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Magnetic susceptibility of quantum spin systems calculated by sine square deformation:
One-dimensional, square lattice, and kagome lattice Heisenberg antiferromagnets
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We develop a simple and unbiased numerical method to obtain the uniform susceptibility of quantum many-
body systems. When a Hamiltonian is spatially deformed by multiplying it with a sine-square function that
smoothly decreases from the system center toward the edges, the size-scaling law of the excitation energy is
drastically transformed to a rapidly converging one. Then, the local magnetization at the system center becomes
nearly size independent; the one obtained for the deformed Hamiltonian of a system length as small as L ∼ 10
provides the value obtained for the original uniform Hamiltonian of L ∼ 100. This allows us to evaluate a
bulk magnetic susceptibility by using the magnetization at the center by existing numerical solvers without
any approximation, parameter tuning, or size-scaling analysis. We demonstrate that the susceptibilities of the
spin-1/2 antiferromagnetic Heisenberg chain and square lattice obtained by our scheme at L ∼ 10 agree within
10−3 with exact analytical and numerical solutions for L = ∞ down to temperatures of 0.1 times the coupling
constant. We apply this method to the spin-1/2 kagome lattice Heisenberg antiferromagnet which is of prime
interest in the search for spin liquids.
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Introduction. Computing the thermodynamic properties of
a many-body quantum lattice model over a wide range of
temperature is a challenging problem, which too often remains
unsolved. Prominent examples include quantum spin systems
with nontrivial ground states such as spin liquids [1], as
found in the kagome lattice antiferromagnet [2] and Kitaev
model [3]. Experimentally, much effort has been devoted to
measuring the magnetic susceptibility of relevant materials
such as ZnCu3(OH)6Cl2 [4,5], BaCu3V2O8(OH)2 [6], and
κ-ET2X [7,8], to get the smoking guns of their realization.
In real materials, the interesting physics is always found at
temperatures (T ) much lower than the characteristic interac-
tion J ; indeed, the T dependence of susceptibility contains
rich information such as whether or not the excitations are
gapped, and spinons or Majorana fermions form a Dirac point
or a Fermi surface. However, numerical methods such as exact
diagonalization (ED) [9] and typicality approaches [10–12]
suffer from severe finite-size effects and cannot capture the
behavior at T < J . The quantum Monte Carlo (QMC) method
gives reliable results down to T ∼ 0.1J [13,14], but is not
applied to most of the above-mentioned nontrivial models
because of the sign problem.

The high-temperature series expansion (HTE) [15] serves
as a powerful analytical tool complementary to numerics.
However, the series in powers of β = 1/kBT extends at most
up to β16 to β19 [16,17], and falls off from the true result
at T � J . To further extend a series down to T ∼ J/2, a
numerical linked cluster (NLC) approach has been considered
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[18], and the entropy method [19] succeeded in interpolating
between the T = 0 limit and a HTE result for T > J . How-
ever, these methods are still subtle at present since they are
based on some assumptions. For instance, the entropy method
requires a priori knowledge of the susceptibility near T = 0
based on the ground-state information. It is highly desirable to
have vice versa, i.e., to extract such low T information from
the thermodynamic observables.

Given such a situation, a reliable and practical approach
that is valid at any temperature is desperately needed. Here,
we propose a parameter-free and unbiased scheme to obtain
susceptibility by making use of a device called sine-square
deformation (SSD) [20]. The SSD is a spatial modification
of the energy scale of the Hamiltonian. It serves as one of
the boundary conditions [21–24], as well as works as a real-
space renormalization scheme [25]. It also reveals itself as one
of the low-energy effective Hamiltonians in two-dimensional
(2D) conformal field theory [26–28]. Moreover, the adiabatic
connections between the uniform and SSD Hamiltonian are
guaranteed [29].

SSD. We first introduce the SSD Hamiltonian, in which an
envelope function fSSD makes the original Hamiltonian H =∑

i[h(r i ) − μn(r i )] spatially nonuniform,

HSSD =
∑

i

fSSD(r i )[h(r i ) − μn(r i )], (1)

fSSD(r i ) = 1

2

[
1 + cos

(πri

R

)]
. (2)

Here, r i is a coordinate of the lattice site if h(r i ) is an on-site
term, and it is a coordinate of the bond if h(r i ) is an intersite
interaction or a hopping term. The origin of r i is at the center
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of the cluster [30]. In fSSD(r i ), R is chosen to be slightly
larger than R0, the distance from the system center to the
farthest edge site. If the Hamiltonian is written in terms of
fermionic operators, μ is the chemical potential, and n(r i ) is a
particle density. If the Hamiltonian is written in terms of spin
operators, then μ and n(r i ) are replaced with magnetization
m(r i ) and magnetic field H , respectively. We solve HSSD

and evaluate the expectation values of local quantities A(r i )
for energy eigenstates, which are no longer translationally
invariant.

One of our previous findings was that the ground-state
physical quantities evaluated at the system center, where
fSSD(r i ) ∼ 1, are nearly independent of the system size N and
mimic the values for N → ∞ for the original Hamiltonian
[31]. For example, by applying a magnetic field H to quantum
magnets, one can compute a magnetization density 〈m(r i =
0)〉 for the SSD ground state [31]. Even for system lengths
L � 20 (N = Ld for d dimension), we obtain a magnetiza-
tion curve mimicking the bulk exact solution of the original
uniform Hamiltonian within an accuracy of 10−4 in 1D [31],
and 10−3 in 2D [25,32].

Intuitively, deforming a Hamiltonian may mean modifying
the physical system itself, but for SSD, this is not the case
[25,33]. We have shown earlier that the modified part of the
Hamiltonian, HSSD − H, renormalizes the energy levels of
the original H in a way similar to the poor man’s scaling
by Wilson [25]. The excitation energy εl (L) follows a 1/L2

behavior [25,34] and densely populates around ε = 0, in sharp
contrast to the standard scaling law 1/L. As a result, by using
a system size as small as L ∼ 10 in the SSD system, one
can suppress finite-size effects down to those of the original
Hamiltonian for L ∼ 100.

However, it is not clear whether the whole excited-state
spectrum is well preserved by SSD. Here, we show that
is the case. As a result, thermodynamic quantities are very
accurately calculated, and practically free of size effects.

The local Gibbs ensemble. Consider a lattice consisting of
N = Ld sites and deform a Hamiltonian following Eq. (1). By
solving HSSD at finite temperature, obtain the Gibbs ensemble
〈· · · 〉 of a local physical quantity defined at the system center
with index c as

〈Âc〉 = 1

�

∑
l

〈ψl|Âc|ψl〉e−βEl , (3)

where � = ∑
l e

−βEl is the grand partition function, and ψl

the many-body wave function with energy El . Our main con-
clusion is that, for fermionic systems, the particle densities at
the center 〈n̂c〉 for systems sized as small as N � 10 in 1D and
N � 20 in 2D agree with those for the original Hamiltonians
for N ∼ ∞ within ∼10−3. This conclusion holds also for
the magnetization 〈m̂c〉 of spin systems. Once energy and
particle density, or magnetization, are obtained as smooth
functions of β and μ, or H , thermodynamic potentials and
all thermodynamic quantities can be evaluated.

Noninteracting system. Let us first demonstrate the validity
of our claim for the quantum S = 1/2 XX spin chain, H =∑

i (sx
i sx

i+1 + s
y

i s
y

i+1 − Hsz
i ), which is equivalent to a free

fermionic chain. By applying a small magnetic field, H =
0.01–0.1, we obtain an exact solution of the SSD Hamiltonian
for a given L, evaluate 〈m̂c〉, and take its derivative to obtain

FIG. 1. Susceptibility χ of the 1D XX model, which is equivalent
to a free fermionic chain, obtained by (a) our scheme using SSD
and (b) the standard method in a uniform system with a periodic
boundary condition (PBC). χ of the spin-1/2 Heisenberg chain,
obtained by (c) our scheme and (d) the standard method with a PBC.
The dashed line is the exact analytical solution for L = ∞ [36]. All
the results are numerically exact.

a uniform static susceptibility, χ = d〈m̂c〉/dH . Figure 1(a)
shows the result from L = 6 up to 100. Already at L ∼ 8, they
are in good agreement with the exact L = ∞ susceptibility in
the dashed line. Remarkably, the gapless behavior, χ > 0 at
T → 0, is correctly obtained even for L = 4. When L ∼ 10,
the accuracy of χ already reaches 10−3 at kBT ∼ 0.2 and 10−4

at higher temperatures.
By contrast, χ of the original Hamiltonian obtained in the

standard manner, χ = −β−1〈(∑i mi )
2〉2

/N (with H = 0),
suffers from a serious finite-size effect [Fig. 1(b)]. As a conse-
quence of the energy gap in the low-energy spectrum, �L ∼
O(1/L), χ shows an artificial exponential drop, ∝e−β�L , at
kBT ∼ 0.

Heisenberg systems. Our scheme yields similarly high ac-
curacies for interacting systems. For the spin-1/2 Heisenberg
chain, H = ∑

i sisi+1 − H
∑

i s
z
i , we perform a full ED for

L � 16 and adopt a typicality approach called the thermal
pure quantum (TPQ) method for L > 16 [12,35], to solve
HSSD. Figure 1(c) shows χ obtained with our scheme. A
comparison with the exact solution for L = ∞ [36] shows
that our results are accurate within the order of 10−4 for
L > 10. Moreover, even for L as small as 8, a small drop of χ

appears at temperatures lower than kBT ∼ 0.01, reminiscent
of the well-known logarithmic singularity in the Bethe ansatz
solution [37]. For the original Hamiltonian, finite-size effects
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FIG. 2. (a) SSD function fSSD(r ) in 1D. In (b) and (c), all
eigenenergies εl (L) of the SSD and original (PBC) free fermionic
chain of length L = 6, 8, 10, 12, 20 and 50 at μ = 0 are plotted
as circles along the horizontal axes shifted vertically by L−2 (SSD)
and L−1 (PBC). The vertical axis on the right-hand side indicates
the location of the horizontal axes. Dashed lines show the finite-
size-scaling laws, εl (L) ∝ L−2 (SSD) and ∝L−1 (PBC). Vertical
bars on each horizontal axis show the effective DOS of 1D free
fermions DL(εl ) evaluated by Eq. (4) as the particle densities of the
corresponding eigenstates at the system center divided by the energy
spacings. Its scale is given on the left-hand side. Each bar belongs
to the circle inside, whereas for doubly degenerate levels marked
with solid circles in PBC, the bars on both sides belong to them.
Solid lines in (b) and (c) are the bulk exact DOS, D1D(ε). (d) Spatial
distribution of the particle density of the SSD free fermionic chain
of L = 50 for l = 25, 10, and 1, with l = 1 being the lowest energy.
The shaded values at the center are nc(εl ).

again lead to an artificial exponential drop, as shown in
Fig. 1(d).

Density of states. We now clarify how the ensemble in
Eq. (3) works for a 1D free fermionic chain. Let us deform the
Hamiltonian H = ∑

i (−c
†
i ci+1 + H.c. − μni ) [see Fig. 2(a)]

and then diagonalize it into HSSD = ∑
l εla

†
l al , where the cre-

ation operator a
†
l is related to c

†
i by the unitary transformation

a
†
l = ∑

i ϕl,ic
†
i . The distribution of the one-body eigenenergy

εl (L) (l = 1 through L) for system length L is shown in
Fig. 2(b). One finds a clear L−2 dependence (dashed lines).
This is in sharp contrast to the L−1 behavior for the original
Hamiltonian shown in Fig. 2(c) which is known from the
conformal field theory for 1D quantum critical systems [38].

The lth one-body eigenstate has a particle density at the
ith site given by ni (εl ) ≡ |ϕl,i |2. In Fig. 2(d) we show the
i dependence of ni (εl ) for three different energy levels εl

for L = 50: the chemical potential level (l = L/2), a slightly
lower level (l = 15), and the band bottom (l = 1). For the

original Hamiltonian, ni (εl ) does not depend on i, whereas
SSD gives each position r i its own energy scale proportional
to fSSD(r i ). Consequently, the particles distribute in a way
that forms a wave packet, which has a large weight at r i

that overall fulfills the relation fSSD(r i ) ∼ |εl|; at εl ∼ 0, the
wave function forms an edge state in which fSSD(L/2) ∼ 0,
whereas near the band edge with maximum |εl|, the particle
is localized at the center. Since fSSD ∼ 1 at the system center
[the shaded region in Fig. 2(d)], it is naturally expected that
nc(εl ) is roughly the same as that for the original Hamiltonian.
We therefore define an effective density of states (DOS) for
system size L as

DL(εl ) = 2n̄c(εl )

εl+1 − εl−1
, (4)

where n̄c(εl ) = nc(εl+1)/4 + nc(εl )/2 + nc(εl−1)/4 is aver-
aged over the neighboring three levels. Figure 2(b) shows
DL(ε) as vertical bars for a series of L, demonstrating that
it agrees well with the exact 1D DOS, D1D(ε) = (2π )−1(1 −
ε2/4), shown as solid lines, even for L as small as 4.

For the original Hamiltonian, DL(ε) gives the conventional
discrete DOS; since nc is a constant filling factor of fermions,
DL(ε) is simply an inverse of the energy level spacings. Such
a construction has a distinct difference from the SSD one; the
SSD compresses the spacings between low-energy levels and
at the same time redistributes the particle density at the system
center in a way that suppresses nc at low energies. These two
effects result in DL(ε) that well reproduces D1D(ε).

These finding indicate that the particle density of the
original Hamiltonian for L → ∞ can be obtained from nc(εl )
equivalent to the fictitious DOS, DL(εl ),

〈n(μ, β )〉 =
L∑

l=1

f (εl )nc(εl ), (5)

where f (ε) = (e−βε + 1)−1 is the Fermi distribution function.
Due to the densely populated energy levels in the vicinity of
the chemical potential, 〈n(μ, β )〉 is nearly free of a size effect
for L ∼ O(10). Let us consider an alternative expression in
the many-body form. Construct a many-body wave function
|ψl (nf )〉 (l = 1 through �nf

), with eigenenergy El , where
�nf

is the size of the Hilbert space for a given particle number
nf . One can easily confirm that the following form,

〈n(μ, β )〉 = 1

�L

L∑
nf =0

�nf∑
l=1

〈ψl (nf )|n̂c|ψl (nf )〉e−βEl , (6)

with �N = ∑
nf ,l e

−βEl exactly coincides with Eq. (5). This

formula is equivalent to Eq. (3), with Âc = n̂c.
2D Heisenberg systems. We apply our scheme to 2D

systems. Figure 3(a) shows χ of the spin-1/2 square lat-
tice Heisenberg antiferromagnet, in which we have chosen a
system size of N = 5 × 5 = 25 lattice. Here, since the TPQ
method allows only a very small L in 2D, physical quantities
oscillate as a function of r i at kBT � 0.5 due to boundary
effects. As already known from the grand canonical analysis
at T = 0, the center of oscillation is the true result we need
to obtain [31]. The amplitude of oscillation depends on the
choice of R. We tune the radius R = R0 + dR with dR
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FIG. 3. Susceptibility χ of spin-1/2 2D Heisenberg models on
(a) square and (b) kagome lattices of finite sizes and shapes shown in
the insets, calculated with SSD, where the colored circles are a guide
to the eye to clarify which sites and bonds belong to the same radius
r i in fSSD(ri ). In each panel, the solid black line is our result, obtained
for an optimal dR and making averages of ∼20 TPQ samples for
(a), and ∼60 TPQ samples for (b). The shading at low T indicates
uncertainties due to large spatial oscillations of 〈m(r )〉 near r = 0
that vary from TPQ sample to sample. The hatched region in (b)
indicates the same ambiguity in our ED results, for which the 100
lowest states were used. Symbols and dashed lines indicate previous
works: (a) QMC [13,41], HTE [42], and (b) TMMC [44], entropy
method assuming a gap, � ∼ 0.03J [19], HTE [46]. The lower inset
to (b) shows our (as well as earlier) results to higher temperatures.

ranging from 0 to 1 to minimize such oscillations [39]. For
each R, we make a 25 sample average of the initial TPQ

states. The shaded region indicates the uncertainty due to the
large oscillations that are inevitable at low T . For comparison,
we also plot previous results of QMC calculations for N =
128 × 128 [40] and 12 × 12 [13], and HTE [41,42], which is
in agreement with our results, typically within O(10−3) [43].
Here, the HTE provides a very useful check of the accuracy
of our result for kBT � 2.

We finally present our unbiased susceptibility of the spin-
1/2 antiferromagnetic Heisenberg kagome lattice in Fig. 3(b).
It is widely studied by transfer-matrix Monte Carlo (TMMC)
[44], NLC [45], HTE [17,46] with a Padé approximation, and
entropy methods assuming gapped excitations [19,47]. Our
result supports the strong enhancement at kBT � 0.5, which
is clearly seen in the inset. Previous results except for the
one from the entropy method show a similar enhancement.
Moreover, as shown in the main panel, our χ starts to drop
at kBT ∼ 0.1, and is slightly smaller than the TMMC result.
In this region, HTE is no longer reliable. At kBT < 0.1 we
have separately performed ED on HSSD for the lowest 100
states and evaluated the range of χ , indicated by hatching, in
order to clarify whether the spin gap is finite or not. The range
of hatching indicates the ambiguity arising from the large
oscillation of 〈m(r i )〉 at ri ∼ 0, which increases at lower T .
We plot χ ∼ e−�/kBT , which is expected for the spin gapped
system, and find that even if the gap were finite, it should be
as small as �/J ∼ 0.01–0.02.

There are many ED studies on 2D quantum magnets that
calculate χ and specific heat at kBT � 0.1. However, at
such low temperatures, finite-size effects become a serious
problem. Our nearly size-dependence-free scheme also suffers
from this limitation. Since our scheme is compatible with any
numerical solver, it should be able to attack this extremely
difficult temperature region once a powerful solver is devel-
oped that can handle twice as large a system than is currently
possible.

Note added. Recently, we became aware of a related work
on χ of the kagome lattice Heisenberg model by the finite-
temperature Lanczos method at N = 42, consistent with our
Fig. 3(b) [48].
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