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Dynamic structure factor of superfluid 4He from quantum Monte Carlo:
Maximum entropy revisited
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We use the maximum entropy method (MaxEnt) to estimate the dynamic structure factor of superfluid 4He at
T = 1 K, by inverting imaginary-time density correlation functions computed by quantum Monte Carlo (QMC)
simulation. Our procedure consists of a Metropolis random walk in the space of all possible spectral images,
sampled from a probability density which includes the entropic prior, in the context of the so-called “classic”
MaxEnt. Comparison with recent work by other authors shows that contrary to what is often stated, sharp features
in the reconstructed image are not “washed out” by the entropic prior if the underlying QMC data have sufficient
precision. Only spurious features that tend to appear in a straightforward χ2 minimization are suppressed.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) simulations are among the
most reliable tools to investigate the physics of quantum
many-body systems in thermal equilibrium. In particular, ther-
modynamic properties of interacting Bose assemblies, such
as superfluid 4He, can be calculated quite accurately [1]. At
least in principle, QMC also allows one to obtain dynamical
properties, at least within the linear response approximation;
one can compute correlation functions in imaginary time,
from which spectral functions can be inferred through an
inverse Laplace transformation.

Unfortunately, the inversion is mathematically ill posed
and, because QMC data are inevitably affected by statistical
uncertainties, an unambiguous determination of the spectral
function is usually not possible. In some cases, prior knowl-
edge about the physics of the system may constrain the set
of possible solutions, allowing for a reliable reconstruction;
for example, one may know that the spectral function is
dominated by one or two well-defined peaks and simply fit
the QMC data accordingly (see, for instance, Ref. [2]).

In the general case, however, when no such knowledge
is available, a large number of very different images will
be consistent with the QMC data. Thus, one will typically
resort to some kind of “regularization” scheme (RS), aimed
at retaining only those images whose nontrivial structure
is truly warranted by the data. Consequently, any RS will
inevitably tend to soften some of the sharpest features; for
example, distinct, isolated peaks will be broadened to reflect
the inherent uncertainty arising from the finite precision of the
data and the ill posedness of the problem [3].

A popular RS, in the context of the inversion of QMC
data, is the maximum entropy method (MaxEnt) [4,5], which
has been applied to the determination of spectral functions
of various lattice many-body Hamiltonians [6–10] as well as
of the dynamic structure factor in normal and superfluid 4He
[11]. In general, MaxEnt has yielded quantitatively reliable
results for some of the main aspects of the reconstructed
images, i.e., the positions of the peaks, and therefore the

determination of the excitation spectrum. On the other hand,
the quantitative accuracy of predictions concerning, e.g., the
widths of the peaks, and the ensuing ability to resolve adjacent
peaks was less satisfactory, although in most cases the limiting
factor was the quality of the QMC data, rather than the RS
adopted to extract the images. Alternative RSs have been
proposed in the course of the years, in the context of QMC
simulations [12–16], displaying some advantages over others
for specific applications, but not providing a comprehensive,
systematic comparison.

In recent years, the problem of extraction of the dynamic
structure factor of superfluid 4He from imaginary-time corre-
lations computed by QMC has been independently revisited
by two groups [17,18], who proposed RSs not making use of
MaxEnt’s entropic prior. In both cases, their procedure essen-
tially amounts to χ2 fitting [19], supplemented by averaging
over a set of comparable images, in order to suppress some
of the spurious structure that inevitably arises on carrying
out χ2 minimization in the presence of an ill-posed problem.
Both works make the claim that their proposed approaches are
superior to MaxEnt, in that the resulting images are sharper
and in better agreement with experimental data.

In this paper, we revisit the use of MaxEnt for the same
problem in order to assess quantitatively the claims made in
Refs. [17,18]. Specifically, we estimate the dynamic structure
factor S(q, ω) for superfluid 4He by computing imaginary-
time density correlations by QMC and by using MaxEnt to
carry out the inversion. Our methodology is similar to that of
Ref. [11], i.e., it consists of a Metropolis random walk in the
space of spectral images, sampled from a probability density
proportional to the standard maximum-likelihood estimator
multiplied by the entropic prior (see below). This procedure
allows us to assign an uncertainty in the value of S(q, ω) as
the standard deviation of the values recorded for the different
frequencies in the course of the random walk.

Compared to Ref. [11], our present study obviously ben-
efits from two decades of advances, both in computing
hardware as well as in the QMC methodology utilized to
generate the imaginary-time data. As a result, our statistical
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uncertainties are much smaller than those of the 1996 work,
comparable to those of the data used in Refs. [17,18], which
is a necessary condition in order to carry out a meaningful
and fair comparison. Based on the results presented here, we
contend that MaxEnt does not prevent sharp features from
appearing in the reconstructed spectral functions, as long as
the accuracy of the QMC data justifies their inclusion. Indeed,
the spectral images shown here are of comparable (or better)
quality than those offered in Refs. [17,18]. Ultimately, the
sharpness of the spectral image almost exclusively hinges on
the accuracy of the QMC data; by promoting smoothness, the
entropic prior serves, in our view, a useful, noise-reducing
purpose.

It is worth noting that a general scheme capable of tackling
this kind of problem can be applied in other, rather different
contexts, e.g., the determination of ground-state expectation
values in QMC transient estimate calculations [20]. These are
typically carried out for Fermi systems, which are affected
by the infamous “sign” problem, resulting in an exponential
increase with imaginary time of the statistical error (see, for
instance, Ref. [21]).

The remainder of this paper is organized as follows: in
Sec. II, we describe the model of the system and the QMC
calculations carried out in this work. In Sec. III, we describe
in detail our inversion method. We present and discuss our
results in Sec. IV and, finally, outline our conclusions in
Sec. V.

II. MODEL AND QMC CALCULATION

In this section, we describe the QMC calculation of the
imaginary-time correlation function, which is then inverted to
obtain the dynamic structure factor. The system is described
as an ensemble of N pointlike, identical particles with mass m

equal to that of a He atom and with spin S = 0, thus obeying
Bose statistics. It is enclosed in a cubic cell, with periodic
boundary conditions in the three directions. The quantum
mechanical many-body Hamiltonian reads as follows:

Ĥ = −λ
∑

i

∇2
i +

∑
i<j

v(rij ), (1)

where the first (second) sum runs over all particles (pairs

of particles), λ ≡ h̄2/2m = 6.059 641 5 KÅ
2
, rij ≡ |ri − rj |,

and v(r ) is a pair potential which describes the interaction
between two atoms. We make use in this study of the accepted
Aziz pair potential [22], which has been utilized in most sim-
ulation studies of superfluid helium. A more accurate model
would also include interactions among triplets of atoms. How-
ever, published numerical work has given strong indications
that three-body corrections, while significantly affecting the
estimation of the pressure, have a relatively small effect on
the structure and dynamics of the system of interest here [23].

We carried out QMC simulations of the system described
by Eq. (1) at temperature T = 1 K, using the continuous-
space Worm algorithm [1]. Since this technique is by now
fairly well established and extensively described in the liter-
ature, we shall not review it here. A canonical variant of the
algorithm was utilized in which the total number of particles
N is held fixed [24,25].

The quantity of interest here is the dynamic structure
factor S(q, ω), which describes density fluctuations of wave
vector q. For superfluid 4He, it has been extensively studied
experimentally by neutron scattering (for a review, see, for
instance, Ref. [26]). It is a direct probe of the elementary
excitations (phonons and rotons) that underlie the physical
behavior of the system at low temperature [27–29]. S(q, ω)
is a non-negative function satisfying the relation [30]

〈ω〉 =
∫ ∞

0
dωωS(q, ω)(1 − e−βω ) = q2

2m
, (2)

known as the f-sum rule (we henceforth set h̄ = 1, the
Boltzmann constant kB = 1, and define β = 1/T ). There is
no known QMC scheme allowing for the direct calculation
of S(q, ω). However, it can be shown (see, for instance,
Ref. [11]) that

F (q, τ ) =
∫ ∞

0
dω(e−ωτ + e−ω(β−τ ) )S(q, ω), (3)

where 0 � τ � β and F (q, τ ) is the imaginary-time autocor-
relation function,

F (q, τ ) = 1

N
〈ρ̂q(τ ) ρ̂†

q(0)〉, (4)

where 〈·〉 stands for thermal average, and with

ρq(τ ) =
N∑

j=1

eiq·rj , (5)

where the {rj }, j = 1, 2, . . . , N , are the positions of the
N 4He atoms at imaginary time τ along the many-particle
path. The quantity F (q, τ ) is what is actually computed by
QMC for a discrete set of values of τ ; S(q, ω) is inferred from
F (q, τ ) through a numerical inversion of Eq. (3). The details
of this procedure are outlined in Sec. III.

The QMC simulation is standard; we adopted the usual the
short-time approximation to the imaginary-time propagator
accurate to fourth order in the time step ε (see, for instance,
Ref. [31]). All of the results presented here are extrapolated
to the ε → 0 limit. Just like for other observables, the nu-
merical estimates of the quantities of interest here, namely
the imaginary-time correlation functions described below,
computed with a value of the time step ε = (1/640) K−1

are indistinguishable from the extrapolated ones, within the
statistical uncertainties of the calculation.

Calculations were carried out at two different densities,
namely, 0.021 834 Å−3, which is that at saturated vapor pres-
sure (SVP) [32], and 0.0260 Å−3, which is very close to the
freezing density (at a pressure of approximately 25 bars). All
calculations were carried out at T = 1 K. The experimental
and theoretical data we compare our results against are at
temperatures that range from 0 to 1.3 K. All such tempera-
tures are well below the λ transition and, at that level, the
excitations are essentially independent of temperature (see,
for instance, Refs. [33,34]). We took advantage of space and
time symmetry to improve statistics; a rough estimate of the
statistical error on the generic value of F (q, τ ) is given by
5×10−4 F (q, 0).

The bulk of the results shown here were obtained on a
system comprising N = 64 particles, a number of which is not

134509-2



DYNAMIC STRUCTURE FACTOR OF SUPERFLUID 4He … PHYSICAL REVIEW B 98, 134509 (2018)

FIG. 1. Typical F (q, τ ) results computed in a simulation of

superfluid 4He at T = 1 K at density 0.021 834 Å
−3

. Results shown

here are for the wave vectors q = 1.075 Å
−1

(bottom curve), q =
1.756 Å

−1
(middle curve), and q = 1.964 Å

−1
(top curve). When not

shown, statistical errors are smaller than the size of the symbols.

particularly large but that allows us to collect good statistics
in a given simulation time. Experience with previous work
[11] suggests that this system size is sufficient to extract
information at the wave vectors of interest here (see below).
However, we have also repeated the simulation with N = 256
particles and found no statistically significant difference in
the values of F (q, τ ), within the statistical errors of our
calculation.

F (q, 0) ≡ Sq is known as the static structure factor, which
is experimentally accessible and related via a Fourier trans-
formation to the atomic pair-correlation function. The values
of Sq obtained here are in quantitative agreement with previ-
ous calculations, i.e., in excellent agreement with experiment
(see Ref. [35]).

Typical results for F (q, τ ) are shown in Fig. 1; because
F (q, τ ) = F (q, β − τ ) (see, for instance, Ref. [30]), one
need only compute this quantity in the 0 � τ � β/2 interval.

III. MaxEnt INVERSION

The problem with the numerical inversion of Eq. (3), aimed
at obtaining S(q, ω) from the values of F (q, τ ) computed by
QMC, lies in the fact that the integral kernel exponentially
suppresses the contribution at high frequency of the spectral
function to F (q, τ ); consequently, F (q, τ ) is minimally af-
fected by the high-frequency behavior of S(q, ω). Because
F (q, τ ) is the result of QMC simulations and therefore pos-
sesses finite statistical uncertainties, there will typically be a
large set of physically different spectral functions consistent
with the numerical data for F (q, τ ). Most of these solutions
are unphysical and/or bear little resemblance to the actual
S(q, ω). The goal is that of finding a systematic and robust
way to weed out spurious solutions and retaining only a rel-
atively small subset of physical ones, from which at least the
most important physical features of S(q, ω) may be reliably
extracted.

As mentioned above, F (q, τ ) is computed for the discrete
set of imaginary times lδτ , l = 0, 1, . . . , L, with 2Lδτ = β.

In order to simplify the notation, for a given value of q, we
define F ≡ {F0, . . . , FL}, with Fl ≡ F (q, lδτ ). Each entry Fl

is affected by a statistical uncertainty σl , estimated by careful
binning analyses of data (see, for instance, Ref. [36]) collected
over sufficiently long simulations. We begin by approximating
the integral on the right-hand side of Eq. (3) with a sum, i.e.,
turn Eq. (3) into a system of algebraic equations that can be
expressed in compact matrix form,

F = KS, (6)

having defined

Klj = [e−j lδωδτ + e−j (2L−l)δωδτ ] δω, (7)

S ≡ {S1, . . . , SM}, Sj ≡ S(q, jδω), and Mδω = ωM , with
ωM chosen large enough that S(q, ω) can be set to zero
for ω > ωM , and δω small enough to achieve the desired
frequency resolution. In this study, ωM is between 100 and
300 K, whereas M is between 150 and 400 K. An important
observation is that typically M > L, i.e., the system (6) is
underdetermined, and, therefore, in general, no unique solu-
tion can be found, quite irrespective of the ill posedness of the
problem and of statistical errors of the computed imaginary-
time correlation functions [37].

We take the same approach as in Ref. [11], based on classic
MaxEnt (see, for instance, Ref. [5]) and define our “optimal”
solution as

S◦ ≡
∫

dα

∫
DSSF (α, S), (8)

where DS ≡ dS1dS2 . . . dSM , and

F (α, S) = e−χ2(S)/2

ZQ

eαS(S)

ZS (α)
ρ(S) (9)

is a prior probability assigned to the generic image S. Here,
α is a non-negative regularization parameter, to which we
come back below; ZQ and ZS (α) ∝ α−M/2 are normalization
constants;

χ2(S̄) = (F − F̄)T C−1(F − F̄) (10)

is the standard measure of goodness of fit, with F̄ = KS̄, and
we make the diagonal approximation [38] for the covariance
matrix C, i.e.,

Cij = σ 2
i δij . (11)

Also,

S (S) = −
M∑
i=1

fi ln(Mfi ), (12)

with fi = Si/(
∑

j Sj ), is Jaynes’ entropy of the image S
[39,40]; and, finally,

ρ(S) ∝ exp

(
− [〈ω〉 − ωq]2

2η2ω2
q

)
, (13)

where 〈ω〉 is defined in Eq. (2), ωq = q2/(2m), and η is
adjusted to enforce that relation (2) be satisfied to the desired
degree of accuracy (typically, η � 0.01).
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FIG. 2. Posterior probability for the regularization parameter α

(top) and for the the goodness-of-fit parameter χ2 (bottom), obtained
from the Metropolis random walk in {S, α} space as described in the

text. This particular result refers to the q = 1.756 Å
−1

case.

The prior probability (9) ascribes greater weight to those
spectral functions that are consistent with the data and there-
fore have a low value of χ2 and fulfill the f -sum rule, while at
the same time are smoother in character. In other words, sharp
features such as isolated peaks should not be included unless
consistency with the data requires it.

The parameter α can be used to “tune” the relative impor-
tance of the entropic prior in F (S). In the limit α → 0, one
is performing conventional χ2 fitting; on the other hand, as
α grows, the entropic prior becomes increasingly important.
The question arises of how to choose the value of α. In
“historic” MaxEnt, one adjusts α so that, on average, the
value of χ2 ∼ L. As mentioned above, we adopt the classic
MaxEnt approach in which α is treated as a random variable
and assigned a prior probability distribution p(α), which is
incorporated in the normalization constant ZS (α).

We evaluate the multidimensional integral in Eq. (8) by
Monte Carlo, just as in Ref. [11]. Specifically, we perform
a random walk in {S, α} space using the Metropolis algorithm
to sample the probability density given by Eq. (9). We achieve
that through few elementary moves, designed to satisfy the
usual detailed balance condition. Specifically, we randomly
attempt one of the following:

FIG. 3. S(q, ω) in superfluid 4He at T = 1 K (at SVP) for the

roton wave vector (q = 1.963 Å
−1

), computed by inversion of QMC
data based on MaxEnt [Eq. (8), squares]. Statistical errors on S(q, ω)
are smaller than the sizes of the symbols; the error bar on the square
represents the standard deviation (see text), which has similar values
for the two data points adjacent to the peak and is comparable to,
or smaller than, symbol sizes for all other data points. Circles show
experimental data from Ref. [42] (only the coherent part is shown) at

T = 1.3 K for the wave vector q = 1.90 Å
−1

.

(1) the displacement of an elementary amount of area,
equal to γ δS, where 0 � γ � 1 is a uniform random number,
from a randomly selected channel j to another one, randomly
selected among j − p, . . . , j − 1, j + 1, . . . , j + p;

(2) the addition or subtraction of γ δS ′ from a randomly
selected channel j ;

(3) the change of α by an amount (1/2 − γ ) δα.
Proposed moves are accepted or rejected based on the

usual Metropolis test, making use of Eq. (9) in the acceptance
ratio [41]. The parameters δS, δS ′, δα, and p are adjusted to
ensure a 50% acceptance rate. The move attempting to change
the value of α is typically attempted every ∼M attempts to
perform either one of the first two moves.

The posterior probability of α, Pr[α], as well as the χ2

distribution Pr[χ2] are obtained from the random walk, just
as in Ref. [11]. Figure 2 shows a typical result.

The optimal image S◦ [Eq. (8)], determined as an average
over the images generated in the random walk, is affected by
a statistical error that can be estimated in the standard way
and can be rendered sufficiently small upon using a relatively
modest amount of CPU time. More significant, however, given
the inherent uncertainty of the inversion, is the standard de-
viation associated with the fluctuation of the values Si around
their averages. We report it below when illustrating our results
as it furnishes, in our view, a fair assessment of the range of
variation of the solution.

IV. RESULTS

Figure 3 shows results for S(q, ω) for the roton wave vector

(q = 1.963 Å
−1

) at T = 1 K and at saturated vapor pressure
(SVP). Squares represent the values of S◦ defined through
Eq. (8), computed by means of the Monte Carlo Metropolis
procedure described in Sec. III. The statistical errors on the
values of S◦ are smaller than the sizes of the symbols. Also
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FIG. 4. S(q, ω), defined as S◦ [Eq. (8)] and computed as illus-
trated in the text, for superfluid 4He at T = 1 K for the roton wave

vector at SVP (diamonds, q = 1.963 Å
−1

) and at 25 bars (circles,
q = 2.081 Å

−1
). Statistical errors on S(q, ω) are comparable to the

sizes of the symbols for both curves.

shown in the figure are experimental data [43] from Ref. [42]

at T = 1.3 K and for the wave vector q = 1.90 Å
−1

. Agree-
ment between theory and experiment seems fairly good; not
only the position, but also the width of the peak is rather well
reproduced, unlike in previous applications of MaxEnt [11].
This result shows that MaxEnt does not prevent the recon-
structed spectral image from developing sharp features, if the
quality of the underlying QMC data justifies their inclusion.
In the presence of greater statistical uncertainties, on the other
hand, MaxEnt implies a more conservative choice, namely,
one in which smoother images are privileged.

As mentioned above, the statistical errors on S◦ are com-
parable to, or smaller than, the sizes of the symbols and
can always be rendered negligible with modest computing
resources. Obviously, however, the issue arises of assessing
systematic errors, which are inherent to this image reconstruc-
tion problem. In other words, how far off can the optimal
image S◦ be expected to be from the actual spectral function?
The Metropolis procedure adopted here allows us to offer an
estimate of that through the standard deviation of the values
of S◦ for each and every value of the energy. In Fig. 3,
we show one such standard deviation, corresponding to the
energy interval ωm in which S◦ takes on its highest value.
Although not shown in the figure for clarity, S◦ for the two
energy intervals adjacent to ωm have comparable standard
deviations, whereas the standard deviation for all other values
is much smaller (of the order of symbol sizes in Fig. 3). This
is generally found to be the case, i.e., the (typically relatively
few) values of S◦ for which it is most important are affected by
the largest uncertainty. Thus, at least for the roton wave vector,
MaxEnt yields a reasonably accurate estimate of the position
and the width of the peak, with some remaining uncertainty
regarding its height.

It is interesting to note that despite the uncertainty, relative
comparisons of data obtained with the procedure illustrated
here are nevertheless still meaningful. For example, Fig. 4
shows S(q, ω) for the roton wave vector at two different
pressures, namely, SVP and 25 bars. The roton minimum

FIG. 5. S(q, ω) in superfluid 4He for the roton wave vector

(q = 1.963 Å
−1

) calculated through the inversion of QMC data
based on four different methods. Hexagons show the result of the
inversion using MaxEnt [Eq. (8)], whereas squares show that with
α = 0 (which amounts to standard χ 2 fitting). Stars show the result

of the inversion using GIFT [17] for the wave vector q = 1.977 Å
−1

at T = 0 K. Dark circles show the result of χ2 minimization using

simulated annealing (SA) [18] for the wave vector q = 1.91 Å
−1

at T = 0.8 K.

shifts from ∼1.9 Å
−1

at SVP to ∼2.1 Å
−1

at 25 bars [44].
Our results show that the position of the peak moves to
lower energy and the peak itself gains strength, in remarkable
quantitative agreement with experimental observation [33].

In Fig. 5, we compare our results with those of other
authors who made use of different approaches (not based
on MaxEnt) to tackle the inversion of QMC data [45]. The
wave vectors are not identical but are reasonably close to
the roton minimum in all cases; all calculations are carried
out in the low-temperature limit (see caption of Fig. 5 for
details). There is nearly perfect agreement between our image
and that of Ref. [17], especially if the standard deviation
of our result is taken into account. On the other hand, the
spectral image obtained in Ref. [18] is much broader, with
a significantly lower peak. It is interesting to compare these
curves with that arising from χ2 fitting carried out in the
context of our procedure, namely, by simply setting α = 0.
In this case, the average value of χ2 is ∼0.2 L, i.e., slightly
lower than that obtained with finite α. However, as can be seen
in Fig. 5, the peak is significantly higher (in fact its height
exceeds that of the experimental result by almost a factor
two) and also narrower than what is observed experimentally.
This is consistent with the general notion that “brute-force”
χ2 minimization, while yielding sharp features, is all too
likely to result in unphysical behavior. The use of the entropic
prior emphasizes the contribution from smoother images (still
consistent with the QMC data), which in this case results in
better agreement with experiment.

Let us now consider a second wave vector, namely,

q = 1.756 Å
−1

. In Fig. 6, we compare again the result of
our MaxEnt inversion with those of Refs. [17,18], as well
as experimental data from Ref. [42]. Our procedure yields
a spectral image in much closer agreement with experiment
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FIG. 6. S(q, ω) in superfluid 4He for the wave vector q =
1.756 Å

−1
calculated through the inversion of QMC data based on

three different methods. Hexagons show the result of the inversion
using MaxEnt [Eq. (8)]. Stars show the result of the inversion using

GIFT [17] for the wave vector q = 1.755 Å
−1

at T = 0 K. Dark
circles show the result of χ 2 minimization using simulated annealing

(SA) [18] for the wave vector q = 1.76 Å
−1

at T = 1.2 K. Diamonds
show experimental data from Ref. [42] (only the coherent part is

shown) at T = 1.3 K for the wave vector q = 1.70 Å
−1

.

than the other two. In particular, both the shape of the curve
and the location of the main peak are in excellent agreement
with experiment, taking into account the slight difference in
wave vectors [46] and the resolution of our spectral image.
On the other hand, the spectral image reported in Ref. [18] is
once again much too broad compared to the experimentally
observed one, while that of Ref. [17] is considerably sharper.

Finally, let us examine results at a third wave vector,

namely, q = 1.075 Å
−1

, which corresponds to the maxon. In
this case, our spectral image features a single peak, which
is, however, nowhere near as sharp as in the experimentally
observed dynamic structure factor [42], as shown in Fig. 7.
The considerably greater difficulty in extracting sharp features
for this wave vector is a direct consequence of the behavior in
imaginary time for F (q, τ ), namely, the much faster decay in
the maxon case (Fig. 1). Indeed, we find that the difficulty
of reconstructing S(q, ω) from QMC data is particularly
severe for wave vectors near the maxon. For our procedure
to recover sharp features at this wave vector, it appears that
the underlying QMC data should possess errors that are sig-
nificantly smaller than those which we could achieve within
this project. This illustrates the difficulty of an a priori, even
semiquantitative assessment of the required precision of the
QMC data.

Interestingly, the procedure illustrated in Ref. [17] does
yield a sharp peak in this case as well, of width comparable
to that of the experimental image, and ∼30% greater height
(data from Ref. [18] for this wave vector were not available).
However, the position of the peak itself is off, compared
to experiment, by roughly as much as that estimated by
MaxEnt (in the case of genetic inversion via falsification of
theories (GIFT), the peak is detected at higher energy). Thus,
although the shape of the GIFT image is certainly closer to
the experimental result, in quantitative terms (e.g., position

FIG. 7. S(q, ω) in superfluid 4He for the maxon wave vector

(q = 1.075 Å
−1

). Squares show the result calculated through the
inversion of QMC data based on MaxEnt [Eq. (8)]. Stars show the
result of the inversion using GIFT [17,45], calculated for the wave

vector q = 1.107 Å
−1

at T = 0 K. Circles show experimental data
from Ref. [42] (only the coherent part is shown) at T = 1.3 K for the

wave vector q = 1.10 Å
−1

. Statistical errors are of the order of the
symbol sizes. The error bar on the square data point close to the peak
represents a typical standard deviation.

of the peak and area in the experimentally observed peak
region), a comparison between the two results may not be so
straightforward. In particular, one ought to think of situations
in which this procedure is to be used in a predictive way, i.e.,
no experimental data are available for comparison.

Thus, we conclude that for this particular wave vector, the
precision required in the QMC data, in order to achieve a
spectral image reconstruction of quality comparable to that
of the other two wave vectors, is significantly greater than
that afforded by the computational resources available to this
project. It is incorrect to attribute the lack of sharpness of
the reconstructed spectral image in this case to the utilized
inversion scheme, which proves equally or more effective than
the alternatives at other wave vectors.

V. CONCLUSIONS

We have revisited the use of MaxEnt to extract the dynamic
structure factor of superfluid 4He from imaginary-time density
correlation functions computed by QMC. This method was
first applied to this problem over two decades ago, yielding
results that were deemed “only qualitatively interesting,” as
the sharper features of the experimentally measured spectra
were not fully recovered. In recent years, alternative schemes
[17,18] have been proposed to tackle the same problem;
although they are based on different numerical optimization
strategies, these schemes ultimately amount to χ2 fitting.

We adopted in this work a procedure similar to that first
proposed in Ref. [11], i.e., we performed a random walk
in the space of spectral images, using the entropic prior in
the context of classic MaxEnt. Our study benefits from the
availability of new QMC data obtained using state-of-the-art
techniques and obviously far more powerful computing re-
sources than those available two decades ago. The accuracy of
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our QMC data is, to the best of our determination, comparable
to that of the data used in Refs. [17,18]. Our spectral images
are of quality at least comparable (and often superior) to that
of those yielded by the methods proposed in Refs. [17,18].
In particular, spectral images provided in Ref. [18] are too
broad and compare poorly to experiment, whereas those of
Ref. [17] are at times much sharper than the experimental
ones.

We show that the use of the entropic prior does not cause
the reconstructed spectral images to be unphysically smooth
and featureless. Rather, it is the precision of the underlying
QMC data that determines by itself whether or not the recon-
structed spectra should display sharp peaks. In general, the
elimination of the entropy from the inversion process indeed
promotes sharper features, but we argue that that often comes
at the expense of accuracy as such sharpness is ultimately not
warranted by the data. This means that some sharp features

might appear at incorrect locations or even be downright spu-
rious. One is therefore left with no real justification to choose
a “sharper” over a more conservative, smoother image if both
are consistent with the data (a posteriori validation based
on agreement with available experiments for one particular
physical system being a dubious criterion to compare different
methodologies).
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