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Superconductivity in the doped t − J model: Results for four-leg cylinders
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We report a density-matrix renormalization group study of the lightly doped t-J model on a four-leg cylinder
with doped hole concentrations per site δ = 5%–12.5%. By keeping an unusually large number of states and
long system sizes, we are able to accurately document the interplay between superconductivity, spin, and charge-
density-wave orders. The long-distance behavior is consistent with that of a Luther-Emery liquid with a spin gap
and power-law charge-density-wave and superconducting correlations. This is the widest t-J or Hubbard system
in which power-law superconducting correlations have been established.
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The Hubbard model, and the closely related t-J model,
play central roles in the theory of highly correlated electronic
systems [1–18]. Enormous effort has been devoted to studying
the properties of these models at intermediate couplings. No
general theoretically controlled methods exist for this class of
problem [19,20]. However, it is possible to obtain essentially
exact results on long but moderately narrow cylinders using
the density matrix renormalization group (DMRG) method
[21]. Cylinders have the local lattice geometry of the two-
dimensional (2D) system, and can be extrapolated to infinite
length, i.e., the thermodynamic limit can be taken in one
direction. Thus, one can hope to obtain insight into the nature
of the 2D problem from these solutions.

In this Rapid Communication, we report extensive DMRG
studies of the four-leg t-J cylinder, keeping a large number of
states so that subtle long-distance correlations can be reliably
studied. In addition to the hope that they may shed light on
the 2D problem, there are two other reasons to engage in such
studies. First, there is interesting physics of multicomponent
one-dimensional (1D) systems that can be directly explored
without undue speculation—the only extrapolations are to
the limits of zero truncation error and infinite system length.
Second, these systems can be used to benchmark less clearly
justified but more widely applicable computational methods.

Principal findings. We have studied the equal-time su-
perconducting (SC), charge-density-wave (CDW), and spin-
density-wave (SDW) correlations for a range of doped hole
concentrations δ = 5%–12.5%, and for a characteristic value
of t/J = 3. We have obtained similar but less extensive results
for other values of t/J . Thought of as a 1D system, we find
that the ground state is always in a Luther-Emery (LE) phase
[22] characterized by a finite spin gap, exponential decay of
spin correlations, and CDW and SC correlations that fall at
long distances as cos(Qr + θ ) r−Kc and r−Ksc , respectively,
where the CDW wave vector Q = 4πδ. An ordered state with
this value of Q has a wavelength λ = 1/2δ, and so half a
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doped hole per unit cell corresponding to what is referred to
as “half-filled” stripes. This is consistent with a recent study
of the t-t ′-U Hubbard model on four-leg cylinders [23].

Moreover, within numerical uncertainty, as theoretically
expected of a LE liquid, KcKsc = 1 (Fig. 3) and the central
charge c extracted from the scaling of the entanglement en-
tropy is c = 1 (inset of Fig. 6). The SC and CDW correlations
are invariant with respect to the C4 symmetry of rotations
about the axis of the cylinder. The SC correlations have a
“d-wave-like” form factor in that the sign of the pair field
is opposite on bonds perpendicular to and along the cylinder
(Y -directed and X-directed bonds). However, this is not a
statement of symmetry, and indeed there is an almost equal
in strength admixture of an “extended s-wave” component
with the consequence that the pair-field amplitude on Y

bonds is two orders of magnitude larger than on X bonds.
(See Fig. 2.)

For all the dopings studied, Ksc < 2 and Kc < 2, which
(assuming the usual emergent Lorentz invariance) implies that
both the corresponding susceptibilities diverge as T → 0, as
T −(2−Ksc ) and T −(2−Kc ), respectively. As far as we know, this
is the first demonstration of power-law SC correlations on
such a wide t-J or Hubbard cylinder. As shown in Fig. 3, Ksc

is an increasing function of δ and Kc a decreasing function,
so that the SC susceptibility is more divergent for δ < 0.1 and
the CDW is more divergent for δ > 0.1.

In a previous study [16], we explored the same model over
a wider range of parameters in which the primary focus was to
explore the extent to which the nature of the ground state de-
pends on “microscopic details.” For the special case on which
we focus here, these earlier results are generally consistent
with our present results. However, the longer system sizes and
the larger number of states used in the present study increase
our ability to distinguish exponential-decay correlations, and
power-law (quasi-long-range) and true long-range order. In
particular, what was previously tentatively identified as SC
with a long but finite correlation length, we now identify as
quasi-long-ranged SC order, albeit with exactly the previously
determined form factor.
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Model and method. We study the hole-doped t-J model on
the square lattice defined by the Hamiltonian

H = −t
∑
〈ij〉σ

(
ĉ+
iσ ĉjσ +H.c.

)+J
∑
〈ij〉

(
�Si · �Sj − n̂i n̂j

4

)
, (1)

where ĉ+
iσ (ĉiσ ) is the electron creation (annihilation) operator

on site i = (xi, yi ) with spin σ , �Si is the spin operator,
n̂i = ∑

σ ĉ+
iσ ĉiσ is the electron number operator, 〈ij 〉 denotes

nearest-neighbor (NN) sites, and the Hilbert space is con-
strained by the no-double-occupancy condition n̂i � 1. The
parameters t and J are the electron hopping integral and the
spin superexchange interactions between NN sites. We take
the lattice geometry to be cylindrical and a lattice spacing of
unity. Thus, unless stated otherwise, we take periodic bound-
ary conditions in the ŷ = (0, 1) direction and open in the x̂ =
(1, 0) direction, although for comparison we also consider the
case of antiperiodic boundary conditions corresponding to a
half quantum of flux threaded along the cylinder. Here, we
focus on cylinders with circumference Ly = 4 and length Lx .
There are N = Lx × Ly lattice sites and Ne � N electrons.
The concentration of “doped holes” is defined as δ = Nh

N
,

where Nh = N − Ne.
For the present study, we focus on the lightly doped case at

doping levels δ = 5%–12.5% on cylinders with lengths up to
Lx = 128. We set J = 1 as the energy unit and report results
for t = 3. We keep the total magnetization fixed at zero and
perform around 60 sweeps and keep up to m = 15 000 states
in each DMRG block with a typical truncation error ε � 1 ×
10−7. This leads to excellent convergence for our results when
extrapolated to the m = ∞ limit. In all cases, but especially
when computing SC correlations, it proves essential to keep
very large m and to analyze the m → ∞ seriously, and in
some cases, it is necessary to go to system sizes much longer
than Lx = 48 in order to observe the correlations that arise in
the Lx → ∞ limit. Further numerical details are presented in
the Supplemental Material [24].

Theoretical expectations. In a LE liquid phase, there is a
single gapless spinless bosonic mode with linear dispersion
(emergent Lorentz symmetry), i.e., it is asymptotically equiv-
alent to a (1+1)-dimensional conformal field theory (CFT)
with c = 1. At long distances the density-density correlation
oscillates with a well-defined wave vector Q and decays with
a power law given by the Luttinger exponent Kc, while the
dual SC correlation exhibits nonoscillatory power-law decay
with exponent Ksc = 1/Kc. Because there is a spin gap,
spin correlations fall exponentially with a finite correlation
length ξs , but one can still identify a wave vector Qsdw which
characterizes the oscillations of the SDW correlations.

These properties can be extracted in various ways from
numerical data. Because the CDW is pinned by the cylinder
ends, an effective method to study the CDW correlations is to
compute the charge density modulations in the middle region
of a finite cylinder, 〈n̂i〉 ≈ (1 − δ) + Acdw(Lx ) cos(Qxi + θ )
for xi near Lx/2. The SC correlation is determined from the
long-distance behavior of the SC correlator �α,β (x) defined in
Eq. (3). The expectation is that the decay of these quantities is
governed by the appropriate exponents,

Acdw(Lx ) ∝ L−Kc/2
x and �αβ (x) ∝ |x|−Ksc , (2)
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FIG. 1. (a) Charge density profile n(x ) at doping levels δ =
8.33% and δ = 12.5% on a Lx = 96 cylinder. The open squares
and circles denote numerical data, while the red lines are fits to
n(x ) = Acdw cos(Qx + θ ) + n0, where Acdw and Q are the CDW
amplitude and ordering wave vector, respectively. Note that only the
central-half region with rung indices Lx

4 < x � 3Lx

4 are shown and
used in the fitting to minimize the boundary effect. The red ovals
label the “reference site” chosen to calculate the SC correlation in
Eq. (3). (b) Finite-size scaling of Acdw as a function of Lx and δ in a
double-logarithmic plot.

where the second relation applies for displacements along
the cylinder 1 
 |x| 
 Lx . Similarly, Qsdw and ξsdw can be
extracted from the long-distance behavior of the spin-spin
correlation.

CDW correlations. To describe the charge density proper-
ties of the system, we define the local rung density operator as
n̂(x) = 1

Ly

∑Ly

y=1 n̂(x, y) and its expectation value as n(x) =
〈n̂(x)〉. Figure 1 shows n(x) in a central portion of cylinders
with Lx = 96 for δ = 8.33% and δ = 12.5%. Here, a stripe
pattern with wavelength λ = 1/2δ is found, i.e., λ = 4 for
δ = 12.5%, consistent with previous studies [16,25]. Similar
behavior (not shown) is found at other doping levels. Fig-
ure 1(b) shows examples of finite-size scaling of Acdw as a
function of Lx . In the double-logarithmic plot, our results for
all doping levels are approximately linear, which suggests that
Acdw(Lx ) decays with a power law and vanishes as Lx → ∞.
The exponent Kc, which is shown in Fig. 3, was obtained by
fitting the data points using Eq. (2). Kc can also be obtained
directly from the decay of the density-density correlation near
the cylinder ends (see Supplemental Material [24]).

Superconducting correlation. Since the ground state of
the system with an even number of doped holes is always
found to have spin 0, we will focus on spin-singlet pairing.
A diagnostic of SC order is the pair-field correlator defined as

�αβ (x) = 1

Ly

Ly∑
y=1

〈�†
α (x0, y)�β (x0 + x, y)〉. (3)
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FIG. 2. Finite-size scaling of superconducting correlation
�yy ( Lx

2 ) as a function of Lx and doping level δ in a double-

logarithmic plot. The solid lines are fits to �yy ( Lx

2 ) ∼ ( Lx

2 )
−Ksc .

Inset: �yy and −�xy on a Lx = 128 cylinder.

Here, the spin-singlet pair-field creation operator is
�†

α (x, y) = 1√
2
[c†(x,y),↑c

†
(x,y)+α,↓ − c

†
(x,y),↓c

†
(x,y)+α,↑], where

bond orientations are designated α = x̂, ŷ, (x0, y) is
the reference bond indicated by the red oval shown
in Fig. 1, and x is the displacement in the x̂ = (1, 0)
direction.

Figure 2 shows the finite-size scaling of �yy ( Lx

2 ) at differ-
ent doping levels. It decays with a power law, whose exponent
Ksc, plotted in Fig. 3, was obtained by fitting the results using
Eq. (2). Therefore, we can conclude that the lightly doped t-J
model on Ly = 4 cylinders has a quasi-long-range SC corre-
lation. It is worth noting that Ksc decreases with decreasing δ

tending to saturate at Ksc = 0.5, while Kc increases and tends
to saturate at Kc = 2 as δ → 0. Both tendencies are consistent
with theoretical prediction [26].

Spin-spin correlation. To describe the magnetic properties
of the ground state, we have also calculated the spin-spin
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FIG. 3. Luttinger exponents Kc, Ksc and their product KcKsc, as
a function of δ. The solid symbols represent the extracted values from
the fits in Figs. 1(b) and 2. The lines are guides to the eyes.
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FIG. 4. Finite-size scaling of the spin-spin correlation F ( Lx

2 ) as a
function of Lx at δ = 0% to 12.5% in the semilogarithemic plot. The
inset shows the correlation length ξs obtained from fits (solid lines)
to data in the main panel using F ( Lx

2 ) ∝ e−Lx/2ξs .

correlation functions defined as

F (x) = 1

Ly

Ly∑
y=1

|〈 �Sx0,y · �Sx0+x,y〉|. (4)

Here, �Sx,y denotes the spin operator on site i = (x, y). (x0, y)
is the reference site indicated by the red oval shown in Fig. 1,
and x is the displacement in the x̂ = (1, 0) direction. As we
did for Acdw and �yy , we first extrapolate F ( Lx

2 ) to the limit
m = ∞, and then analyze the functional dependence of the
result on Lx . As shown in Fig. 4, F ( Lx

2 ) decays exponentially
with Lx , i.e., F ( Lx

2 ) ∝ e−Lx/2ξs . The corresponding correla-
tion length is ξs = 4 – 5 lattice spacings. We conclude that the
spin correlations are short ranged and consequently that there
is a spin gap.

Antiperiodic boundary condition. We have also considered
cylinders with an antiperiodic boundary condition (ABC) in
the ŷ direction in order to test the extent to which our results
are representative of the 2D limit. As shown in Fig. 5 and
previous studies [16], the influence of changing boundary
condition around the cylinder is significant. For example, the
ground state of short cylinders with length Lx � 48, e.g., the
Lx = 32 cylinder in Fig. 5, forms charge stripes of wavelength
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FIG. 5. The charge density profile n(x ) at δ = 12.5% and ABC
in the ŷ direction for Lx = 32 and Lx = 160 cylinders.

140505-3



JIANG, WENG, AND KIVELSON PHYSICAL REVIEW B 98, 140505(R) (2018)

2.8 3.2 3.6 4.0 4.4 4.8

2.0

2.1

2.2

2.3

2.4

2.5

0.00 0.04 0.08 0.12
0

1

2

S

Ln(Lx)

δ=12.5%
δ=10.0%
δ=8.33%

c

δ

FIG. 6. von Neumann entanglement entropy S with δ = 8.33%,
10%, and 12.5%. Inset: The extracted central charge c as a function
of δ. Dashed line marks c = 1.

λ = 1
δ
, which are completely filled with holes. However,

this turns out to be a finite-size effect; the bulk of longer
cylinders with length Lx � 64 exhibits half-filled stripes with
wavelength λ = 1/2δ, which is the same as the charge stripes
of cylinders with periodic boundary conditions. Examples of
the charge density distribution of cylinders with ABC in the
ŷ direction are given in Fig. 5 for δ = 12.5%. The ABC
apparently affects the balance between filled and half-filled
charge stripes; the former are stabilized in a finite region close
to the open boundaries of the cylinder, while half-filled stripes
are robust in the bulk.

Central charge. A key feature of the LE liquid is that it has
a single gapless mode, i.e., it is expected to exhibit a central
charge c = 1. The central charge can be obtained by calcu-
lating the von Neumann entropy S = −Tr ρ ln ρ, where ρ is
the reduced density matrix of a subsystem with length l. For
critical systems in (1+1) dimensions, it has been established
[27] that S(l) = c

6 ln(l) + c̃ for open systems, where c is the
central charge of the CFT and c̃ denotes a model-dependent
constant. For finite cylinders with length Lx , we can fix l =
Lx

2 to extract the central charge c. Figure 6 shows S( Lx

2 ) at
different doping levels δ. The inset shows the fitted central
charge c as a function of δ. Although the extracted value of
central charge c is slightly larger than c = 1, we suspect that
this is within the uncertainty of the calculation. The result is
roughly consistent with one gapless charge mode with c = 1,

which thus provides additional evidence for the presence of a
LE liquid in the doped t-J model.

Summary and discussion. The presence of power-law su-
perconducting correlations with Ksc < 2 on four-leg cylinders
is an encouraging piece of evidence of the possible existence
of a high-temperature superconducting phase in 2D. The Q =
4πδ CDW correlations are reminiscent of the experimentally
observed “half-filled” CDW order that has been observed in
previous DMRG studies of t-J models [12], in DQMC studies
of the Hubbard model at elevated temperatures [17,18], and
experimentally in several cuprates. The spin correlation length
(shown in Fig. 4) decreases monotonically with increasing δ

from ξs � 6.5 for δ = 0 to ξs � 4 for δ = 12.5%.
It is still unclear how the interplay between SC and CDW

order should be expected to evolve with increasing cylinder
circumference Ly . This uncertainty is exacerbated by the large
number of nearly degenerate ground-state phases that were
found previously [16] to be stabilized by relatively small
changes in the microscopic parameters of the model. The
subtlety of the interplay between multiple phases is illustrated
by changing the boundary conditions on the electronic wave
functions from periodic to antiperiodic. As shown in Fig. 5,
on shorter cylinders (e.g., Lx = 32), a distinct CDW state
with Q = 2πδ is stabilized. This state is reminiscent of the
“filled” stripes found in Hartree-Fock calculations [28–30]
(where it is accompanied by long-range SDW order) and using
various approximate methods [14] used in studies of the 2D
Hubbard model [31]. In the present case, we find that while
even for much longer flux-pierced cylinders, while the filled
stripe state is observable locally for a finite region near the
ends of the cylinders, far from the ends the CDW correlations
have the same Q = 4πδ ordering vector as in the fluxless
cylinder.

One big question is the fate of the magnetic correlations
in the 2D limit. For δ = 0, on theoretical grounds [32,33]
we know that ξs should diverge with Ly → ∞ since the
ground state of the spin-1/2 Heisenberg model is magneti-
cally ordered in 2D. The shorter correlation lengths of the
doped systems suggest, but do not establish, that long-range
antiferromagnetic order is unlikely to persist in 2D for even
relatively modest values of δ.
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