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Hysteresis from nonlinear dynamics of Majorana modes in topological Josephson junctions
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We reveal that topological Josephson junctions provide a natural platform for the interplay between the
Josephson effect and the Landau-Zener effect through a two-level system formed by coupled Majorana modes.
We build a quantum resistively shunted junction (RSJ) model by modifying the standard textbook RSJ model to
take account of the two-level system from the Majorana modes at the junction. We show that the dynamics of
the two-level system is governed by a nonlinear Schrödinger equation and solve the equations analytically via a
mapping to a classical dynamical problem. This nonlinear dynamics leads to hysteresis in the I-V characteristics,
which can give a quantitative explanation to recent experiments. We also predict the coexistence of two
interference patterns with periods h/e and h/2e in topological superconducting quantum interference devices.
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I. INTRODUCTION

The topologically protected degeneracy related to the non-
local nature of Majorana modes is among the core features
of topological superconductors [1–4]. This degeneracy is
the foundation of fascinating topological qubits [5–13] and
also related to supersymmetry in condensed matter systems
[14–16]. The situation is interesting as well when the degen-
eracy is split by couplings between Majorana modes [17–22].
In particular for the one-dimensional case [23–27], the split
energy levels form a typical two-level system since other
excitation levels have much higher energy [9,28,29].

The two-level systems with their energy difference in con-
trol have proved extraordinarily fertile for interesting quantum
phenomena [30–33]. By coupling two Majorana modes with
a Josephson junction as in Fig. 1(a), two levels with energies
E ∝ ± cos θ/2 are obtained, with θ the Josephson phase and
the plus/minus signs corresponding to states with opposite
fermion number parity. Either level can coherently transport
one electron through the junction, leading to the fractional
Josephson effect I ∝ ± sin θ/2 [23–25]. In realistic systems
where the two levels are inevitably coupled, the two-level
system has avoided level crossings at θ = (2n + 1)π as in
Fig. 1(b). Energy spectra with such avoided crossings are well
known for the existence of the Landau-Zener (LZ) transitions
[34]: the two-level system enters a superposition state when
the phase difference is driven by a finite voltage drop across
the junction [35]. The topological Josephson junction thus
hosts a natural platform for the interplay between the LZ
effect and Josephson effect [36]. Since the LZ effect has
proved its impact on qualitatively changing the dynamics in
various systems [37–42], novel phenomena stemming from
this interplay are expected on the topological junctions.
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In this work, we study a realistic topological Josephson
junction as sketched in Fig. 1(a), where the supercurrent
is contributed by tunneling in the form of both the single
electron and Cooper pair. For a junction with negligible
capacitance, we build a quantum resistively shunted junction
(QRSJ) model by including the two quantum levels in the
standard RSJ model. Under current injection, the two-level
system can pass the avoided crossing again and again. At each
passage it experiences a LZ transition at the near diabatic
limit. The accumulation of multiple LZ transitions, which
couple with the nonlinear dynamics of the Josephson phase,
induces a novel damped quantum oscillation. We cast the
quantum model into a classical model to solve this nontrivial
dynamics by exploiting the method of averaging, and find that
the LZ transitions are effectively described by a nonlinear
Schrödinger equation. We use a phase-space portrait and the
Poincaré map to analyze this nonlinear LZ effect, and reveal a
separatrix which categorizes the dynamics into two distinct
oscillatory behaviors. Within the separatrix, we obtain an
analytical solution for the damped quantum oscillation, which
agrees well with numerical simulations. We further show that
this damped oscillation leads to hysteresis in the I-V curves,
which gives a quantitative explanation to the recently reported
“unexpected” hysteresis in HgTe topological Josephson junc-
tions [43,44]. We also predict, based on our theory, that in
a topological superconducting quantum interference device
(SQUID) two interference patterns with periods h/e and h/2e

can coexist. This phenomenon will be an supporting evidence
for Majorana modes if verified by future experiments.

II. QUANTUM RESISTIVELY SHUNTED
JUNCTION MODEL

The topological Josephson junction sketched in Fig. 1(a)
consists of two topological superconductors, which could be
one-dimensional nanowires with spin-orbit couplings [21],
superconducting quantum spin-Hall edge states [45], or
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FIG. 1. (a) Schematic of a topological Josephson junction with
resistance R driven by an injected current I . The single-electron
tunneling through the Majorana modes γL and γR and the Cooper-
pair tunneling induce Josephson couplings quantified by energy
scales of EM and EJ, respectively. (b) Energies of the two-level
system defined by the two Majorana modes, with δ coming from
the coupling between γL,R and the other two Majorana modes at the
ends of the wire. The Landau-Zener transition happens at the avoided
energy crossing with P the transition possibility. (c) Schematic of
equivalent electric circuit for topological Josephson junction.

ferromagnetic atomic chains [46]. The junction hosts two
Majorana modes γL,R with their coupling described by [1,23]
HM = −iEMγLγR cos(θ/2) with EM the maximum coupling
energy. By defining a Dirac fermion f = γL + iγR, the
Hamiltonian describes a typical two-level system where the
empty state |0〉 and occupied state |1〉 are the two eigenstates.
The corresponding energy spectra are E± = ±EM cos(θ/2)
which cross at θ = (2n + 1)π . In finite-size materials, the
inevitable overlapping between γL,R and the other two edge
Majorana modes leads to hybridization of the two states (see
Appendix A for details), which produces avoided energy
crossings. By writing the wave function as |ψ〉 = ψ0|0〉 +
ψ1|1〉, the dynamics is determined by the Schrödinger equa-
tion

ih̄
d

dt

(
ψ0

ψ1

)
=
(

EM cos θ
2 δ

δ −EM cos θ
2

)(
ψ0

ψ1

)
, (1)

with δ the hybridization energy. This equation describes a
two-level system which has an energy spectrum with avoided
crossings at θ = (2n + 1)π , as illustrated in Fig. 1(b). When
θ is driven through the avoided crossings, the LZ transition
between the two levels will change the system from the
ground state to the excited state with a textbook LZ transition
probability P = e−4πδ2/(h̄θ̇EM ).

We consider a junction with negligible capacitance, where
the motion of θ under biased current can be described by
the RSJ model [47,48], which is the current conservation
equation where the total current I is transported through
the resistive and Josephson channel with I = V/R + IJ

as shown schematically in Fig. 1(c). The Josephson cur-
rent IJ has two parts: the conventional Cooper-pair channel
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FIG. 2. (a) Evolution of the wave function for the two-level
system under constant injected current I/Ic2 = 1.5, obtained by
numerically solving Eqs. (1) and (2). The bottom inset is a zoom-in
view in the marked time window. The analytical solution Eq. (10)
provides the τ̃s , τd , the dashed envelope line and the top inset.
(b) Phase-space portrait of the classical Hamiltonian Hc, with P1 the
elliptic fixed point, P2 the hyperbolic fixed point, and the red-dashed
circle the separatrix. (c) Poincaré map obtained by numerically
solving Eq. (3). Parameters of the junction are taken as Ic1/Ic2 = 0.5,
δ/EM = 0.02, and R = 5h̄/e2.

I1 = Ic1 sin θ , and the parity-dependent Majorana channel
I2 = Ic2〈ψ |iγLγR|ψ〉 sin(θ/2) which comes from the phase
derivative of HM [23] (see Appendix A). By invoking the ac
Josephson relation we obtain the equation explicitly as

dθ

dt
= 2eR

h̄

[
I − Ic1 sin θ − Ic2(|ψ1|2 − |ψ0|2) sin

θ

2

]
, (2)

where the quantum average over Majorana operators is ex-
pressed with the wave function. This equation brings non-
linearity to the Schrödinger equation (1), and they together
constitute the QRSJ model.

One important feature here is that when I is large enough
to make the right-hand side of Eq. (2) nonzero, the motion
of θ would induce the LZ transitions around θ = (2n + 1)π .
Differently from the conventional LZ effect, the injected cur-
rent drives the Josephson phase passing the avoided crossings
again and again with a large velocity. Each time the LZ
transition only induces a small change on the two-component
wave function. However, the accumulation of many LZ transi-
tions leads to a nonlinear quantum dynamics of the two-level
system as we will show later. Therefore, the LZ transition is
the building brick of the complicated but nontrivial dynamics
of the two-level system in the topological junction.

To observe the effect of these LZ transitions, we first
numerically integrate Eqs. (1) and (2) with initial conditions
ψ0 = 1 and θ = 0, and present the time evolution of the
wave function in Fig. 2(a). We see that the wave function
oscillates at the full time range. Looking carefully, the oscil-
lation amplitude begins from a small value with the system
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mainly staying at |0〉, and then gradually increases. After
passing a critical time marked by the red dashed line, the
wave function begins to oscillate between |0〉 and |1〉. We will
see later that this critical time relates to passing the separatrix
of an effective classical Hamiltonian. We also notice that the
oscillating period is shorter at the two ends of the time range,
and becomes longer nearby the critical time. Besides the rich
oscillatory features, there is also an obvious damping on the
envelope of the oscillations, with a characteristic timescale
much larger than the oscillation periods. The damped quantum
oscillation is unique and reflects the impact of the nonlinear
dynamics of θ which enters the Schrödinger equation of the
two-level system.

III. NONLINEAR DYNAMICS OF MAJORANA
TWO-LEVEL SYSTEM

Now we analyze this damped quantum oscillation by map-
ping the QRSJ model to a nonlinear classical model, which
enables the usage of sophisticated approaches that have been
developed for solving nonlinear classical dynamics [49–52].
The trick is to notice that in the QRSJ model the wave function
is subjected to two restrictions: it must be normalized, and
the global phase is decoupled from the dynamics (see Ap-
pendix B for details). Then we can define two real variables:
the relative amplitude s = |ψ1|2 − |ψ0|2 and the relative phase
φ = argψ1 − argψ0, which are complete for describing
the dynamics of the two-level system [51,52]. With this trick,
we cast the QRSJ model into a purely classical model and
write down the dynamical equations

dθ

dt
= 2eRI

[
1 − Ic1

I
sin θ − sIc2

I
sin

θ

2

]
, (3a)

ds

dt
= −δ

√
1 − s2 sin φ, (3b)

dφ

dt
= EM cos

θ

2
+ δs√

1 − s2
cos φ, (3c)

where we take the unit h̄ = 1 for simplicity. Obviously
Eq. (3a) is identical to Eq. (2), and Eqs. (3b) and (3c) to-
gether are equivalent to Eq. (1) which can be verified through
simple algebra (see Appendix B for details). Here we have
transformed the problem of quantum dynamics to classical
nonlinear dynamics in a three-dimensional phase space.

With this mapping, the timescales of the system become
clear as identified from the right-hand side of Eq. (3). We have
τθ = 1/2eRI, τs = 1/δ, and τφ = 1/EM which correspond to
the change of θ, s, and φ. We note that these three timescales
are different by orders with τθ � τφ � τs for the junction
parameters shown in Fig. 2(a) and generally for I > Ic1 + Ic2.

For classical nonlinear systems with multiple timescales,
the method of averaging is a powerful technique [53]. The
essence is to categorize “fast” variables and “slow” variables
by typical timescales, then solve the equations for the fast
variables by treating slow variables as constant parameters.
After obtaining the solution, the fast variables are averaged
over its timescale and used for solving the equations of the
slow variables. With this process, the dynamical equations
are decoupled into averaged equations, which significantly
simplifies the problem.

Now we use the method of averaging to analyze the nonlin-
ear dynamics in Eq. (3), where θ is treated as the fast variable
and s, φ as slow variables, since τθ is the smallest timescale.
We first consider s unchanged in τθ and solve Eq. (3a) to
obtain the time average of cos θ

2 , defined as cos θ
2 ≡ ∫ dt cos θ

2
with the integration range the time for θ to rotate 4π .

By taking the time derivative on both sides of Eq. (3a), we
can obtain terms containing s and ṡ. Within τθ , because s and
ṡ both vary slowly, we take them as time independent. With
some tedious but straightforward computation we obtain (see
Appendix C for details)

cos(θ/2) ≈ αs + βṡ, (4)

with α = Ic1Ic2/I
2 and β = Ic2τθ/I from the lowest order

Taylor expansion of Ic1/I and Ic2/I . Here αs is much larger
than βṡ, and we refer to them as zeroth-order and first-order
averaging, respectively.

We begin from the zeroth-order averaging and replace
cos θ

2 with cos θ
2 = αs in the Schrödinger equation (1), and

obtain

ih̄
d

dt

[
ψ0

ψ1

]

=
[
EMα(|ψ1|2 − |ψ0|2) δ

δ −EMα(|ψ1|2 − |ψ0|2)

][
ψ0

ψ1

]
,

(5)

which becomes a typical nonlinear Schrödinger equation due
to the nontrivial diagonal elements [51,52,54]. This explicitly
shows that coupling to Josephson phase dynamics brings
the nonlinearity into the quantum dynamics of the two-level
system, which is the reason for the rich and unusual dynamical
behaviors shown in Fig. 2(a) (see Appendix C for details).

Now we interpret this nonlinear quantum dynamics with
the classical model. In Eq. (3c) by replacing cos θ

2 with its
average, we obtain

dφ

dt
= EMαs + δs√

1 − s2
cos φ. (6)

Now the system is only described by Eqs. (6) and (3b)
with θ integrated out. These two equations are the canonical
equations of a classical Hamiltonian (see Appendix C for
details),

Hc = − 1
2αEMs2 + δ

√
1 − s2 cos φ, (7)

where s and φ are the coordinate and canonical momentum.
Let us use the phase-space portraits of this effective Hamil-

tonian, as shown in Fig. 2(b), to understand the oscillatory
features shown in Fig. 2(a). There is an elliptic fixed point P1

at (s, φ) = (0, 0), and a hyperbolic fixed point P2 at (s, φ) =
(0,±π ) (see Appendix C for details). A separatrix connects
the hyperbolic fixed point, separating the phase space into two
distinct areas: extended trajectories outside the separatrix and
orbiting trajectories around the elliptic fixed point inside the
separatrix.

The extended trajectories outside the separatrix in Fig. 2(b)
correspond to dynamics before the critical time in Fig. 2(a).
For motion along these trajectories, the s stays nega-
tive or positive, agreeing with the small oscillations with
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|ψ0| > |ψ1| at the beginning of Fig. 2(a). Inside the separatrix,
the trajectories become orbital, with s oscillating from neg-
ative to positive values. This corresponds to the oscillations
in Fig. 2(a) after the critical time, where |ψ0| and |ψ1| have
overlapped oscillations. When approaching the separatrix,
the period of the orbits is enlarged since the period should
be divergent at the separatrix [55]. This corresponds to the
observed period enlargement near the critical time in Fig. 2(a).
From the above analysis, we argue that the system begins from
outside of the separatrix, passing through the separatrix at the
critical time, and then orbits inside the separatrix and finally
reaches the elliptic fixed point.

For clarity we demonstrate the Poincaré map of the nu-
merical results for Eq. (3) in Fig. 2(c), which is obtained
by recording the points on the s-φ plane with θ = 4nπ . The
local trace of the Poincaré map follows the trajectories of the
classical Hamiltonian, illustrating that the oscillations shown
in Fig. 2(a) can be approximately determined by the classi-
cal Hamiltonian. The global structure of the Poincaré map,
however, demonstrates a spiral-in feature from outside the
separatrix to the elliptic fixed point P1. This exhibits the effect
of a friction force which brings all phase-space trajectories to
elliptic fixed points. This long-timescale damping, also shown
in Fig. 2(a), cannot be obtained based on the zeroth-order
averaging.

Now we explore the damping feature by including the first-
order averaging, and replacing cos θ/2 with Eq. (4). Around
the elliptic fixed point P1, we find that Eqs. (3b) and (3c) lead
to (see Appendix C for details)

s̈ + βEMṡ + (δ2 + αEMδ)s = 0, (8)

which is nothing but a classical damped harmonic oscillator.
It has a standard solution of the form

s = e−t/τd cos(2πt/τ̃s ), (9)

with the damping and oscillating time of

τd = 2eRI 2

Ic2EMδ
, τ̃s = 2π

δ
√

1 + αEM/δ
. (10)

We plot this analytical solution as an inset of Fig. 2(a), and
find that it agrees well with the numerical simulations around
the elliptic fixed point. Here we have demonstrated a duality
between the nonlinear quantum dynamics in this two-level
system and a classical damped harmonic oscillator which is
exactly solvable. Therefore, this duality enables us to find
an analytical solution for the damped quantum oscillations
despite that the equations for the nonlinear quantum dynamics
are rather complicated. In fact, we further show a mapping to
a solvable anharmonic damped oscillator (see Appendix C for
details), which even correctly describes the dynamics far from
the elliptic fixed point.

IV. HYSTERESIS IN I-V CURVES

Now we study the I-V characteristics of the topological
Josephson junction based on the QRSJ model. We numerically
simulate the average voltage upon adiabatic current injection,
which gradually increases to a large value and then decreases
back to zero. As a benchmark, we first show the I-V curve for
a trivial junction with Ic2 = 0 in Fig. 3(a), which is the well
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FIG. 3. I-V curves in the absence of the LZ effect for (a) Ic2 = 0,
(b) Ic2/Ic1 = 2 and δ = 0. (c) I-V curves in the presence of the LZ
effect with parameters the same as in Fig. 2(a). (d) Comparison
between our numerical simulation (solid lines) and the experimental
data (discrete crosses) taken from Ref. [43]. Junction parameters
in the simulation are adopted the same as in the experiments with
the resistance R = 44 �, the capacitance C = 34 aF, the 2π -period
current Ic1 = 2 μA, the 4π -period current Ic2 = 2.3 μA, and the
decoherence time chosen as τ2 = 105h̄/EM.

known result of V = R
√

I 2 − I 2
c1 around the critical current

[47]. We then consider an additional 4π -period Josephson
current I2 = Ic2 sin θ

2 which corresponds to the case of local
parity conservation with δ = 0, where the LZ effect cannot
take place. We solve Eq. (2) with |ψ0|2 = 1 or |ψ1|2 = 1, and
obtain the I-V curve as shown in Fig. 3(b). Clearly the simple
addition of a 4π -period Josephson current modifies the shape
of the I-V curve but demonstrates no novel phenomenon. For
both cases, the voltage which is the velocity of the phase
difference is fully determined by the applied current, so the
quantum dynamics is history independent.

However, when δ becomes finite and the LZ transitions
begin to affect the tunneling current, we find an unambiguous
hysteretic I-V curve with two critical currents as shown in
Fig. 3(c): a switching current Isw where the voltage jumps
from zero to finite value and a smaller retrapping current Ire

for the finite voltage jumping back to zero.
The origin of this hysteresis can be understood with the

time evolution of |ψ0|2 and |ψ1|2 discussed in Fig. 2(a).
Initially for a small injected current below the switch value,
the voltage is zero and the two-level system stays at |1〉 with
certainty (|ψ1|2 = 1). When the injected current is increased
above the switching current, the probabilities begin to oscil-
late due to the nonlinear dynamics of the two-level system as
discussed in detail in the previous section. The oscillation is
strongly damped and after a while, the two-level system enters
a state with nearly equal probability of the two levels since
they are symmetric with the phase translation.
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From above, we can see that the Josephson current is con-
tributed by only one level for the zero-voltage stage but both
levels for the finite-voltage stage. Therefore, it is reasonable
that the critical currents are different when the injected current
is increasing or decreasing. Because only one level contributes
to the Josephson current as in the current increasing stage, we
have IJ = Ic1 sin θ + Ic2 sin θ

2 and the critical current is given
by

Isw = (2Ic1ζ + Ic2)
√

1 − ζ 2, (11)

with ζ =
√

I 2
c2/8I 2

c1 + 1/2 − Ic2/8Ic1 (see Appendix A for
details). On the other hand in the current decreasing stage,
because the two-level system has finite probabilities on both
levels due to the LZ transitions, the Josephson current changes
to IJ = Ic1 sin θ + Ic2(|ψ1|2 − |ψ0|2) sin θ

2 . For this case, the
critical current would be smaller, since the two levels with op-
posite parities carry opposite currents and cancel each other. If
the cancellation is perfect with |ψ1| = |ψ0|, the corresponding
critical current is

Ire = Ic1. (12)

Consequently, a hysteresis phenomenon emerges due to the
existence of the Majorana modes. We note that this hysteresis
requires neither local nor global parity conservation and is
immune to various quasiparticle poisoning effects in realistic
setups [56–58] (see Appendices D and E for details).

The hysteresis is solely due to the nonlinear dynamics of
the two-level system formed by Majorana modes. Therefore
we would expect it to disappear after the topological phase
transition into the trivial superconducting phase. When the
system approaches the transition point from the topological
nontrivial side, the spatial spreading of Majorana modes in-
creases, which gradually annihilates the hysteresis with two
mechanisms. First, the overlapping of two Majorana modes
on the same side of the junction increases, which greatly
enlarges the coupling energy δ. The eigenstates become states
with approximately equal weight of |0〉 and |1〉. Therefore
the state of this two-level system for the current-increasing
and -decreasing process becomes approximately the same,
so the hysteresis gradually disappears. Second, the weight
of the wave function of the Majorana mode at the edges
becomes smaller. Correspondingly the tunneling current of the
Majorana channel Ic2 decreases and so does the hysteresis.

From the classical model described by Eq. (3), the hys-
teresis is similar to the mechanical hysteresis from the dry
friction [59] since Eq. (3a) is actually a friction equation.
That is, the particle has different friction forces when it is
static and moving in the direction of θ . This difference comes
from the history-dependent trajectories [47,60–62] in the s-φ
plane (see Appendix B for details), and then feedback to the
motion in the θ direction through the last term in Eq. (3a). This
feedback effectively induces a difference in the static friction
and dynamic friction for the particle; therefore the particle
would begin and stop moving at different dragging forces.

V. DIRECT COMPARISON WITH EXPERIMENTS

In recent experiments, hysteretic I-V curves have been
reported in a number of overdamped topological Joseph-
son junctions, which are unexpected from the conventional

shunted junction theory [43,44,47]. We argue that these hys-
teresis behaviors possibly come from Majorana modes as we
demonstrated from the QRSJ model. In order to prove our
argument, we quantitatively compare our theoretical results
with experimental results. For this reason, we consider the
resistively and capacitively shunted junction model,

I = h̄Cd2θ

2edt2
+ h̄dθ

2eRdt
+ Ic1 sin θ + Ic2〈iγLγR〉 sin

θ

2
, (13)

and the master equation for the two-level system [35] (see
Appendix E for details),

dρ

dt
= − i

h̄
[H, ρ] + 1

τ2
L2, (14)

where ρ is the density matrix of the two-level system, τ2

is the decoherence time, and L2 = |ψg〉〈ψe| is the standard
Lindblad form where |ψe〉 and |ψg〉 are the two instanta-
neous eigenstates of the two-level system. This combination
of Eqs. (13) and (14) can describe the small but nonzero
capacitance and the decoherence in experiments; however,
it is too complicated for analytical solution. Here we nu-
merically simulate the model where the junction parameters
are taken from the experimental data [43], with resistance
R = 44 � and capacitance C = 34 aF. The Josephson current
components Ic1 = 2 μA and Ic2 = 2.3 μA are extracted from
the switching and retrapping current of the experimental I-V
curve [43]. The decoherence time is taken as τ2 = 105h̄/EM.
It is much larger than other timescales (τs, τθ , τφ), which
is reasonable because the decoherence is suppressed by the
superconducting gap [57,58]. The result of the simulation is
presented in direct comparison with the experimental data as
shown in Fig. 3(d). Our theoretical results agree well with
the experimental data. As far as we know, the experimen-
tal results have no convincing explanation so far, and they
have never been associated with the topological nature of
the junction. Our results give a reasonable explanation for
the experimentally reported “unexpected” hysteresis from the
aspect of Majorana modes.

VI. INTERFERENCE PATTERN
OF A TOPOLOGICAL SQUID

Hysteresis is also expected in a SQUID composed by
two such junctions as shown in Fig. 4(a), where the flux
dependence of critical currents is a routine measurement [45].
The same as for the single topological junction, the I-V curve
of this SQUID should also be hysteretic. Then we expect two
interference patterns of maximum supercurrent, one for the
switching current and the other for the retrapping current. The
switching current should contain contributions from both the
conventional and Majorana channel and is thus given by

Isw(�) = max
θ

[
Ic1 sin θ + I ′

c1 sin

(
θ + 2π�

�0

)

+ Ic2 sin
θ

2
+ I ′

c2 sin

(
θ

2
+ π�

�0

)]
, (15)

where Ic1 and Ic2 represent the supercurrent for the quasi-
particle and Majorana channels in one junction, I ′

c1 and
I ′

c2 represent the supercurrent for the quasiparticle and
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FIG. 4. (a) Schematic setup of a topological SQUID structure
with four Majorana zero modes. (b) The analytical interference
pattern for the switching current (blue solid line) and the retrap-
ping current (orange solid line), and the numerical results for the
interference patterns of switching current (blue circle) and retrapping
current (orange diamond). Josephson currents are taken as I ′

c1/Ic1 =
I ′

c2/Ic2 = 0.4. Other parameters are taken the same as in Fig. 3(c) for
two identical junctions.

Majorana channels in the other junction, � is the magnetic
flux through the SQUID, and �0 = h/2e is the superconduct-
ing flux quantum. Here we require the total parity conserva-
tion of the coupled Majorana modes. This interference pattern,
as shown explicitly in Fig. 4(b), is obviously 2�0-periodic,
which agrees with previous studies [64,65]. On the other hand,
the currents from Majorana channels are almost canceled
when considering the retrapping current, which leads to

Ire(�) ≈ max
θ

[Ic1 sin θ + I ′
c1 sin(θ + 2π�/�0)], (16)

which is �0-periodic as shown in Fig. 4(b). Isw and Ire can
be directly obtained by numerically studying the dynamics
with the QRSJ model, where the Hamiltonian for the coupled
Majorana modes in the SQUID is

H = −iγ1γ4Eu cos(θ/2) − iγ2γ3Ed cos[(θ + 2π�/�0)/2]

+ iδlγ1γ2 + iδrγ3γ4, (17)

with Eu,d and δl,r the corresponding coupling coefficients. The
numerical results are shown in Fig. 4(b) and agree well with
our analytical results.

From both the analytical and numerical results, in a topo-
logical SQUID we can obtain the coexistence of h/e- and
h/2e-periodic interference patterns, which as far as we know
is never seen in any SQUID before. The physical reason
behind this phenomenon is that the Majorana channel con-
tributes only to switching current but negligibly to retrapping
current. This unique interference phenomenon, if experimen-
tally verified, will be evidence for the existence of Majorana
modes.

VII. CONCLUSION

In summary, we propose that the Landau-Zener effect of
the two-level system in a topological Josephson junction can
lead to hysteresis in the I-V characteristics. We establish
a quantum resistively shunted junction model to study the
problem. We demonstrate the nonlinear quantum oscillation
in the two-level system of the junction, with both numer-
ical simulation and analytical methods, and show that the

hysteretic I-V curves naturally follows from it. We compare
our theoretical results with existing experimental results and
find them quantitatively in agreement. We predict the coexis-
tence of h/e-periodic and h/2e-periodic interference patterns
which are subjected to further experimental verifications.
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APPENDIX A: JOSEPHSON HAMILTONIAN
AND JOSEPHSON CURRENT

Here we present a derivation for the 2π -period Josephson
current Ic1, the 4π -period Josephson current Ic2, and the
Hamiltonian of the two-level system HM. In realistic topo-
logical Josephson junctions, usually there are both topolog-
ical and nontopological segments [64]. For example, in the
topological superconducting nanowire as sketched in Fig. 1,
the wire is topological and the substrate s-wave supercon-
ductor is nontopological. The topological segment carries the
4π -period Josephson current due to Majorana modes while
the nontopological segment carries the 2π -period Josephson
current.

Here we use a phenomenological model to describe a
Josephson junction with both topological and nontopological
segments. It is a hybrid two-layer system with one layer as a
spinless Kitaev chain and the other layer as a trivial s-wave
superconductor.

We first consider the trivial layer which is described by a
simple Hamiltonian as

Hα = −tα
∑

〈i,j〉,α,σ

c
†
i,α,σ cj,α,σ − μα

∑
i,α,σ

c
†
i,α,σ ci,α,σ

+
∑
i,α

(�αeiθα c
†
i,α,↑c

†
i,α,↓ + H.c.), (A1)

where α = L, R represents the left and right sides of the
wire, cα,j,σ is the electron annihilation operator on the site j

and spin σ =↑,↓, �α is the superconductor gap, θα is the
superconducting phase, tα is the nearest-neighbor hopping,
and μα is the chemical potential. Here for simplicity we take
identical parameters for the left and right segments, except for
the superconducting phase θα which must be different in the
presence of a Josephson current. The two superconductors are
connected with a tunneling Hamiltonian,

HT =
∑

σ

(T c
†
L,σ cR,σ + H.c.), (A2)
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where c
†
L,σ is the electron creation operator at the boundary

of the left superconductor nearby the junction, and T is
the tunneling strength which is determined by the tunneling
barrier of the junction. In a realistic junction, this can be con-
trolled by an applied gate voltage. The Josephson current can
be calculated with the standard Green’s function technique,
where the current is expressed as

I = 4eT 2Im

⎡
⎣∑

k,p,iω

�†(k, iω)�(p, iω)

⎤
⎦ = Ic1 sin θ, (A3)

where θ = θL − θR is the Josephson phase, � is the off-
diagonal Matsubara Green’s function, and Ic1 is given by the
contour integral as

Ic1 ≈ e�T 2

2(1 − μ2/4t2)h̄t2
. (A4)

We note that Ic1 is a square function of T which reflects the
Cooper-pair tunneling. Higher order contributions in the S-
matrix expansion can also be included; however, they should
be negligible for the tunneling regime where the tunneling T

is small compared with the hopping t .
Now we consider the topological layer, which can be

studied with a spinless p-wave superconducting Hamiltonian
proposed by Kitaev [3],

Hα =
Nα∑
j=1

[−tαc
†
α,j cα,j+1 + �αeiθα cα,j cα,j+1 + H.c.]

−μα

Nα∑
j=1

c
†
α,j cα,j . (A5)

In this model, the electron operators can be transformed
to Majorana operators γα,j,A = eiθα/2cα,j + e−iθα/2c

†
α,j and

γα,j,B = −ieiθα/2cα,j + ie−iθα/2c
†
α,j . Then the Hamiltonian

can be rewritten in this Majorana representation,

Hα = (t + �)

2

N−1∑
j=1

iγα,j,Bγα,j+1,A − (t − �)

2

×
N−1∑
j=1

iγα,j,Aγα,j+1,B − μα

2

N∑
j=1

iγα,j,Aγα,j,B. (A6)

It is well known that this Kitaev model enters the topological
nontrivial phase for the parameter regime of |t | > |μ| and
� = 0, while the Majorana modes γL, γ ′

L, γR, and γ ′
R appear at

the ends of the two segments [3]. Then the low-energy (below
superconducting energy gap �) physics of the two segments
is described by an effective Hamiltonian,

Hδ =
∑

α

iδαγ ′
αγα, (A7)

where δα represents the coupling energy within the left/right
segment, which is exponentially protected by the length of the
wire [21].

The two segments are coupled by the electron tunneling
through the barrier, which could be described by a standard
tunneling Hamiltonian

HT = T c
†
L,NcR,1 + T ∗c†R,1cL,N. (A8)

For low-energy physics, the effective Hamiltonian should only
involve the four Majorana modes. Therefore the tunneling
Hamiltonian should be projected to these four Majorana
modes with a form of [3]

HM = −iEMγLγR cos(θ/2), (A9)

with EM ≈ T/4 the Josephson energy. The combination of
Eqs. (A7) and (A9) gives the low-energy effective Hamilto-
nian of the Majorana modes in the Josephson junction, which
provides a typical two-level system. Let us look at it in more
detail by defining the fermionic operators f1 = (γL + iγR)/2
and f2 = (γ ′

R + iγ ′
L)/2 with the four Majorana modes. Then

the low-energy Hamiltonian can be transformed back to the
fermionic representation as

H = HM + Hδ

= −EM cos(θ/2)(f †
1 f1 − f1f

†
1 )

+ δL(f2 − f
†
2 )(f1 + f

†
1 ) + δR(f2 + f

†
2 )(f1 − f

†
1 ).

(A10)

There are natural basis states for this Hamiltonian: |00〉,
f

†
1 f

†
2 |00〉, f

†
2 |00〉, and f

†
1 |00〉, with |00〉 the vacuum state for

f
†
1 and f

†
2 . With these basis states, the total Hamiltonian can

be rewritten in the matrix form as

H =

⎛
⎜⎜⎝

EM cos(θ/2) δL + δR 0 0
δL + δR −EM cos(θ/2) 0 0

0 0 EM cos(θ/2) −δL + δR

0 0 −δL + δR −EM cos(θ/2)

⎞
⎟⎟⎠. (A11)

This is a block-diagonal matrix, with the left-up and right-down blocks corresponding to the even and odd total parities,
respectively. Without losing generality, we take the even total parity and arrive at the matrix shown in Eq. (1) of the main
text with δ = δL + δR.

Now let us consider the Josephson current through the Majorana channel. The electron number operator on the right-hand
side of the junction is NR =∑j c

†
R,j cR,j , and its time derivative gives the tunneling current,

I (t ) = −e

〈
dNR

dt

〉
= −e〈ψ (t )| i

h̄
[H,NR]|ψ (t )〉 = ie

h̄
〈ψ (t )|−T c

†
L,NcR,1 + T ∗c†R,1cL,N)|ψ (t )〉, (A12)
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where |ψ (t )〉 is the ground state wave function after includ-
ing the tunneling Hamiltonian. The single electron tunneling
through Majorana modes is obtained by the zero-order degen-
erate perturbation as

I = Ic2 sin(θ/2)〈ψ (t )|iγLγR|ψ (t )〉, (A13)

with the maximum value

Ic2 ≈ eEM

h̄
= eT

4h̄
. (A14)

Here we notice that Ic2 is linear in T which reflects the phase-
coherent single-electron tunneling. Comparing with Eq. (A4),
we obtain the ratio between the amplitude of the 2π -period
supercurrent and the 4π -period supercurrent

Ic1

Ic2
≈ 2�T

(1 − μ2/4t2)t2
. (A15)

We notice that it is a linear function of the tunneling strength
T . That is, the 4π -period supercurrent contributed by Majo-
rana modes dominates the transport for junctions with high
tunneling barriers, while the 2π -period supercurrent con-
tributed by quasiparticles dominates the transport for junc-
tions with high transparency.

Finally we give a derivation for the switch current shown
in Eq. (11). It is the maximum current when s = 1 where θ

is a free variable. We first calculate the Josephson phase for
achieving the maximum current, which is denoted as θc. It
is obtained by taking the phase derivative of the Josephson
current

d

dθc

(
Ic1 sin θc + Ic2 sin

θc

2

)
= 0, (A16)

which gives

ζ ≡ cos
θc

2
=
√

I 2
r + 1/2 − Ir , (A17)

with Ir = Ic1/8Ic2 . We plug it back to the expression for the
Josephson current and obtain

Isw = Ic1 sin θc + Ic2 sin
θc

2
=
√

1 − ζ 2(2Ic1ζ + Ic2), (A18)

which gives Eq. (11).

APPENDIX B: CASTING THE TWO-LEVEL SYSTEM
INTO A CLASSICAL HAMILTONIAN

Now we demonstrate how to cast the Schrödinger equation
for the two-level system

ih̄
d

dt

(
ψ0

ψ1

)
=
(

EM cos θ
2 δ

δ −EM cos θ
2

)(
ψ0

ψ1

)
(B1)

into classical equations, and form a classical dynamical sys-
tem by combining with the equation for the Josephson phase
from resistively shunted junction model. The wave function
of the two-level system is (ψ0, ψ1)T ≡ (|ψ0|eiφ0 , |ψ1|eiφ1 )T

which contains two complex numbers. However, it obeys two
constraints. First, it must be normalized |ψ0|2 + |ψ1|2 = 1;
second, the overall phase of the wave function is decou-
pled from the dynamics of the two-level system. With these
constraints, the wave function can actually be described by

two real dynamical variables. One convenient choice is the
relative amplitude s ≡ |ψ1|2 − |ψ0|2 and the relative phase
φ = φ1 − φ0. Now we derive the equations for these two real
variables out of the Schrödinger equation. For this purpose,
we explicitly write down the amplitude and the phase of the
wave function using s and φ. The amplitude of the wave
function is determined by s with |ψ0| = √

(1 − s)/2 and
|ψ1| = √

(1 + s)/2, while the phase of the wave function is
determined by the relative phase φ and the total phase φT =
φ1 + φ0 with φ0 = (φT − φ)/2 and φ1 = (φT + φ)/2. Then
we can transform the Schrödinger equation into the form

ih̄
d

dt

⎛
⎝
√

1−s
2 e−iφ/2√
1+s

2 eiφ/2

⎞
⎠eiφT/2

= 1

2

(
EM cos θ

2 δ

δ −EM cos θ
2

)⎛⎝
√

1−s
2 e−iφ/2√
1+s

2 eiφ/2

⎞
⎠eiφT/2.

(B2)

We note that we have added a factor of 1/2 in front of
the Hamiltonian to simplify the formula in the following
derivation. Therefore both δ and Em are rescaled to be double
their original value. We reach two complex equations for the
real variables s, φ, and φT. The first equation is

ih̄

(
−
√

1

8(1 − s)
ṡ − i

2

√
1 − s

2
φ̇ + i

2

√
1 − s

2
φ̇T

)

= EM

2
cos

θ

2

√
1 − s

2
+ δ

2

√
1 + s

2
eiφ. (B3)

The imaginary part of the equation gives

ṡ = − δ

h̄

√
1 − s2 sin φ, (B4)

which is Eq. (3b), while the real part of the equation gives

φ̇ − φ̇T = EM

h̄
cos θ/2 + δ

√
1 + s

h̄
√

1 − s
cos φ. (B5)

Checking the second equation we have

φ̇ + φ̇T = EM

h̄
cos θ/2 − δ

√
1 − s

h̄
√

1 + s
cos φ. (B6)

Combining Eqs. (B5) and (B6), we obtain Eq. (3c),

φ̇ = EM

h̄
cos θ/2 + δs

h̄
√

1 − s2
cos φ. (B7)

Rearranging the formulas we arrive at Eq. (3). We have two
equations for the two-level system,

ds(t )

dt
= − δ

h̄

√
1 − s2(t ) sin φ(t ) = − 1

τs

√
1 − s2(t ) sin φ(t ),

(B8)

and
dφ(t )

dt
= EM

h̄
cos

θ (t )

2
+ s(t )δ

h̄
√

1 − s2(t )
cos φ(t )

= 1

τφ

cos
θ (t )

2
+ s(t ) cos φ(t )

τs

√
1 − s2(t )

, (B9)
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FIG. 5. Typical trajectories of the particle in the phase space for
the injected current of (a) I/Ic1 = 0.5 below the retrapping current,
(b) I/Ic1 = 2.2 between the retrapping current and the switching cur-
rent, and (c) I/Ic1 = 4 above the switching current. Other parameters
are taken the same as in Fig. 2(a).

and one equation for the Josephson phase,

dθ (t )

dt
= 2eR

h̄

[
I − Ic1 sin θ (t ) − Ic2s(t ) sin

θ (t )

2

]

= 1

τθ

[
1 − I1 sin θ (t ) − I2s(t ) sin

θ (t )

2

]
, (B10)

where τs = h̄/δ, τφ = h̄/EM, τθ = h̄/2eRI , and we redefine
two dimensionless parameters I1 ≡ Ic1/I and I2 ≡ Ic2/I for
mathematical simplicity. We see that φT is decoupled from
these three equations.

Within this pure classical model, we first analyze the
dynamical stability of the junction with the injected current I

as the control parameter. As shown in Fig. 5, we numerically
explore three different injected currents. For a small current
I < Ic1, the trajectories for all initial conditions are closed,
demonstrating circles in the s-φ plane as seen in Fig. 5(a).
For an intermediate current I = 2.2Ic1, there are two different
types of trajectories, depending on the initial conditions. The
trajectory for large initial s is closed while the trajectory for
small initial s is not closed, falling to s ≈ 0 instead. For a
large current I = 4Ic1, all trajectories are falling to s ≈ 0.
These results demonstrate that the dynamics for a regime
of injected current depends on the initial value of s. This
history dependence suggests the effect of nonlinearity in the
dynamical evolution [47,60–62] and the falling of |s| indicates
the existence of a damping mechanism. In the following, we
adopt the method of averaging to analytically study Eq. (3).

APPENDIX C: METHOD OF AVERAGING

After casting the QRSJ model into a purely classical
model, we obtain a set of classical nonlinear equations. At first
sight, the new classical equations for s and φ are no simpler
than the Schrödinger equation in the original QRSJ model.
However, the advantage of this pure classical formalism is
the availability of sophisticated mathematical approaches that
have been developed to study nonlinear classical dynamics.
From Eq. (3) we have extracted three typical timescales which
are different by orders with τθ � τφ � τs . For nonlinear
dynamical systems with multiple timescales, the method of
averaging is a powerful mathematical tool [53,63]. It was
initially developed by Krylov and Bogoliubov to tackle non-
linear oscillation problems such as the study of the Einstein
equation for Mercury [66], and from then on the method
has been found useful in many physical systems involving

oscillations [53,63]. The essence of the method of averaging
is to categorize the dynamical variables as “fast” variables
and “slow” variables depending on their typical timescales
of variation. Then the slow variables are regarded as almost
unchanged within the timescale of the fast variables, and the
time dependence of the fast variables can be solved with
the slow variables as fixed parameters. After obtaining this
time dependence, the fast variables are averaged over time
and the averaged values are plugged back into the dynamical
equations for the slow variables. Finally, the time dependence
of the slow variables can be solved with these averaged values
of fast variables as external parameters.

The method of averaging allows us to study the dynamics
of fast variables and slow variables one by one, which is
much easier than investigating the full complicated coupled
nonlinear equations. In the following analysis, we can treat θ

as the fast variable and (s, φ) as the slow variables. We will
see that within τθ , the zeroth-order averaging which uses a
time-independent s to replace the function s(t ) is enough to
give the high-frequency oscillation shown in Fig. 2(a). The
first-order averaging, where a time-independent ṡ is also taken
into account within τθ , is capable of reproducing the damping
feature.

1. Time averaging over fast variable

As seen in Eq. (B9), the fast variable θ enters the dynamics
of the slow variables through the function cos θ/2. Now, we
try to calculate the time average for this function. The whole
time of dynamics can be cut into fractions of the timescale
for the fast variable τθ . The slow variable s(t ) should be
almost unchanged within each fraction τθ . As a zeroth-order
averaging, s(t ) is treated as time independent in the equation
for θ . Therefore Eq. (B10) becomes

dθ (t )

dt
= 1

τθ

[
1 − I1 sin θ (t ) − I2s sin

θ (t )

2

]
, (C1)

which can be solved alone without considering Eqs. (B8) and
(B9) at the moment. The time evolution of θ can be obtained
by solving only one differential equation, and afterwards we
can make time averaging over the cos θ/2 which is defined by

cos
θ

2
≡ 1

Tθ

∫ Tθ

0
dt cos

θ (t )

2
, (C2)

where Tθ is the time for θ to increase 4π which is at the order
of τθ . Obviously this is a function of the parameter s. Here we
take a simple approach to evaluate the average without solving
Eq. (C1) explicitly. We replace the integration over time with
an integration over phase θ ,

cos
θ

2
=
∫ 4π

0
dθ

θ̇
cos θ

2∫ 4π

0
dθ

θ̇

=
∫ 4π

0 dθ
cos θ

2

1−I1 sin θ−I2s sin θ
2∫ 4π

0 dθ 1
1−I1 sin θ−I2s sin θ

2

, (C3)

where the solution of θ (t ) from Eq. (C1) is used implicitly to
accomplish the transformation. We note that the time average
cos θ

2 is nonzero because θ is not linear in time.
This expression for the time average cos θ

2 only contains s

and therefore corresponds to the zeroth-order averaging. Now
we go to first-order averaging by including the influence of ṡ.
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Let us derive this term by taking time derivative to Eq. (B10),

d2θ (t )

dt2
= 1

τ 2
θ

[
−I1 cos θ (t ) − 1

2
I2s(t ) cos

θ (t )

2

]

×
[

1 − I1 sin θ (t ) − I2s(t ) sin
θ (t )

2

]

− 1

τθ

I2ṡ(t ) sin
θ (t )

2
. (C4)

Within τθ , since s(t ) and ṡ(t ) vary slowly, we consider both of
them as time independent and mathematically replace the dy-
namical variables with static parameters s(t ) ≈ s and ṡ(t ) ≈
ṡ, which is the first-order approximation as ṡ is now taken
into account. We note that the time-dependent velocity ṡ(t )
reverses sign under the time-reversal operation t → −t , while
the parameter ṡ stays the same. We thus have a plus/minus
ambiguity in the replacement ṡ(t ) ≈ ±ṡ. Now we arrive at a
dynamical equation for θ as

τ 2
θ

d2θ (t )

dt2
=
[
−I1 cos θ (t ) − 1

2
I2s cos

θ (t )

2

]

×
[

1 − I1 sin θ (t ) − I2s sin
θ (t )

2

]

± I2τθ ṡ sin
θ (t )

2

= −∂V (s, ṡ, θ )

∂θ
, (C5)

with the potential function

V (s, ṡ, θ ) = −1

2

(
1 − I1 sin θ ± I2s sin

θ

2

)2

± 2I2τθ ṡ cos
θ

2
.

(C6)

This resembles a Newtonian equation for a particle with
mass τ 2

θ moving under a potential V , and therefore obeys a
conservation law within each τθ ,

E = 1
2τ 2

θ θ̇2 + V (s, ṡ, θ ), (C7)

which gives a solution for θ̇ as

θ̇ = ± 1

τθ

√
2[E − V (s, ṡ, θ )]

= ± 1

τθ

√
2E +

(
1 − I1 sin θ − I2s sin

θ

2

)2

± 4I2τθ ṡ cos
θ

2
.

(C8)

This formula is the first-order averaging and should recover
the formula for zero-order approximation [Eq. (C1)] when
ṡ = 0. This constraint requires the plus sign in front of the
square root at the right-hand side of Eq. (C8) and the energy
to be E = 0, which leads to

θ̇ = 1

τθ

√(
1 − I1 sin θ − I2s sin

θ

2

)2

± 4I2τθ ṡ cos
θ

2
.

(C9)

With this formula for θ̇ , we can analytically calculate the
time average by transforming the integration over time to the

integration over θ ,

cos
θ

2
=
∫ 4π

0
dθ

θ̇
cos θ

2∫ 4π

0
dθ

θ̇

=
∫ 4π

0 dθ
cos θ

2√
(1−I1 sin θ−I2s sin θ

2 )2±4I2τθ ṡ cos θ
2∫ 4π

0 dθ 1√
(1−I1 sin θ−I2s sin θ

2 )2±4I2τθ ṡ cos θ
2

. (C10)

These two integral expressions Eqs. (C3) and (C10) give
the time average over the fast variable up to zeroth-order and
first-order averaging. Certainly we can go further to include
the influence of s̈, etc. However, we find that the s and ṡ de-
pendence is enough to qualitatively understand the dynamics.
We will use these two integral expressions to obtain an explicit
function and plug it back into the dynamical equations for the
slow variables.

2. The zeroth-order averaging and the classical Hamiltonian

Let us first examine the zeroth-order averaging where the
time average is given by Eq. (C3). Now we calculate the
integrals by taking Taylor expansions,

1

1 − I1 sin θ − I2s sin θ
2

= 1 +
(

I1 sin θ + I2s sin
θ

2

)
+
(

I1 sin θ + I2s sin
θ

2

)2

+
(

I1 sin θ + I2s sin
θ

2

)3

+ · · · , (C11)

which gives the lowest order result for the denominator of
Eq. (C3),∫ 4π

0
dθ

1

1 − I1 sin θ − I2s sin θ
2

≈
∫ 4π

0
dθ = 4π. (C12)

Similarly we have the numerator of Eq. (C3) as∫ 4π

0
dθ

cos θ
2

1 − I1 sin θ − I2s sin θ
2

=
∫ 4π

0
dθ cos

θ

2

[
1 +

(
I1 sin θ + I2s sin

θ

2

)

+
(

I1 sin θ + I2s sin
θ

2

)2

+ · · ·
]

≈ 2I1I2s

∫ 4π

0
dθ cos

θ

2
sin

θ

2
sin θ

= 2πI1I2s. (C13)

For both integrations, we take the lowest order nonzero term
in the expansion series. Putting the results for numerator and
denominator together, we obtain

cos
θ

2
≈ I1I2

2
s ≡ αs, (C14)

where for simplicity we define a parameter α = I1I2/2.
Now we come to the essence of the method of averaging.

We replace cos θ
2 in Eq. (B9) with the time-averaged function

134515-10



HYSTERESIS FROM NONLINEAR DYNAMICS OF … PHYSICAL REVIEW B 98, 134515 (2018)

cos θ
2 , and obtain the equations solely for s and φ as

ds

dt
= − 1

τs

√
1 − s2 sin φ,

dφ

dt
= αs

τφ

+ s cos φ

τs

√
1 − s2

. (C15)

With θ averaged out, obviously these two equations are self-
consistent equations. In fact they are the canonical equations
of a classical Hamiltonian,

Hc = − 1

2τφ

αs2 + 1

τs

√
1 − s2 cos φ, (C16)

where s and φ are the extended coordinate and the canonical
momentum. This classical Hamiltonian is Eq. (7) which rep-
resents a classical integrable system, with the evolution of the
phase-space motions of the Hamiltonian shown in Fig. 2(b).

Let us examine basic features of this classical Hamiltonian.
We first study the fixed points (sc, φc ), which are obtained by
taking the stationary condition of the Hamilton equations,

ds

dt

∣∣∣∣
sc,φc

= − 1

τs

√
1 − s2

c sin φc = 0,

dφ

dt

∣∣∣∣
sc,φc

= 1

τφ

EMαsc + sc cos φc

τs

√
1 − s2

c

= 0. (C17)

Considering the fact that δ < EMα, there are three sets of fixed
points,

(sc, φc) =

⎧⎪⎨
⎪⎩

(0, 0),
(0, ±π ),(±

√
1 − τ 2

φ/(τsα)2, ±π
)
.

(C18)

The first two sets of fixed points are marked as P1, P2 in
Fig. 2(b). Then we check the classification of these fixed
points, which is described by the Jacobian matrix at the fixed
points,

J (sc, φc)

=
(

∂ṡ
∂s

∂ṡ
∂φ

∂φ̇

∂s

∂φ̇

∂φ

)
s=sc,φ=φc

=
⎛
⎝ sc sin φc

τs

√
1−s2

c

− 1
τs

√
1 − s2

c cos φc

α
τφ

+ cos φc

τs

√
1−s2

c

+ s2 cos φc

τs (1−s2
c )3/2 − sc sin φc

τs

√
1−s2

c

⎞
⎠.

(C19)

For the fixed point P1 at the position (sc, φc ) = (0, 0), we have
the Jacobian matrix of

J (0, 0) =
(

0 − 1
τs

α
τφ

+ 1
τs

0

)
. (C20)

This stability matrix has two imaginary eigenvalues λ1,2 =
±i
√

(ατs + τφ)/τ 2
s τφ , signifying that P1 is an elliptic fixed

point. Similarly, we calculate eigenvalues of the Jacobian ma-
trices at the other two fixed points, and find that P2 is a hyper-

bolic fixed point, while (sc, φc) = (±
√

1 − τ 2
φ/(τsα)2,±π )

are elliptic fixed points. These analytical results agree with

the information we see on the phase-space portrait shown in
Fig. 2(b).

In classical dynamics, the phase-space trajectory which
connects the hyperbolic fixed points is called the separatrix.
In this classical Hamiltonian Eq. (7), a separatrix connects the
fixed points P2, as shown in Fig. 2(b). The separatrix divides
the phase space into distinct regions, where the evolution of
the phase-space motion orbits around different elliptic fixed
points. In the action-angle formalization [55], the phase-space
area enclosed by an orbit defines the action

I (Hc) = 1

2π

∫
s(Hc, φ)dφ, (C21)

where s is a function of φ and the energy Hc by reversing
Eq. (7). This action is an adiabatic invariant and its derivative
on energy gives the period of oscillation

T = dI (Hc)

dHc
. (C22)

Since the hyperbolic fixed points locate at energy saddle
points, the separatrix has the diverging energy derivative.
Therefore, we would expect a slowdown of the oscillation if
the motion is going near the separatrix, which is clearly seen
in Fig. 2(a).

The classical Hamiltonian Eq. (7) obtained by the method
of averaging captures a number of features of the simula-
tion results. The phase space of the classical Hamiltonian is
divided into two distinct areas by the separatrix. The orbits
outside the separatrix only have small oscillations in s with its
value remaining positive or negative, while the orbits inside
the separatrix can oscillate between negative minimums and
positive maximums. These two distinct types of orbits agree
with the dynamics of the s shown in Fig. 2(a), with the
oscillation first small and only at the negative value, and later
becoming large and between negative and positive values.
Interestingly, right at the transition between these two dis-
tinct oscillating behaviors, we observe obvious enlargement
of the period in Fig. 2(a). This indicates that the system
is walking through the separatrix which has the divergent
period. Comparing Figs. 2(a) and 2(b), it is reasonable to
argue that the oscillation behaviors are well described by
the effective classical Hamiltonian, but the damping of the
oscillating amplitude cannot be understood yet.

One direct method to view the resemblance between the
classical Hamiltonian and the original system is to draw the
Poincaré map for the evolution of the motion obtained by
numerically solving the QRSJ model. The Poincaré map is
the intersections of a chosen surface in the phase space, called
as the Poincaré surface of section, and the motion trajectories
in the whole phase space [55]. This approach replaces the
integration of equations with the study of mappings, and has
shown much power in nonlinear dynamics. It is particularly
advantageous in understanding the qualitative features of the
system. In our present case, we naturally choose the s-φ plane
with θ = 0 as the Poincaré surface of the section since we
hope to compare it with the two-dimensional phase-space
portrait of the effective classical Hamiltonian. The obtained
Poincaré map is shown in Fig. 2(c). We see that the structure
of the Poincaré map resembles the phase-space portrait of the
effective Hamiltonian. In particular, we see circling features
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FIG. 6. The time evolution of the wave function simulated for
the nonlinear Schrödinger Eq. (5), with initial conditions of (a)
ψ0 = √

0.9, ψ1 = √
0.1, and (b) ψ0 = √

0.8, ψ1 = √
0.2. Other pa-

rameters are taken the same as in Fig. 2.

in the Poincaré map, which looks similar to the elliptic orbits
around the fixed point P1 for the classical Hamiltonian. How-
ever, if examined more carefully, the points actually spiral to
the fixed point P1. This is consistent with the large number
of points around P1, which indicate the convergence of the
trajectories and the breaking down of the phase-space volume
conservation.

Finally, it is inspiring to directly look at the Schrödinger
equation by replacing cos θ

2 with the averaging cos θ
2 in Eq. (1).

We can obtain Eq. (5), which is a nonlinear Schrödinger
equation where other nontrivial LZ phenomena have been
discussed before [51,52]. From this equation, we see that the
coupling between the two-level system and the Josephson
phase naturally induces the nonlinearity to the quantum dy-
namics, which is the origin of such a rich and unusual dynam-
ics for the wave function of the two-level system as shown
in Fig. 2(a). The dynamics of this nonlinear Schrödinger
equation is initial-value dependent, as expected from the
equivalent classical Hamiltonian. We numerically simulate the
time evolution of the wave function with two typical initial
values, and show the results in Fig. 6. We find that the wave
function exhibits oscillation patterns similar to the oscillations
at different time ranges in Fig. 2(a). However, the damping of
the oscillating amplitude is missing, which will be explained
in the following section.

3. The first-order averaging and the damped
harmonic oscillator

The classical Hamiltonian Eq. (7) helps us to understand
the quantum oscillation of the two-level system. However,
it cannot describe the damping of the oscillation as shown
in Fig. 2(a). From the Poincaré map shown in Fig. 2(c), we
know that the damping is towards the elliptic fixed point P1.
The natural guess is that it comes from an extra friction force
which is proportional to the velocity of the extended coor-
dinate ṡ. This could be obtained from the expression of the
first-order averaging Eq. (C10). Similarly to the calculation of
the zeroth-order averaging, the lowest-order Taylor expansion
for the integrated function gives the result

cos
θ

2
= αs + βṡ + O(s2, ṡ2), (C23)

where βṡ represents the small contribution from the first-order
averaging with β = ±I2τθ . If we plug this averaging result
back into Eq. (3c), we will find that the second term is
linear in ṡ, thus adding a velocity-dependent force beyond the
classical Hamiltonian Eq. (7). For classical mechanical sys-
tems where forces only depend on coordinates, the Liouville
theorem guarantees the phase-space volume conservation,
which guarantees undamped oscillations. On the other hand,
the existence of the velocity-dependent force stemming from
the βṡ term in Eq. (C23) breaks the Liouville theorem and the
phase-space volume conservation. This is why the Poincaré
map in Fig. 2(c) shows a phase-space volume compression,
leading all trajectories toward the elliptic fixed point P1.

Now we explicitly show that this ṡ-dependent term induces
damping to the oscillation. For this purpose, we need to
decouple equations for s and φ. Taking time derivative on both
sides of Eq. (3b), we obtain

s̈ = − δ

h̄

[
− s sin φ√

1 − s2
ṡ +

√
1 − s2 cos φφ̇

]
. (C24)

Then we put Eqs. (3b) and (3c) into the right side of this
equation to eliminate the ṡ and φ̇ and arrive at

s̈ = − δ

h̄

[
− s sin φ√

1 − s2

(
− δ

h̄

√
1 − s2 sin φ

)

+
√

1 − s2 cos φ

(
EM

h̄
cos

θ

2
+ sδ

h̄
√

1 − s2
cos φ

)]

= − δ

h̄

[
δ

h̄
s + EM

h̄
cos

θ

2

√
1 − s2 cos φ

]
. (C25)

To eliminate φ from the right side of the equation, we notice
that Eq. (3b) can be transformed with trigonometric identity
as

ṡ2 = δ2

h̄2 [(1 − s2) − (
√

1 − s2 cos φ)2], (C26)

which can be used to replace the φ-dependent term and we
obtain

s̈ = − 1

τ 2
s

s ± 1

τsτφ

cos
θ

2

√
1 − s2 − (τs ṡ)2, (C27)

where the ambiguity of the plus/minus sign comes from taking
the square root. Now we plug the averaging result Eq. (C23)
into the equation, and obtain

s̈ +
[

1

τ 2
s

+ 1

τsτφ

α
√

1 − s2 − (τs ṡ)2

]
s

≈ − I2τθ

τsτφ

√
1 − s2 − (τs ṡ )2ṡ, (C28)

where the correct plus/minus signs are chosen for obtaining
consistent results with numerical simulations. This second-
order differential equation represents a damped oscillator,
where the angular frequency and the damping ratio depend
on s. The damping comes from the right side of the equation
which is a friction term proportional to ṡ.

By considering the regime of s, τs ṡ � 1, we have the
approximation

√
1 − s2 − (τs ṡ)2 ≈ 1. Then Eq. (C28) can be
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FIG. 7. Comparison between numerical results and the analytical solutions shown in Eq. (C33) from the equations of damped harmonic
oscillators. (a) The numerical results with the same parameters as in Fig. 2(a) but taken from the time range of t = [3830, 6330] in the
original figure. The origin of time is shifted to zero for comparison. (b) The numerical results with the same parameters as in (a) except for
I = 6Ic1 = 3Ic2, with data taken from the time range [250, 10 250]. (c) The numerical results with the same parameters as in (a) except for
R = 20h̄/(2e2), with data taken from the time range [7000, 12 000]. (d) The numerical results with the same parameters as in (a) except
for δ = 0.04EM, with data taken from the time range [650,1900]. (e)–(h) The analytic solution shown in Eq. (C33) with parameters taken the
same as in (a)–(d), respectively. The time origins in each figure have been shifted accordingly to make the initial value comparable to numerical
results.

further simplified to

s̈ +
(

1

τ 2
s

+ 1

τsτφ

α

)
s + I2τθ

τsτφ

ṡ = 0, (C29)

which has exactly the same form as a classical damped
harmonic oscillator. It can be rewritten to the standard form
of

s̈ + 2ξω0ṡ + ω2
0s = 0, (C30)

with an angular frequency of

ω2
0 = 1

τ 2
s

+ α

τsτφ

, (C31)

and a damping ratio of

ξ = I2τθ

2τφ

√
1 + ατs/τφ

. (C32)

This damped harmonic oscillator is underdamped with a small
damping ratio ξ � 1 due to τθ � τφ . Finally we arrive at the
solution for s around the elliptic fixed point as

s(t ) = e−t/τd cos(t/τ̃s ), (C33)

with

τd = 1

ξω0
= 2τsτφ

I2τθ

,

τ̃s = 1

ω0

√
1 − ξ 2

≈ 1

ω0
= τs√

1 + ατs/τφ

, (C34)

where we used ξ � 1 in the second formula. These two
timescales characterize the slow damping and the fast oscil-
lation of s. The new timescale τd is the largest timescale
which can be constructed from the three basic timescales
of the system. We compare the analytical solution given by
Eq. (C33) with the numerical results directly from Eq. (3) for
several different sets of parameters, as shown in Fig. 7. We
find quantitative agreement between them when s approaches
zero.

From the above, we find that the quantum dynamics of
the two-level system is dual to the classical dynamics of
a damped harmonic oscillator after adopting the method of
averaging. This helps us to successfully obtain an analytical
solution of the quantum dynamics of the two-level system
within the separatrix of the effective Hamiltonian. This dual
relation gives insight in studying quantum two-level systems
when nonlinearity is introduced.

4. Anharmonic damped oscillator

The solution of the damped harmonic oscillator obtained
in Eq. (C33) only becomes accurate when s approaches zero.
Here we show an improved approximation which works at
larger s. Based on the numerical results and the analytical
solution Eq. (C33), we know that the solution is a form of
damped oscillation. Therefore, we propose an ansatz solution
of the form

s = A(t ) cos(t/τ ′
s ), (C35)
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where A(t ) is the slow damping amplitude and τ ′
s is the

oscillating period. With this ansatz solution, we can simplify
the square root term in Eq. (C28) to√

1 − s2 − (τs ṡ)2

=
√

1 − [A cos(t/τ ′
s )]2 − τ 2

s

[
Ȧ cos(t/τ ′

s ) − A

τ ′
s

sin(t/τ ′
s )

]2

≈
√

1 − A2, (C36)

where in the second line we use the fact that Ȧ/τs � 1 and
τs/τ

′
s ∼ 1 within the separatrix. Now Eq. (C28) is simplified

to an anharmonic damped oscillator,

s̈ +
(

1

τ 2
s

+ 1

τsτφ

α
√

1 − A2

)
s ≈ −

(
I2τθ

τsτφ

√
1 − A2

)
ṡ.

(C37)

This equation is more precise than the simple damped har-
monic oscillator Eq. (C30) since the square root is treated with
a better approximation than crudely taken as unity. Now we
try to obtain the analytical solution of this damped anharmonic
oscillator with appropriate approximation. We first calculate
τ ′
s by treating A as a constant within τ ′

s and ignore the friction
term. These two approximations are valid because A varies
much slower than τ ′

s and the friction is ignorable in the
timescale of τ ′

s . Then we can obtain a harmonic oscillating
equation,

s̈ +
(

1

τ 2
s

+ 1

τsτφ

α
√

1 − A2

)
s ≈ 0, (C38)

which gives the oscillating period as

τ ′
s = τs√

1 + τs

τφ
α
√

1 − A2
. (C39)

Comparing with the oscillating period τ̃s obtained from the
damped harmonic oscillator approximation, the new oscillat-
ing period τ ′

s depends on the oscillating amplitude A. When
A increases, the oscillating period τ ′

s becomes larger. This
agrees with the numerical results shown in Fig. 2(a), and also
agrees with the analysis based on the classical Hamiltonian
which states that the oscillating frequency becomes larger
when approaching the separatrix.

Now we calculate the slow damping amplitude A(t ) by
plugging the ansatz solution back into the equation,

Ä cos(t/τ ′
s ) − 2Ȧ

τ ′
s

sin(t/τ ′
s )

= −
(

I2τθ

τsτφ

√
1 − A2

)[
Ȧ cos(t/τ ′

s ) − A

τ ′
s

sin(t/τ ′
s )

]
. (C40)

Noticing the fact that Ä(τ ′
s )2 � Ȧτ ′

s � A for slowly varying
A, we obtain the equation for A as

dA

dt
≈ −

(
I2τθ

2τsτφ

√
1 − A2

)
A = − 1

τd

A
√

1 − A2, (C41)

which has the solution

A(t ) = 2e−t/τd

1 + e−2t/τd
. (C42)

Comparing with the result of the damped harmonic oscillator
approximation in the previous section, this damping function
is more flat when s becomes large.

Putting the expression for A(t ) and τ ′
s together, we finally

arrive at the analytical solution for s(t ) inside the separatrix
of the phase space,

s(t ) = 2e−t/τd

1 + e−2t/τd
cos(t/τ ′

s ). (C43)

Clearly this solution reduces back to Eq. (C33) when s

approaches zero. However, it provides a better result for
the larger-s regime which captures two more details of the
damped oscillation shown in Fig. 2(a). First, the oscillating
period is larger when s is larger, which also agrees with our
analysis based on the action-angle formalism. Second, the
damping of the oscillating amplitude is slower at larger s,
which is different from the pure exponential decay which has
a time-independent decay rate. We show the comparison of
the numerical results with the analytical result Eq. (C43) in
Fig. 8, and find better agreement with numerical results than
the simple damped harmonic oscillator approximation.

5. Krylov-Bogoliubov method of averaging

Finally, we take an alternative method, the Krylov-
Bogoliubov averaging method [53,66], to calculate the damp-
ing function A(t ), and show identical results to those from the
damped anharmonic oscillator approximation. We examine
Eq. (C28) again and make it dimensionless as

ds2

dτ 2
+ s = − τs

τφ

(
αs + β

τs

ds

dτ

)√
1 − s2 −

(
ds

dτ

)2

, (C44)

where we define a dimensionless time as τ = t/τs . Setting the
right-hand side of the equation to be zero we obtain

ds2

dτ 2
+ s = 0. (C45)

This equation has the general solution of the form

s = A′ cos(τ + B ), ṡ = −A′ sin(τ + B ). (C46)

Now we recover the right-hand side of the equation, and
take an ansatz solution with the same trigonometric functions
where A′ and B ′ become time dependent,

s = A′(τ ) cos[τ + B ′(τ )] (C47a)

ṡ = −A′(τ ) sin[τ + B ′(τ )]. (C47b)

In the following, we solve Eq. (C44) with these ansatz func-
tions. We first take the time derivative to Eq. (C47a) and obtain

ṡ = −A′ sin(τ + B ′) + Ȧ′ cos(τ + B ′) − A′ sin(τ + B ′)Ḃ ′.

(C48)

This equation must be equivalent to Eq. (C47b) for a self-
consistent ansatz function, and thus we have a constraint
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FIG. 8. Comparison between numerical results and the analytical solutions shown in Eq. (C43). (a)–(d) are the same as (a)–(d) in Fig. 7.
(e)–(h) The analytic solution shown in Eq. (C43) with parameters taken the same as in (a)–(d), respectively. The time origins in each figure are
shifted accordingly to make the initial value comparable to numerical results.

equation

Ȧ′ cos(τ + B ′) = A′ sin(τ + B ′)Ḃ ′. (C49)

We then plug the ansatz functions Eq. (C47) back to the orig-
inal equation (C44) and obtain another constraint equation,

−Ȧ′ sin(τ + B ′) − A′ cos(τ + B ′)Ḃ ′

= EM

δ
[αA′ cos(τ + B ′) + I2τθA

′ sin(τ + B ′)]

×
√

1 − A′2 cos2(τ + B ′) − A′2 sin2(τ + B ′)

= EMA′

δ
[α cos(τ + B ′) + I2τθ sin(τ + B ′)]

√
1 − A′2.

(C50)

Combining these two constraint equations (C49) and (C50),
we arrive at equations for A′(τ ) and B ′(τ ) as

d

dτ

(
A′
B ′

)
= −EM

δ
[α cos(τ + B ′) + I2τθ sin(τ + B ′)]

×
√

1 − A′2
(

A′ sin(τ + B ′)
cos(τ + B ′)

)
. (C51)

We note that no approximation has been made yet. The ansatz
functions Eq. (C47) together with the constraint equations
Eq. (C51) give an exact solution to Eq. (C44). Now we
concentrate on the slowly varying part of A′, denoting it as
A, which captures the slow damping of the oscillation. We
replace cos(τ + B ′) and sin(τ + B ′) with their average values

within one period and obtain

dA

dτ
= − EM

2πδ
A
√

1 − A2

∫ 2π

0
dτ

[
α cos(τ + B )

+ I2τθ

τs

sin(τ + B )

]
sin(τ + B )

= −I2τθ

2τφ

A
√

1 − A2. (C52)

Transforming back to real time with τ = t/τs and rearranging
the parameters, we simplify the equation of A to the form

dA

dt
= − A

τd

√
1 − A2, (C53)

which is exactly the same as we obtained from the damped
anharmonic oscillator approximation.

APPENDIX D: HYSTERESIS WITH EXTERNAL
PARITY FLIPPING

Here we show that the hysteresis in the I-V curve still
exits even if the total parity of Majorana modes is broken
by external quantum levels from a single quasiparticle or
impurity. For a model study, we consider the simplest case
of an extra quantum level with a Hamiltonian of

Hi = εd†d, (D1)

where ε is the energy of the level which is near zero, and d† is
the creation operator on the level. This quantum level couples
with one Majorana mode through the tunneling Hamiltonian,

HT = T γLd + T ∗d†γL = (f †
1 + f )(T d − T ∗d†), (D2)
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where T is the tunneling strength. After including this quan-
tum level, the Hilbert space is expanded and the total Hamil-
tonian is an 8 × 8 matrix. It is also block diagonal with two
4 × 4 blocks due to the conservation of the total parity. We

can take one block by picking the basis states as d†|00〉,
d†f †

1 f
†
2 |00〉, f

†
2 |00〉, f

†
1 |00〉. Then we arrive at an effective

Hamiltonian

H =

⎛
⎜⎜⎜⎝

ε + EM cos(θ/2) δL + δR 0 T ∗

δL + δR ε − EM cos(θ/2) T ∗ 0

0 T EM cos(θ/2) −δL + δR

T 0 −δL + δR −EM cos(θ/2)

⎞
⎟⎟⎟⎠. (D3)

The quantum average for the supercurrent through the Majo-
rana channel is given by

〈ψ |iγ2γ3|ψ〉 = |ψ3(t )|2 − |ψ2(t )|2 + |ψ1(t )|2 − |ψ0(t )|2.
(D4)

We plug Eqs. (D3) and (D4) into the QRSJ model, and nu-
merically obtain the I-V curve of the junction as demonstrated
in Fig. 9. Clearly, the hysteresis behavior is insensitive to the
parity flipping from the external quantum level.

The reason that the parity flipping does not change the
hysteresis is that the Hamiltonians for the odd total Majorana
parity (the left-up 2 × 2 block) and the even total Majorana
parity (the right-down 2 × 2 block) are qualitatively similar.
They both have avoided crossings at the Josephson phase
θ = (2n + 1)π . Naturally, we would expect that the quantum
dynamics within each block is qualitatively the same, present-
ing a damped oscillation. The small flipping energy T will not
change this quantum dynamics and therefore will not change
the hysteresis behavior.

APPENDIX E: QUASIPARTICLE POISONING

In the topological superconductors, the quasiparticle poi-
soning is an important obstacle for many signatures of
Majorana modes. The difference between the quasiparticle
poisoning and a simple external quantum level from im-
purity or quantum dot is that the quasiparticle poisoning
comes from the thermal equilibrium fermionic environment
which brings decoherence into the quantum two-level sys-
tem defined by Majorana modes. This decoherence is fun-
damental from the quantum mechanical point of view, and
cannot be simply made equivalent to an enlarged Hilbert
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FIG. 9. Numerical simulation of the I-V curves with the energies
of the external quantum level as (a) ε = 0, (b) ε/EM = 0.5, (c)
ε/EM = −0.5. Parameters are taken as T/EM = 0.04, δL/EM =
0.005, and δR/EM = 0.015 and other parameters are taken the same
as in Fig. 2(a).

space. Then it is a natural question whether the decoherence
from the quasiparticle poisoning will destroy the LZ-effect-
induced hysteresis. We analyze this problem by consider-
ing the density matrix ρ(t ) = ρ11(t )|0〉〈0| + ρ12(t )|0〉〈1| +
ρ21(t )|1〉〈0| + ρ22(t )|1〉〈1| for the two-level system where the
decoherence can be naturally included using the Lindblad
form. The dynamics of the two-level system is then described
by a master equation [35],

dρ

dt
= − i

h̄
[H, ρ] +

∑
i

1

τi

Li, (E1)

where Li are all possible Lindblad forms which describe
the decoherence and τi are the corresponding decoherence
times. For a general two-level system, there are only three
possible Lindblad forms L1 = |ψe〉〈ψg|, L2 = |ψg〉〈ψe|, and
L3 = |ψe〉〈ψe| − |ψg〉〈ψg|, where |ψe〉 and |ψg〉 are the two
instantaneous eigenstates of the two-level system. When con-
sidering the decoherence from the quasiparticle poisoning,
only the relaxation processes described by L2 and the de-
phasing processes described by L3 are relevant in the low-
temperature limit.

Let us first consider the relaxation processes given by
the Lindblad L2, which involves the coupling between the
Majorana modes and the quasiparticle states above the super-
conducting gap. The decoherence time for this process is an
exponential function of the superconducting gap [57,58],

1

τ2
= λT e−�/T , (E2)

where λ0 is a dimensionless factor estimated around 0.01 for
quasiparticle poisoning processes in nanowire systems [57].
When the temperature is far below the superconducting gap
T � �, the relaxation time is exponentially protected by the
superconducting gap and would be quite long compared with
all other timescales in the system. We present the results of
the I-V curve with two different relaxation times in Figs. 10(a)
and 10(b). We see that a reasonably long relaxation time has
little influence on the hysteresis, while an extremely short
relaxation time reduces the hysteresis but still does not change
the qualitative feature.

We then consider the decoherence from the dephasing
given by the Lindblad L3. Differently from the relaxation,
the dephasing should have a relatively short dephasing time
[57,58] with τ3 � τ2. However, looking at the form of L3

we see that the dephasing only introduces a decoherence in
the relative phase of the two eigenstates, leaving the relative
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FIG. 10. Numerical results for the I-V curve with the decoher-
ence time (a) τ2 = 1000h̄/EM, (b) τ2 = 10h̄/EM, (c) τ3 = 0.1h̄/EM,
and (d) τ2 = 1000h̄/EM and τ3 = 0.1h̄/EM. Other parameters are
taken the same as in Fig. 2(a).

amplitude unchanged. Since only the amplitude of the wave
function enters the dynamical equation for the Josephson
phase in the QRSJ model, we would expect that the dephasing
has little influence on the hysteresis. We present the I-V curve
for a very short dephasing time in Fig. 10(c), and find that
it indeed has no influence on the hysteresis behavior. Finally,
we show the result with a combination of the relaxation and
dephasing in Fig. 10(d), and find that the hysteresis is robust
to the decoherence from the quasiparticle poisoning.
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FIG. 11. Numerical results of the I-V curves for the underdamped
junctions with (a) Ic2 = 0 and (b) Ic2 = 2Ic1. The capacitance is
taken as C = 0.1e3/h̄Ic1. Other parameters are the same as in
Fig. 2(a).

APPENDIX F: UNDERDAMPED JUNCTION

The conventional Josephson junctions with negligible ca-
pacitance show no hysteresis, making the LZ-effect-induced
hysteresis a novel phenomenon. However, even in the un-
derdamped junctions where hysteresis is already expected
from the shunted capacitance, the LZ effect still contributes
a significant feature which might be useful for experimental
detection. Here, we demonstrate a comparison between the
I-V curves of conventional and topological junctions in the
underdamped regime, where the capacitance is included and
the resistively shunted junction equation is rewritten as the
resistively and capacitively shunted junction equation. We
show the numerical results in Fig. 11. There is a hysteresis in
the topological trivial junction as expected from the standard
theory; however, the difference between the switching and re-
trapping current is largely enhanced by the LZ-effect-induced
part. Therefore, it is still a useful signal for detecting the
Majorana modes in possible topological junctions.
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