattice sites, the
map places similar local environments in close proximity,
such that the map of local atomic environments may be em-
ployed to sample systematically local atomic environments by
projecting the local atomic environments to a low-dimensional
space. We point out possible applications of this feature of
the moments-descriptors for the classification of local atomic
environments in molecular-dynamics simulations, for the se-
lection of structure sets for developing and testing interatomic
potentials, as well as for the construction of descriptors for
machine-learning applications.
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APPENDIX A: DESCRIPTION OF THE CHEMISTRY

In this paper, we restrict our analysis to two different TB
models, namely a canonical pure d-model [31],

ddσ

ddπ

ddδ

⎫⎪⎬
⎪⎭ =

−6

4

−1

⎫⎪⎬
⎪⎭β(r ), (A1)
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and an sp-model [32] based on Harrison’s parametrization
[53],

ssσ

spσ

ppσ

ppπ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

−1.00

1.31

2.31

−0.76

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

β(r ), (A2)

with

β(r ) = c/r5, (A3)

where c is a constant. The pure d-model [25,27,36,37,54–56]
is often sufficient to describe the elements of the d-block and
captures structural trends across the 4d and 5d transition-
metal series [25,27,36,37]. Our sp-model disregards the split-
ting of the on-site elements [42].

We smoothly force the bond integrals to zero at r = rcut by
multiplying with the cutoff function

fcut (r ) = 1

2

{
cos

(
π

[
r − (rcut − dcut )

dcut

])
+ 1

}
, (A4)

where dcut determines the width of the cutoff function. In our
calculations, we choose constant values of rcut and dcut, which
include second nearest neighbors within the cutoff sphere
for the bcc structure, where the second-nearest-neighbor dis-
tance is close to the first-nearest-neighbor distance, and we
just exclude second nearest neighbors for the simple-cubic
structure. This is achieved by choosing rcut ≈ 1.25rnn,fcc and
dcut ≈ 0.13rnn,fcc, where rnn,fcc is the nearest-neighbor distance
of fcc with a normalized second moment according to Eq. (6).
Note that the exclusion of second nearest neighbors results in
a zero third moment for the simple-cubic structure but not for
the fcc and hcp structure, as can be seen in Fig. 1.

APPENDIX B: DESCRIPTION OF
TRANSFORMATION PATHS

Transformation paths are continuous deformations of one
crystal structure into another. All transformation paths pre-
sented in this paper are described by one parameter p chang-
ing one structure continuously into the other. Here, we chose
transformation paths that are commonly used to test inter-
atomic potentials (tetragonal, orthorhombic, trigonal, hexago-
nal) [46,57,58], as well as transformation paths (lin.-hex.-sq.,
lin.-sq., sq.-sc) that we found to correspond to envelopes
of the map of local atomic environments. The tetragonal
transformation path, also called the Bain path [59], connects
bcc with fcc. On further continuation it connects fcc with
the special body-centered-tetragonal (bct) structure. This is
done by elongating the bcc cell in the [001] direction and
compressing it in the [100] and [010] directions to keep the
volume fixed.

The primitive cell along the path is given by

a1 = a(4p)−1/3(−1 1 p)T ,

a2 = a(4p)−1/3(1 −1 p)T ,

a3 = a(4p)−1/3(1 1 −p)T ,

and the atom is located at

p1 = (0 0 0)

for all values of p. bcc is taken for p = 1, fcc for p = √
2,

and bct for p = 23/4.
The orthorhombic transformation path connects bcc with

the same special bct structure, which is reached by the Bain
path [35]. Further continuation of the orthorhombic transfor-
mation paths leads back to bcc. This is also achieved by an
elongation in the [001] direction, however simultaneously a
compression in the [110] direction is applied. The primitive
cell vectors are therefore

a1 = 4−1/3a(−1 1 p1/2)
T
,

a2 = 4−1/3a(1 −1 p1/2)
T
,

a3 = 4−1/3a(p−1/2 p−1/2 −p1/2)
T

and the atom is again located at

p1 = (0 0 0)

for all values of p. bcc is taken for p = 1, the special bct
structure for p = √

2, and again bcc for p = 2.
The trigonal transformation path connects bcc over sc with

fcc. Further continuation of the trigonal transformation path
connects fcc with the 2D hexagonal lattice. This is obtained
by an elongation in the [111] direction and a compression
in perpendicular directions to keep the volume fixed. The
primitive cell is given by

a1 = f (p − 3 p + 2 p + 2)T ,

a2 = f (p + 2 p − 3 p + 2)T ,

a3 = f (p + 2 p + 2 p − 3)T ,

with f = a[25(3p + 1)]−1/3. The atom remains at the origin
again,

p1 = (0 0 0).

bcc is taken for p = 1, sc for p = 2, fcc for p = 4, and the
2D hexagonal lattice for p → ∞.

The bcc to hcp transformation cannot be obtained by a
simple deformation of the cell. However, the atoms also
have to change their relative positions [58,60]. The hexagonal
transformation path deforms bcc simultaneously in the [1̄10],
[110], and [001] directions. The cell vectors are explicitly
given by

a1 = 2−1/3af1(−1 1 0)T ,

a2 = 2−1/3af2(0 0 1)T ,

a3 = 2−1/3a(f1f2)−1(1 1 0)T ,

with

f1 = 1 + α1(1 − p),

f2 = 1 + α2(1 − p),
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FIG. 5. Transformation path connecting the linear chain with the
square lattice over the hexagonal lattice. The shortest bond length is
marked in red.

and

α1 = (1 − 21/6
√

1.5)/(
√

2 − 1),

α2 = (1 − 21/6)/(
√

2 − 1).

Together with this deformation, alternate (110) planes have to
be shuffled in the ±[1̄10] direction. We follow the choice of
Ref. [58] and choose

s = 2−1/6(p − 1)

4
√

6(
√

2 − 1)f1

as the shuffling factor. The atomic positions in the direct
coordinate system are given by

p1 = (s 0 0),

p2 = (0.5 + s 0.5 0),

p3 = (−s 0.5 0.5),

p4 = (0.5 − s 0 0.5).

bcc is taken for p = 1 and hcp for p = √
2.

The linear chain can be connected with the square lat-
tice over the hexagonal lattice as illustrated in Fig. 5
(lin.-hex.-sq.). The cell vectors of the 2D cell are given by

a1 = a cos(p)−1/2(1 0)T ,

a2 = a cos(p)−1/2(cos(p) sin(p))T .

The atom remains at position

p1 = (0 0)

TABLE I. Selection of common TCP phases and χ -phase or-
dered by increasing average coordination number. For each coordi-
nation number, a list with the number of inequivalent Wyckoff sites
is provided.

CN12 CN13 CN14 CN15 CN16 〈CN〉
χ 12 12 1,4 13.10
C14 2, 6 4 13.33
C15 4 2 13.33
C36 4, 6, 6 4, 4 13.33
μ 1,6 2 2 2 13.38
M 4, 4, 4, 8, 8 4, 4 4, 4 4, 4 13.38
R 1, 2, 6, 6, 6, 6 6, 6 6 2, 6 13.40
δ 4, 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4 4 13.43
P 4, 4, 4, 4, 8 4, 4, 4, 8 4, 4 4 13.43
Z 3 2 2 13.43
A15 2 6 13.50

for all values of p. The square lattice is taken for p = π/2,
the 2D hexagonal lattice for p = π/3, and the linear chain for
p → 0.

The linear chain can also be directly connected with the
2D square lattice by bringing linear chains from infinite
separations together until the linear chains are separated by
a distance equal to the nearest-neighbor distance of the linear
chain (lin.-sq.).

Similarly, the 2D square lattice can be connected to the
simple-cubic structure by bringing square lattices from infi-
nite separations together until the square lattices are separated
by a distance equal to the nearest-neighbor distance of the
square lattice (sq.-sc).

APPENDIX C: TOPOLOGICALLY
CLOSE-PACKED PHASES

Topologically close-packed (TCP) phases consist of co-
ordination polyhedra, which have only triangular faces. The
atoms in the TCP phases have coordination numbers 12,
14, 15, or 16. For a selection of common TCP phases the
numbers of atoms with inequivalent Wyckoff positions are
listed in Table I. As in previous works [27,37,44], we included
the χ -phase in the comparison, although it is not a regular
TCP phase in the crystallographic sense due to atoms with
coordination number 13.

APPENDIX D: RANDOM STRUCTURES

With random structures we refer to structures generated
by randomly choosing their primitive cell and their atomic
positions in the primitive cell. The primitive cell is described
by the lattice vectors a = aea , b = beb, c = cec. The angle
between b and c is named α, the angle between a and c is
named β, and the angle between a and b is named γ .

The structure generation is done as follows:
(i) Randomly generate three values a�b�c, with b/a�3

and c/a � 3.
(ii) Randomly generate angles α, β, γ in a range between 0

and π under the condition that the volume is larger than zero
[61].
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FIG. 6. Random structures with one or two atoms in the primitive cell in a d-valent map of local atomic environments. The left figure
shows the average packing fraction that is obtained for the random structures with one atom in the primitive cell. The right figure shows
the probability distribution of the random structures with two atoms in the primitive cell when the structures are generated according to the
algorithm outlined in Appendix D. Lines correspond to transformation paths introduced in Fig. 1.

(iii) Place the first atom at the origin and place further
atoms randomly in the primitive cell.

(iv) Even though we generate primitive cells with a finite
volume, the generated structure may be effectively 2D due to
the finite number of bonds, which we obtain due to the choice
of the cutoff rcut of our bond integrals β. We exclude those
structures.

In Fig. 6(a) we characterize the set of one-atom random
structures in terms of the averaged packing fraction and ob-
serve a smooth trend across the map of local atomic environ-
ments. The packing fraction is lowest for those 3D structures
that are close to the linear chain in the map. The averaged
packing fraction increases toward the bottom and the left of
the map of local atomic environments and takes its maximum

value close to fcc and hcp, which have the highest possible
value [62].

The random structures do not cover the map of local
atomic environments homogeneously. In Fig. 6(b) we show
the probability for generating a structure in a particular lo-
cation of the map of local atomic environments with our
algorithm. The probability distribution was obtained from a
set of approximately 90 000 random structures with two atoms
in the primitive cell. It is significantly more likely to generate
an open structure with a(1) = 0 than a close-packed structure
close to fcc and hcp. It can be seen that with this method it is
very unlikely to generate structures that are similar to highly
symmetric structures. However, it ensures that we do not bias
the random structures toward any reference structures.
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Čák, E. R. Margine, D. G. Pettifor, and R. Drautz, Comput.
Phys. Commun. (2018), doi: 10.1016/j.cpc.2018.08.013.

[34] A better differentiation between fcc and hcp can easily be set up
by using higher recursion coefficients for the axes, such as a(2)

and b(3). However, the lowest moment contributions a(1) and b(2)

are most important for a general structural differentiation, such
that a higher-dimensional map would be required for a general
structural differentiation [27].

[35] W. Luo, D. Roundy, M. L. Cohen, and J. W. Morris, Phys. Rev.
B 66, 094110 (2002).

[36] T. Hammerschmidt, B. Seiser, R. Drautz, and D. G. Pettifor,
Modelling topologically close-packed phases in superalloys:
Valence-dependent bond-order potentials based on ab-initio
calculations, in Superalloys (The Metals, Minerals and Mate-
rials Society, Warrendale, PA, 2008), pp. 847–853.

[37] B. Seiser, T. Hammerschmidt, A. N. Kolmogorov, R. Drautz,
and D. G. Pettifor, Phys. Rev. B 83, 224116 (2011).

[38] A. P. Sutton, M. W. Finnis, D. G. Pettifor, and Y. Ohta, J. Phys.
C 21, 35 (1988).

[39] R. Drautz, T. Hammerschmidt, M. Čák, and D. G. Pettifor,
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