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Ab initio low-energy effective Hamiltonians of two typical high-temperature copper-oxide superconductors,
whose mother compounds are La2CuO4 and HgBa2CuO4, are derived by utilizing the multiscale ab initio scheme
for correlated electrons (MACE). The effective Hamiltonians obtained in the present study serve as platforms of
future studies to accurately solve the low-energy effective Hamiltonians beyond the density functional theory.
It allows further study on the superconducting mechanism from first principles and a quantitative basis without
adjustable parameters not only for the available cuprates but also for future design of higher Tc in general. More
concretely, we derive effective Hamiltonians for three variations: (1) a one-band Hamiltonian for the antibonding
orbital generated from strongly hybridized Cu 3dx2−y2 and O 2pσ orbitals, (2) a two-band Hamiltonian con-
structed from the antibonding orbital and Cu 3d3z2−r2 orbital hybridized mainly with the apex oxygen pz orbital,
and (3) a three-band Hamiltonian consisting mainly of Cu 3dx2−y2 orbitals and two O 2pσ orbitals. Differences
between the Hamiltonians for La2CuO4 and HgBa2CuO4, which have relatively low and high critical tempera-
tures Tc, respectively, at optimally doped compounds, are elucidated. The main differences are summarized as
follows: (i) the oxygen 2pσ orbitals are farther (∼3.7 eV) below from the Cu dx2−y2 orbital in the case of the La
compound than the Hg compound (∼2.4 eV) in the three-band Hamiltonian. This causes a substantial difference
in the character of the dx2−y2 -2pσ antibonding band at the Fermi level and makes the effective onsite Coulomb
interaction U larger for the La compound than the Hg compound for the two- and one-band Hamiltonians. (ii)
The ratio of the second-neighbor to the nearest transfer t ′/t is also substantially different (0.26 for the Hg and
0.15 for the La compound) in the one-band Hamiltonian. Heavier entanglement of the two bands in the two-band
Hamiltonian implies that the two-band rather than the one-band Hamiltonian is more appropriate for the La
compound. The relevance of the three-band description is also discussed especially for the Hg compound.
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I. INTRODUCTION

Superconductors that have high Tc hopefully above room
temperature at ambient pressure are a holy grail of physics.
Thirty years ago, an important step forward has been made
by the discovery of copper oxide superconductors [1], which
have raised the record of Tc more than 100 K up to around
138 K [2] at ambient pressure and around 160 K under pres-
sure [3,4]. However, the highest Tc record has not been broken
much since then, except recent discovery of Tc ∼ 200 K in
hydrogen sulfides at extremely high pressure (>150 GPa) [5].

Despite hundreds of proposals, the mechanism of super-
conductivity in the cuprates has long been the subject of
debate and still remains an open issue. If the mechanism could
be firmly established, the materials design for higher Tc would
greatly accelerate. In this respect, first-principles calculations
of the electronic structure based on faithful experimental con-
ditions and the quantitative reproduction of the experimental
results together are a crucial first step for the predictive power
for real materials in the next step.

*Present address: RIKEN Center for Emergent Matter Science,
Wako, Saitama 351-0198, Japan.

From the early stage after the discovery of the cuprate
superconductors, the electronic structures have been studied
based on the conventional local density approximation of
the density functional approach [6–8]. However, the cuprate
superconductors belong to typical strongly correlated electron
systems [9], which makes the conventional approach by the
density functional theory (DFT) questionable.

Theoretical studies postulating strong electron correlations
have been pursued to capture the mechanism of the
superconductivity more or less independently of the first-
principles approaches. Those start from the Hubbard-type
effective models or other simple strong coupling effective
Hamiltonians with diverse and sometimes contradicting
views spreading from a weak coupling scenario such as spin
fluctuation theory to the strong coupling limit assuming the
local Coulomb repulsion as the largest parameter. Although
rich concepts have emerged from diverse studies emphasizing
different aspects of the electron correlation, the relevance
and mechanism working in real materials are largely open.
This screwed upfront urges the first-principles study that
allows quantitative and accurate treatments of strong electron
correlations without adjustable parameters. The significance
of ab initio studies is particularly true for strongly correlated
systems in general, because they are subject to strong
competitions among various orders and a posteriori theory
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with adjustable parameters does not have predictive power.
There exist earlier attempts to extract parameters of effective
Hamiltonians from the density functional theory [10].

To make a systematic approach possible along this
line, a multiscale ab initio scheme for correlated electrons
(MACE) has been pursued and developed [11]. MACE has
succeeded in reproducing the phase diagram of the iron based
superconductors basically on a quantitative level without
adjustable parameters, particularly for the emergence of
the superconductivity and antiferromagnetism separated
by electronic inhomogeneity [12,13]. This is based on the
solution of an ab initio effective Hamiltonian [14] for the five
iron 3d orbitals derived from the combination of the density
functional theory (DFT) calculations and the constrained
random phase approximation (cRPA) [15].

In this paper, we apply essentially the same scheme to
derive the ab initio effective Hamiltonian for two examples
of the mother materials of the cuprate superconductors,
La2CuO4 and HgBa2CuO4, and compare their differences.
One aim of the present work is to understand the distinctions
of the two compounds, which show contrasted maximum crit-
ical temperature at optimum hole doping (40 K for La2CuO4

and 90 K for HgBa2CuO4). The present study also serves as
a platform and springboard to future studies to solve the ab
initio effective Hamiltonians derived here by accurate solvers.

In the present application of the MACE, we employ a
more refined scheme [16–18] by replacing the cRPA with the
constrained GW (cGW ) approximation to remove the double
counting of the correlation effects in the procedure of solving
the effective Hamiltonian on top of the exchange correlation
energy in the DFT, which already incompletely takes into
account the electron correlation. In the cGW scheme, effects
from the exchange correlation energy contained in the initial
DFT band structure are completely removed and replaced
by the GW self-energy, which takes into account only the
contribution from the Green’s function in the Hilbert space
outside of the low-energy effective Hamiltonian. The main
part of the correlation effects arising from the low-energy
degrees of freedom is completely ignored at this stage and
will be considered when one solves the low-energy effective
Hamiltonian beyond LDA and GW .

Our scheme is supplemented by the self-interaction cor-
rection (SIC) to remove the double counting in the Hartree
term (or in other words, to recover the cancellation of the
self-interaction between that contained in the Hartree term and
that in the exchange correlation held in the LDA, but violated
when only the exchange correlation is subtracted) [17].

We derive three effective Hamiltonians for La2CuO4 and
HgBa2CuO4 by using the cGW scheme supplemented by SIC.
These ab initio effective Hamiltonians extract sub-Hilbert
spaces expanded by combinations of Cu 3d x2 − y2, Cu
3d 3z2 − r2, and O 2pσ orbitals (which is schematically illus-
trated in Fig. 1). The present downfolding scheme to derive
these Hamiltonians consists of two steps. First, a 17-band
effective Hamiltonian is derived. Then, the three effective low-
energy Hamiltonians are derived from the 17-band Hamilto-
nian hierachically. Here, the three effective Hamiltonians are
a one-band Hamiltonian for the antibonding orbital generated
from hybridized Cu 3d x2 − y2 and O 2pσ orbitals, a two-
band Hamiltonian constructed from the antibonding orbital

antibonding

bonding

17 band 3 band 1 & 2 band

nonbonding

FIG. 1. Schematic energy levels of orbitals constituting three
effective Hamiltonians.

and Cu 3d 3z2 − r2 orbital hybridized mainly with the apex
oxygen pz orbital, and a three-band Hamiltonian consisting
mainly of Cu 3d x2 − y2 orbitals and two O 2pσ orbitals.
A summary of the obtained important matrix elements of
the three effective Hamiltonians in the present work is listed
in Table I. There are two important energy scales in the
one-body part of the derived effective Hamiltonians, in addi-
tion to the difference in effective Coulomb repulsion: energy
difference between the oxygen 2pσ orbitals and the copper
3d x2 − y2 orbital (�dp in Fig. 1) and energy difference
between the antibonding band of Cu 3d x2 − y2 and O 2pσ

orbitals, and the Cu 3d 3z2 − r2 orbital hybridized mainly
with the apex oxygen pz orbital (�E in Fig. 1). Even when
the effective Hamiltonians are carefully derived, it does not
necessarily mean that the solutions of the Hamiltonians should
appropriately describe the experimental results of the cuprate
superconductors. If the number of the bands retained as the
effective Hamiltonian is too small and the interaction effects
from the bands outside the effective Hamiltonian is substan-
tial, it would fail to describe the correct physics, in general.
The minimum number of bands to be retained is not known
from a priori in the present stage. Our ab initio Hamiltonians
offer ways of understanding the validity of one-, two- and
three-band Hamiltonians, and what the minimum effective
Hamiltonians for the curates should be for describing the
physics of the cuprates, which is still under extensive debate.
It will serve in elucidating the proper procedure of MACE.

In the present paper, we restrict the effective Hamiltonians
into the standard form containing the kinetic and two-body
interaction terms and ignore the multiparticle effective inter-
actions of more than two-body terms. This MACE scheme is
based on the characteristic feature of strongly correlated elec-
tron systems, where the high-energy and low-energy degrees
are well separated and the partial trace out of the high-energy
degrees of freedom can successfully be performed in pertur-
bative ways as in the cRPA and cGW schemes [11,18]. In this
perturbation expansion, the multiparticle effective interactions
rather than the two-body terms are the higher-order terms.
Therefore we ignore them in the same spirit with the cGW .

In Sec. II, we describe the basic method. The three effective
Hamiltonians for HgBa2CuO4 are derived in Sec. III A and
those for La2CuO4 are given in Sec. III B. Section IV is
devoted to discussions and we summarize the paper in Sec. V.
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TABLE I. Summary of effective Hamiltonian parameters for HgBa2CuO4 and La2CuO4 (in eV). t and t ′ for one- and two-band Hamil-
tonians are for nearest- and next-nearest-neighbor transfers between Cu 3d orbitals, respectively. Onsite and nearest-neighbor interactions U

and V , respectively, for Cu 3d orbitals are given as well. The orbital level is given by εX with X = x2 − y2 or 3z2 − r2. (Left) One-band
Hamiltonians. Middle two panels: two-band Hamiltonians. (Right) Three-band Hamiltonian tdp (tpp) stands for the largest nearest-neighbor
transfer between Cu 3dx2−y2 and O 2pσ (two O 2pσ ) orbitals. Onsite (U ) and nearest-neighbor (V ) interactions for Cu 3dx2−y2 and O 2pσ are
given as well. The level difference between 3dx2−y2 and 2pσ is given by �dp .

HgBa2CuO4

One-
band

One-
band

t −0.461

t 0.119

|t /t| 0.26

U 4.37

V 1.09

|U/t| 9.48

La2CuO4

t −0.482

t 0.073

|t /t| 0.15

U 5.00

V 1.11

|U/t| 10.4

HgBa2CuO4

t 3z2 − r2 x2 − y2

3z2 − r2 0.013 0.033

x2 − y2 0.033 −0.426

t 3z2 − r2 x2 − y2

3z2 − r2 −0.003 0.000

x2 − y2 0.000 0.102

|tx2−y2/tx2−y2 | 0.24

x2−y2 − 3z2−r2 4.01

U 3z2 − r2 x2 − y2

3z2 − r2 6.92 4.00

x2 − y2 4.00 4.51

V 3z2 − r2 x2 − y2

3z2 − r2 0.76 0.83

x2 − y2 0.83 0.90

|U/tx2−y2 | 3z2 − r2 x2 − y2

3z2 − r2 16.2 9.4

x2 − y2 9.4 10.6

La2CuO4
Two-
band

Two-
band

t 3z2 − r2 x2 − y2

3z2 − r2 −0.008 0.057

x2 − y2 0.057 −0.389

t 3z2 − r2 x2 − y2

3z2 − r2 −0.013 0.000

x2 − y2 0.000 0.136

|tx2−y2/tx2−y2 | 0.35

x2−y2 − 3z2−r2 3.74

U 3z2 − r2 x2 − y2

3z2 − r2 7.99 4.91

x2 − y2 4.91 5.48

V 3z2 − r2 x2 − y2

3z2 − r2 1.43 1.50

x2 − y2 1.50 1.56

|U/tx2−y2 | 3z2 − r2 x2 − y2

3z2 − r2 20.5 12.6

x2 − y2 12.6 11.6

HgBa2CuO4

Three-
band

tdp 1.257

tpp 0.751

Δdp 2.416

Udd 8.84

Vdd 0.80

Vdp 1.99

Upp 5.31

Vpp 1.21

|Udd/tdp| 7.03

La2CuO4

Three-
band

tdp 1.369

tpp 0.754

Δdp 3.699

Udd 9.61

Vdd 1.51

Vdp 2.68

Upp 6.13

Vpp 1.86

|Udd/tdp| 7.02

II. METHOD

A. Outline

1. Goal: low-energy effective Hamiltonian

Our low-energy effective Hamiltonians for copper-oxide
superconductors based on the cGW and SIC have the form

HcGW -SIC
eff

=
∑
ij

∑
�1�2σ

tcGW -SIC
�1�2σ

(Ri − Rj )d†
i�1σ

dj�2σ

+ 1

2

∑
i1i2i3i4

∑
klmnσηρτ

{
Wr

�1�2�3�4σηρτ

(
Ri1 , Ri2 , Ri3 , Ri4

)

× d
†
i1�1σ

di2�2ηd
†
i3�3ρ

di4�4τ

}
. (1)

Here, the single-particle term is represented by

tcGW -SIC
�1�2σ

(R) = 〈
φ�10

∣∣H cGW -SIC
K

∣∣φ�2 R
〉
, (2)

and the interaction term is given by

Wr
�1�2�3�4σηρτ

(
Ri1 , Ri2 , Ri3 , Ri4

)
= 〈

φ�1 Ri1
φ�2 Ri2

∣∣H cGW -SIC
Wr

∣∣φ�3 Ri3
φ�4 Ri4

〉
, (3)

where H cGW -SIC = H cGW -SIC
K + H cGW -SIC

Wr is the Hamiltonian
in the continuum space obtained after the cGW and SIC
treatments to the Kohn-Sham (KS) Hamiltonian. tcGW -SIC rep-
resents transfer integral of the maximally localized Wannier
functions (MLWF’s) [19,20] based on the cGW approxima-
tion supplemented by the SIC. Here, φ�R is the MLWF of
the �th orbital localized at the unit cell R. We will show
details of the cGW -SIC later. Here, d

†
i�σ (di�σ ) is a creation
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(annihilation) operator of an electron with spin σ in the �th
MLWF centered at Ri .

The dominant part of the screened interaction Wr has the
form

U�1�2σρ (Ri − Rj ) = Wr
�1�1�2�2σσρρ (Ri , Ri , Rj , Rj ) (4)

for the diagonal interaction including the onsite intraorbital
term U� = U��σ−σ (Ri − Rj = 0) and the spin-independent
onsite interorbital terms U ′

�1�2
= U�1�2σρ (Ri − Rj = 0) (for

�1 �= �2) as well as spin-independent intersite terms Vij�1�2 =
U�1�2σρ (Ri − Rj ), where we assume the translational invari-
ance. In addition, the exchange terms

J�1�2σρ (Ri − Rj ) = Wr
�1�1�2�2σρρσ (Ri , Ri , Rj , Rj )

= Wr
�1�2�1�2σρρσ (Ri , Rj , Ri , Rj ) (5)

have non-negligible contributions, particularly for the onsite
terms where Ri = Rj . Other off-diagonal terms are in general
smaller than 50 meV in our result of the cuprate superconduc-
tors and mostly negligible. For the detailed formalism of the
derivation, readers are referred to Refs. [16,18].

2. Basic downfolding scheme

We start from the conventional local density approximation
(LDA) for the global band structure, which is justified because
strong correlation effects and quantum fluctuations far from
the Fermi level are weak. For the central part near the Fermi
level, we later consider methods beyond LDA. Our LDA
calculation is based on the full potential linearized muffin tin
orbital (FP-LMTO) method [21].

To remove the double counting of the Coulomb exchange
contributions Vxc, we completely subtract the exchange cor-
relation contained in the Kohn-Sham energy εLDA obtained
by the LDA calculation and replace it with the cGW cal-
culation ��(q, ω) for the effective single-particle dispersion
Teff (q, ω) as

Teff (q, ω) = εDFT − Vxc(q ) + ��(q, ω), (6)

where the self-energy effects are taken into account only for
those containing the contribution from outside of the target
low-energy effective Hamiltonian, because the self-energy in
the effective Hamiltonian will be considered later by more
refined methods beyond GW .

More specifically, since we derive three effective Hamil-
tonians, we employ two steps for an efficient derivation.
First, we derive the effective Hamiltonians for 17 bands near
the Fermi level whose main components are from 5 Cu 3d

orbitals, and 3 oxygen 2pσ orbitals at 2 O atoms each in
the CuO2 plane and at 2 other out-of-plane O atoms each
above and below Cu in a unit cell. In fact, the 17 bands
near the Fermi level are relatively well separated from other
high-energy bands (namely, bands far from the Fermi level)
and the 17-band Hamiltonians offer a good base for the
next step. Then, thanks to the chain rule [11,15], we derive
three different types of effective Hamiltonians successively
from the 17-band effective Hamiltonian. We abbreviate the
electronic degrees of freedom outside the 17 bands as H and
those of 17 bands M, which excludes the final target space
L for the low-energy effective Hamiltonian. We also employ
the abbreviation N for the electronic degrees of freedom

H

H

L

M

N=L+M

FIG. 2. Hierarchical structure in the procedure of the downfold-
ing. The black dashed bands H in the high energy part are first
downfolded to the renormalized 17 bands described by N. Then the
M bands (blue thin bands) among N are eliminated and renormalized
into the final low-energy effective Hamiltonian constructed from L
(red thick bands). Here, an example of the procedure to derive a
one-band Hamiltonian is shown.

consisting of both of L and M. The hierarchical structure
described above is shown in Fig. 2.

a. From full Hilbert space to 17-band subspace. Let us
first describe the first cGW scheme [16,18] to derive the 17-
band effective Hamiltonian for N near the Fermi level. After
removing the exchange correlation potential contained in the
LDA calculation, we first perform the full GW calculation for
the 17 bands. This GW scheme allows to completely remove
the double counting of the correlation effect arising from
the exchange correlation energy in LDA. Here, the full GW

calculation takes into account the self-energy effect calculated
using the fully screened interaction W including the screening
by electrons in all the bands. The reason why we use the
full GW is that the screening from the 17 bands taken into
account later on is better counted by using its renormalized
level.

In the present work, except La 4f band in La2CuO4, we
retain the LDA dispersion for the bands other than the 17
bands, because their renormalization has few effects on the
final low-energy effective Hamiltonian. For the La 4f band in
La2CuO4, it is known that the LDA calculation qualitatively
fails in counting its correlation effects and the insulating
nature [6–8], which is also related to the fact that the LDA
incorrectly gives the level too close to the Fermi level [22].
Then we first perform the one-shot GW calculation for the La
4f band before the full GW calculation for the 17 bands.

We then perform the cGW calculation for the 17 bands,
where the self-energy is calculated from the full GW Green’s
function G(GW ) for the 17 bands and the LDA Green’s func-
tion for the other high-energy bands. Note that the full GW

Green’s function G(GW ) is calculated from the LDA Green’s
function G(LDA) and the screened interaction W given from
the LDA Green’s function as W = v/(1 − P (LDA)v) for the
bare Coulomb interaction v and the polarization P LDA =
−iG(LDA)G(LDA). After disentanglement between the H and
N bands by the conventional method [23], we assume that the
noninteracting Green’s function G(GW ) is block-diagonal and
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can be decomposed into

G(GW ) = G
(GW )
ll |L〉〈L| + G(GW )

mm |M〉〈M|
+G

(LDA)
hh |H 〉〈H |, (7)

where |H 〉, |M〉, and |L〉 represent the respective subspaces.
We use the notation Gab = −〈T ca (τ )c†b〉, where a, b denote
elements either h, m, or l. Here, h, m, and l represent bands
belonging to H, M, and L degrees of freedom, respectively.
We also introduce Wabcd for the coefficient of the interaction
term c

†
acbc

†
ccd . We calculate the partially screened Coulomb

interaction WN that contains only the screening contributed
from the H space [16,18].

Then with the notation |N〉 (n) for the subspace containing
|L〉 and |M〉 (l and m) together, the constrained self-energy at
this stage, �H is described from the full GW self-energy

� = �nn + �nhGhh�hn, (8)

where

�nh(q, ω) = [
G(GW )

nn Wnnnh

]
(q, ω)

+G
(LDA)
hh Wnhhh(q, ω), (9)

�nn(q, ω) = [
G(GW )

nn Wnnnn

]
(q, ω)

+ [
G

(LDA)
hh Wnhhn

]
(q, ω), (10)

as

�Hnn′ (q, ω) = �nn′ (q, ω)

−
∑
n1,n2

[
G(GW )

n1n2
Wnn1n2n′

]
(q, ω). (11)

In Eqs. (9) and (10), the right-hand side terms are the only
nonzero terms because G is assumed that it does not have
off-diagonal element between N and H. The off-diagonal
part can be ignored because they are higher-order terms in
the GW scheme (see also the reason for ignoring the off-
diagonal part) [18]. Here, the notation [GW ](q, ω) represents
the convolution

[GW ](q, ω) =
∫

dω′dq ′G(q ′, ω′)W (q + q ′, ω + ω′). (12)

In the present study, we neglect the second term in the right-
hand side of Eq. (8) because it is small higher-order term. The
first term in Eq. (10) is excluded to avoid double counting
because this is the term to be considered in the low-energy
solver.

If one wishes to construct a low-energy Hamiltonian by
reducing to the static effective interaction, this constrained
self-energy �H(q, ω) is supplemented by the constrained self-
energy �

dyn
H (q, ω) arising from the frequency-dependent part

of the screened interaction [16–18] described by

�
dyn
H = G(GW )

nn W
dyn
N . (13)

Here, W
dyn
N is defined by

W
dyn
N (q, ω) ≡ W (q, ω) − WN(q, ω), (14)

where W is the fully screened interaction in the RPA level as

W (q, ω) = v(q )

1 − P (q, ω)v(q )
. (15)

WN(q, ω) is the “fully screened interaction” within the N
space,

WN(q, ω) = WH(q, ω = 0)

1 − PN(q, ω)WH(q, ω = 0)
. (16)

(If one solves the frequency dependent effective interaction as
it is in the Lagrangian form, this procedure is not necessary.)
Here, WH is the partially screened interaction obtained from
the cRPA in the spirit of excluding the polarization within the
17 bands. Namely,

WH(q, ω) = v(q )

1 − PH(q, ω)v(q )
, (17)

where the wave-number (q) dependent bare Coulomb inter-
action v is partially screened by the partial polarization PH.
Here, PH is defined in terms of the total polarization P by
excluding the intra-N-space polarization PN: PH ≡ P − PN.
PN involves only screening processes within the N space.
Namely, in the cRPA, the polarization without low-energy
N-N transition PH is estimated as

−PH = iGG − iGNGN = iGNGH + iGHGN + iGHGH,

(18)

where the whole Green’s function G is given by the sum of
the low- and high-energy propagators estimated by the GW

for GN and by the LDA for GH, respectively. Then in Eq. (16),
WH(q, ω = 0) plays the role of “bare interaction” within the
N space. Eventually, W

dyn
N is the frequency-dependent part

of the interaction that would be missing if the 17-band N
part were solved within the GW approximation. (See the
horizontal-stripped area in Fig. 3, see also Fig. 1 in Ref. [18].)

Here, we note that, instead of the dynamical part W
dyn
N

in Eq. (14), we could take WH(q, ω) − WH(q, ω = 0) as a
naive choice of the dynamical part, which is depicted as
the vertical-stripped area. However, Eq. (14) is expected to
express the dynamical part more accurately because Eq. (14)
takes into account the RPA level fluctuations (though not
perfect) beyond WH(q, ω) − WH(q, ω = 0). First, we note
that the interaction part of effective Hamiltonians we derive
must be expressed in the form of screened but static Coulomb
interactions. Therefore the dynamical part of the Coulomb
interactions due to the screening from the high-energy degrees
of freedom is taken into account as the self-energy correction.
Now, W is the fully screened dynamical interaction in the
RPA level and WN is the screened interaction if the effective
Hamiltonian with the static interaction WH(q, ω = 0) would
be solved in the same RPA level. Then, the difference between
W and WN, which is nothing but W

dyn
N , is the part we ignore

when we solve the effective Hamiltonian with the static inter-
action WH(q, ω = 0) by the RPA. Therefore W

dyn
N should be

taken into account as the self-energy correction in the present
downfolding scheme.]
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Thus the constrained renormalized Green’s function for the 17-band effective Hamiltonian is described by

GN(ω) = I

ωI − (
H LDA − V xc + �H + �

dyn
H

) ≈ ZH(εGW )

ωI − [
H LDA + ZcGW

H (εGW )
(−V xc + (

�H + �
dyn
H

)
(εGW )

)] ,

≈ I

ωI − ZcGW
H (0)

(
H LDA − V xc + Re

(
�H + �

dyn
H

)
(0)

) , (19)

ZcGW
H (ε) =

{
I − ∂

(
Re�H + Re�dyn

H

)
∂ω

∣∣∣∣
ω=ε

}−1

, (20)

where we have suppressed writing the explicit wave-number
and orbital dependence and εGW is the band energy by the
GW calculation. Then the one-body part of the static effective
Hamiltonian for the 17 bands in the cGW is given by [16]

H cGW
NK =

∑
n1n2

H̃ cGW
NKn1n2

,

H̃ cGW
NKn1n2

=
∑

q

ZcGW
Hn1n2

(q, ε = 0)H cGW -H
NK (q ), (21)

H̃ cGW -H
NKn1n2

(q ) = H LDA
n (q )δn1n2 − V xcn1n2(q )

+ Re
(
�Hn1n2 + �

dyn
Hn1n2

)
(q, ω = 0), (22)

which is represented by the first quantization form in the
continuum space.

The effective interactions for the 17 bands have also been
calculated by using cRPA [11,15], where effects of polariza-
tion contributing from the other bands are taken into account
as a partially screened interaction. The partially screened

ω

W
WH

W WN

W

0

W (ω=0)
=W (ω=∞)

H
N

v

FIG. 3. Schematic frequency dependence of effective interaction
screened from bare interaction v. Other interactions are obtained
from full RPA (GW ) (W ), cRPA (WH), and screened interaction
by RPA (WN) within the low-energy effective Hamiltonian at the
effective interaction WH(ω = 0). The vertical stripped area repre-
sents the dynamical part of cRPA-screened interaction WH, which
is not contained in the effective Hamiltonian with the static inter-
action WH(ω = 0). This part requires additional treatments. Instead
of the vertical-stripped area, the horizontal-stripped area, W − WN

[Eq. (14)], can be regarded as a better choice for the dynamical part
to be treated additionally (see the text).

Coulomb interaction for the 17 bands is given by

WNn1n2n3n4σηρτ

(
Ri1 , Ri2 , Ri3 , Ri4

)
= 〈

φN
n1 Ri1

φN
n2 Ri2

∣∣WN(ω = ∞)
∣∣φN

n3 Ri3
φN

n4 Ri4

〉
, (23)

where φN
nR represents the MLWF for the 17 bands (the orbital

index n runs from 1 to 17). Note that WN(ω = ∞) is nothing
but WH(ω = 0) (see Fig. 3).

Then the 17-band cGW effective Hamiltonian for the
lattice fermions in the second-quantized Wannier orbitals
representation is given by

HcGW
N = HcGW

NK + HcGW
NW , (24)

HcGW
NK =

∑
ij

∑
n1n2σ

tcGW
Nn1n2σ

(Ri − Rj )d†
in1σ

djn2σ , (25)

HcGW
NW

= 1

2

∑
i1i2i3i4

∑
n1n2n3n4σηρτ

{
WNn1n2n3n4σηρτ

(
Ri1 , Ri2 , Ri3 , Ri4

)

× d
†
i1n1σ

di2n2ηd
†
i3n3ρ

di4n4τ

}
. (26)

Here, the single-particle term is represented by

tcGW
Nn1n2σ

(R) = 〈
φn10

∣∣H cGW
NKn1n2

∣∣φn2 R
〉
. (27)

In addition, we supplement in the single-particle term, the
self-interaction correction (SIC) to recover the cancellation
realized in LDA. Since we subtracted the exchange corre-
lation energy, the cancellation with the counterpart of the
Hartree term becomes violated. To recover the cancellation,
we impose the correction following Ref. [16]. The SIC in
the 17-band degrees of freedom is U on-site

Nn nNnGW/2, where
U onsite

Nn = WNnnnnσσ−σ−σ (R, R, R, R) is the onsite effective
interaction for the band n and nNnGW is the occupation number
of the nth band for the 17 bands including up and down
spins in the GW calculation. Then the cGW -SIC effective
Hamiltonian for the 17 bands is given by

HcGW -SIC
N = HcGW -SIC

NK + HcGW
NW , (28)

HcGW -SIC
NK = HcGW

NK −
∑
inσ

ZcGW
Hn (q =ω=0)U onsite

n

d
†
inσ dinσ

2
.

(29)

The renormalization factor ZcGW
Hn is needed to renormalize

the frequency-dependent part of the interaction into a static
effective Hamiltonian [16].
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An advantage of the MACE downfolding scheme in the
procedure of deriving low-energy effective Hamiltonian is that
the degrees of freedom retained in the low-energy effective
Hamiltonians for the electrons near the Fermi level (electrons
in the target bands) can be reduced progressively from the
effective Hamiltonian containing larger number of bands to
smaller, thanks to the chain rule of the cRPA in a controlled
manner [11].

By using this sequential downfolding scheme, we de-
rive three types of effective Hamiltonians from the 17-band
effective Hamiltonians for the two compounds. The three
types are for the electrons mainly originated from (1) the
antibonding orbital generated from Cu 3d x2 − y2 orbitals
strongly hybridized with O 2pσ orbitals (one-band effective
Hamiltonian), (2) the antibonding orbital in (1) together with
the Cu 3d 3z2 − r2 orbital hybridized with the apex oxygen pz

orbital (two-band effective Hamiltonian), and (3) Cu 3d x2 −
y2 orbitals and two O 2pσ orbitals aligned in the direction to
Cu (three-band effective Hamiltonian).

The degrees of freedom (bands) contained in these final
Hamiltonians are called the target degrees of freedom (target
bands). Although it is possible to derive Hamiltonians con-
sisting of more than three bands such as four- or six-orbital
Hamiltonians, additional orbitals are fully occupied even after
the correlation effects are taken into account and expected to
play minor role in the low-energy physics. Thus we mainly
consider the above three types of low-energy effective Hamil-
tonians.

b. From 17-band subspace to low-energy effective Hamil-
tonians. After restricting the Hilbert space to the 17-band
Hamiltonian, we again employ the cGW scheme [16,18,24]
that additionally accounts for the self-energy within the 17-
band Hilbert space. However, we exclude that arising solely
from the target bands to remove the double counting because
it will be counted when the effective Hamiltonian is solved
afterwards. In this cGW scheme, the energy levels of the 17
bands are given from the former cGW level given in Eq. (25)
as the starting point. Through the cGW scheme, the fully
screened interaction is again employed in the calculation of
the self-energy. The constrained self-energy of the target band
is further improved by considering the renormalization effect
from the frequency dependent part of the effective interaction
based on the cGW scheme in the same way as before [16,18].

This two-step procedure is equivalent to the single proce-
dure to directly derive the three Hamiltonian. In this second
step, we restrict the electronic Hilbert space into the N space.
Then one simply needs to replace H with M, N with L, and
v with WH(ω = 0) in the procedure from Eq. (8) to (17).
[In Fig. 3, v,WH, and WN should be replaced with WH(ω =
0),WM, and WL, respectively.]

More concretely, the low-energy Hamiltonian includes the
self-energy effects from the M degrees of freedom similarly
to Eq. (22) as

H cGW
LK =

∑
l1l2

H̃ cGW
LKl1l2

,

H̃ cGW
LKl1l2

=
∑

q

ZcGW
HMl1l2

(q, ε = 0)
(
H̃ cGW -H

NKl1l2
(q )

+ Re
(
�Ml1l2 + �

dyn
Ml1l2

)
(q, ω = 0)

)
, (30)

where �Ml1l2 is the constrained self-energy that excludes that
arising from the L degrees of freedom. Namely, we utilize

�Nl1l2 = �l1l2 +
∑

m1,m2

�l1m1Gm1m2�m2l2 , (31)

with

�lm(q, ω) =
∑
l1l2

[
G

(GW )
l1l2

Wll1l2m

]
(q, ω)

+
∑
m1m2

[
G(GW )

m1m2
Wlm1m2m

]
(q, ω), (32)

�ll (q, ω) =
∑
l1l2

[
G

(GW )
l1l2

Wll1l2l

]
(q, ω)

+
∑
m1m2

[
G(GW )

m1m2
Wlm1m2l

]
(q, ω), (33)

where l in �ll of Eq.(33) represents inclusive terms containing
the off-diagonal elements within the L space as in Eqs. (8)–
(10). Then, in contrast to Eq. (8), we take into account the
second term in Eq. (31) but similarly exclude the first term in
Eq. (33). Then �Mll′ is given by

�Mll′ (q, ω) = �Nll′ (q, ω) −
∑
l1l2

[
G

(GW )
l1l2

Wll1l2l′
]
(q, ω),

(34)
The renormalization factor in Eq. (30) is given by

ZcGW
HM (ε)

=
[
I − ∂

(
Re�H + Re�dyn

H + Re�M + Re�dyn
M

)
∂ω

∣∣∣∣
ω=ε

]−1

.

(35)

In the same way as Eqs. (13) and (14), we use the following
relations:

�
dyn
M = G

(GW )
ll W

dyn
L . (36)

Here, W
dyn
L is defined by

W
dyn
L (q, ω) ≡ WN(q, ω) − WL(q, ω). (37)

(See the horizontal-stripped area in Fig. 4.)
The single-particle term is then

HcGW
LK =

∑
ij

∑
l1l2σ

tcGW
Ll1l2σ

(Ri − Rj )d†
il1σ

djl2σ , (38)

where by using Eq. (30),

tcGW
Ll1l2σ

(R) = 〈
φL

l10

∣∣H cGW
LK

∣∣φL
l2 R

〉
(39)

has the form in Eq. (2).
We also consider the self-interaction correction as

HcGW -SIC
LK

= HcGW
LK −

∑
ilσ

ZcGW
HMl (q = ε = 0)U onsite

l

d
†
ilσ dilσ

2
. (40)

The renormalization factor ZcGW
HMl is again needed to renor-

malize the frequency-dependent part of the interaction
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ω

W
WM

W WL

W

0

W (ω=0)H

W (ω=0)
=W (ω=∞)=W r

M

L

N

FIG. 4. Schematic frequency dependence of effective interaction
screened within the 17 bands. Within the 17 bands, WH(ω = 0) plays
the role of the bare interaction and other interactions are obtained
from full RPA (GW ) (WN), cRPA (WM), and screened interaction by
RPA (WL) within a low-energy effective Hamiltonian at the effective
interaction WM(ω = 0). The vertical and horizontal stripped area
have similar meanings to those in Fig. 3.

into a static effective Hamiltonian [16]. Here, U onsite
Ll =

WLllllσσ−σ−σ (R, R, R, R) is the onsite effective interaction
for the band l.

For the interaction parameter of the target effective Hamil-
tonian WLl1l2l3l4σηρτ (Ri1 , Ri2 , Ri3 , Ri4 ), we apply the cRPA
again now within the 17 band Hamiltonian. Our task here is
the procedure similar to that from Eqs. (15) to (17), but replace
H and N with M and L, respectively, where L represents the
target bands. Thanks to the chain rule, this derivation of the
effective interaction looks the same as the direct single step
cRPA for the whole bands. However, since the energy levels
are replaced with the full GW energy levels within the 17
bands, the effective interaction is more refined by taking into
account the self-energy effect for the 17 bands.

Then

WM(q, ω) = WH(q, ω = 0)

1 − PM(q, ω)WH(q, ω = 0)
, (41)

WL(q, ω) = WM(q, ω = 0)

1 − PL(q, ω)WM(q, ω = 0)
, (42)

are satisfied within the N Hilbert space.
Now the goal of our low-energy cGW effective Hamilto-

nian is given by

HcGW -SIC
L = HcGW -SIC

LK + HcGW
LW , (43)

HcGW
LW = 1

2

∑
i1i2i3i4

∑
l1l2l3l4σηρτ

{
Wr

l1l2l3l4σηρτ

(
Ri1 , Ri2 , Ri3 , Ri4

)

× d
†
i1l1σ

di2l2ηd
†
i3l3ρ

di4l4τ

}
, (44)

where the single-particle term HcGW -SIC
LK is given by Eqs. (38)

and (40) in the form Eq. (2) and the interaction term has the

form (3) given by

Wr
l1l2l3l4σηρτ

(
Ri1 , Ri2 , Ri3 , Ri4

)
= 〈

φl1 Ri1
φl2 Ri2

∣∣WL(ω = ∞)
∣∣φl3 Ri3

φl4 Ri4

〉
. (45)

If one wishes to solve the low-energy Hamiltonian by
the dynamical mean-field approximation, the nonlocal part of
the interaction is hardly taken into account. The readers are
referred to Ref. [18] for ways of renormalizing the nonlocal
interaction for this purpose.

Now we reached the effective Hamiltonian (43) in the form
of Eq. (1). This offers effective Hamiltonians for the L degrees
of freedom to be solved by solvers beyond the DFT and GW

schemes.

B. Computational conditions

For the crystallographic parameters, we employ the experi-
mental results reported by Ref. [25] for HgBa2CuO4 and those
reported by Ref. [26] for La2CuO4. For the Hg compound, we
take a = 3.8782 Å and c = 9.5073 Å. The height of Ba atom
measured from CuO2 plane is 0.2021c and the apex oxygen
height is 0.2940c. The lattice constants we used for the La
compounds are a = 3.7817 Å and c = 13.2487 Å, while La
and apex oxygen heights measured from the CuO2 plane are
0.3607c and 0.1824c, respectively. Other atomic coordinates
are determined from the crystal symmetry.

Computational conditions are as follows. The band struc-
ture calculation is based on the full-potential LMTO im-
plementation [27]. The exchange correlation functional is
obtained by the local density approximation of the Cepeley-
Alder type [28]) and spin-polarization is neglected. The
self-consistent LDA calculation is done for the 12 ×
12 × 12 k-mesh. The muffintin (MT) radii are as
follows: RMT

Hg(HgBa2CuO4) = 2.6 bohr, RMT
Ba(HgBa2CuO4) = 3.6

bohr, RMT
Cu(HgBa2CuO4) = 2.15 bohr, RMT

O1(HgBa2CuO4) = 1.50
bohr (in CuO2 plane), RMT

O2(HgBa2CuO4) = 1.10 bohr (oth-
ers), RMT

La(La2CuO4) = 2.88 bohr, RMT
Cu(La2CuO4) = 2.09 bohr,

RMT
O1(La2CuO4) = 1.40 bohr (in CuO2 plane), and RMT

O2(La2CuO4) =
1.60 bohr (others). The angular momentum cutoff is taken at
l = 4 for all the sites.

The cRPA and GW calculations use a mixed basis
consisting of products of two atomic orbitals and interstitial
plane waves [29]. In the cRPA and GW calculation, the 6
× 6 × 3 k mesh is employed for the Hg compound and
the 6 × 6 × 4 k-mesh is employed for the La compound.
By comparing the calculations with the smaller k-mesh, we
checked that these conditions give well converged results. For
the Hg/La compound, we include bands in [−26.4: 122.7] eV
(193 bands)/[−67.6: 126.6] eV (134 bands) for calculation
of the screened interaction and the self-energy. For entangled
bands, we disentangle the target bands from the global KS
bands [23].

III. RESULT

A. HgBa2CuO4

Band structures of HgBa2CuO4 obtained by the DFT cal-
culations are shown in Fig. 5. The 17 bands originating from
the Cu 3d and O 2p orbitals exist near the Fermi level as
shown in Fig. 6. The octahedral crystal field of the O atoms
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FIG. 5. Electronic band structures of HgBa2CuO4 obtained by
the LDA. The zero energy corresponds to the Fermi level.

splits the energy of the Cu 3d orbital into lower t2g and slightly
split eg . Since the electronegativity of Cu is relatively large,
the Cu eg orbitals form strong σ covalent bonds with the O
2p. The bottom/top of the 17 bands at the X point is the σ

bonding/antibonding state between the Cu x2 − y2 orbital and
the O 2p orbital. The s bands originating from Hg and Ba exist
above the 17 bands and are partially hybridized with the Cu
x2 − y2 antibonding band around the X point.

In order to improve the band structure from the LDA, we
construct the 17 Wannier functions from the 20 bands near
the Fermi level (17 bands originating from the Cu 3d the O
2p orbitals and unoccupied lowest three bands) and perform
the GW calculation for the 17 bands near the Fermi level.
The Fermi level for the 17 bands is defined by the occupation
number. Bands other than the 17 bands are diagonalized
again [23]. Since the hybridization between the s band and the
17 bands is somewhat large, we set the inner window for the
Wannier function from the bottom of the 17 bands to the Fermi
level. If the inner window is not set, a large Fermi surface
originating from the s orbitals appears. Due to self-energy
correction of the GW approximation (GWA), the difference
between onsite potentials of the Cu 3d orbitals and the O
2p orbitals with different localization strengths increases and
the bandwidth of the whole 17 band becomes larger. Such
a change in the band structure reduces the screening effect.
Moreover, each bandwidth shrinks by self energy correction.
These two effects, both the reduction of the screening effect
and the shrinkage of the bandwidth, make the correlation of
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FIG. 6. Electronic band structures of HgBa2CuO4 obtained by
the GWA (red solid line). Self-energy is calculated only for 17 bands
originating from the Cu 3d and O 2p orbitals near the Fermi level.
The zero energy corresponds to the Fermi level. For comparison, the
LDA band structure is also given (black dotted line).

the system stronger. Below we will discuss the derivations
of three types of effective Hamiltonians, two-band effective
Hamiltonian originating from the eg orbitals, one-band ef-
fective Hamiltonian originating from the Cu x2 − y2 orbital,
and three-band effective Hamiltonian originating from the
Cu x2 − y2 orbital and the two O 2p orbitals. Recent self-
consistent GW calculation [30] indicates narrower bands than
the present GW results, because of better consideration of the
correlation effect, while the present study aims at much better
framework by qualitatively improving the treatment of the
strong correlation effect by leaving it for low-energy solvers.

1. Two-band Hamiltonian

To obtain the two-band effective Hamiltonian originating
from the Cu eg orbitals, we construct the maximally localized
Wannier functions disentangled from the other 17 bands.
Ignoring the effect of hybridization whose energy scale is
smaller than that of the effective interaction of the x2 − y2 an-
tibonding orbital, we set the energy window for Wannier func-
tion as wide as possible (excluding bottom three bands com-
pared to the case in the GWA for 17 bands). The three bands
contain those mainly originating from the bonding and non-
bonding orbitals resulted from the Cu x2 − y2 and in-plane
O 2pσ orbitals. By excluding the three bands, we are able to
construct with the correct character of the antibonding band.
The parameters of the main x2 − y2 orbital are highly insen-
sitive to the window width. The effective interaction changes
by less than 5% even when we change the number of bands
in the window by two or three. On the other hand, although
the parameters of the 3z2 − r2 orbital change by the defini-
tion of the window, as will be described later, the screening
effect from the 3z2 − r2 orbital to the x2 − y2 orbital is very
small and the parameters for the x2 − y2 orbital change only
little between different choices of the windows. Examples of
Wannier functions of the two-band Hamiltonian are shown in
Figs. 7(a) and 7(b) and their spreads are listed in Ref. [31].

As an alternative choice for the two-band Hamiltonian,
one can exclude the bonding orbital generated from the hy-
bridization of the 3z2 − r2 and the apex oxygen 2pz orbitals to
constitute one of the two bands explicitly by the antibonding
orbital constructed from the Cu 3z2 − r2 and the apex oxygen
2pz orbitals. For this choice, we exclude the lowest 6 bands
among 17 bands for constructing the Wannier orbitals so that
the bonding orbital is excluded. This generates substantially
smaller interactions for the 3z2 − r2 band. The resultant pa-
rameters are listed in Appendix. We show it only for the La
compound because of the following reason: the two choices
of the two-band Hamiltonian may not lead to an appreciable
difference in the final result because the contribution from the
3z2 − r2 band is limited in the Hg compound but for the La
compound, it is a subtle issue as we discuss in Sec. IV A.
In principle, the final solution for the physical properties is
expected to be insensitive to the two choices.

The band structure originating from the Wannier function
is shown in Fig. 8. The upper band around the Fermi level
originates from the x2 − y2 orbital, and the lower band origi-
nates from the 3z2 − r2 orbital. The x2 − y2 orbital extending
in the CuO2 plane has a large bandwidth, while the 3z2 − r2

orbital has a flat band structure.
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(d)(c) Cu x2-y2

Cu x2-y2 anti-bonding(b)(a) Cu 3z2-r2

O 2p

FIG. 7. Isosurface of the maximally localized Wannier function
for ±0.03 a.u for (a) the Cu 3z2 − r2 orbital and (b) the Cu x2 − y2

antibonding orbital of two-band Hamiltonian and (c) the Cu x2 −
y2 orbital and (d) the O 2p orbital of three-band Hamiltonian in
HgBa2CuO4. The dark shaded surfaces (blue) indicate the positive
isosurface at +0.03 and the light shaded surfaces (red) indicate
−0.03.

The one-body parameters obtained as expectation values
in the GWA is shown in Table II. Note that the signs of
the transfers for crystallographically equivalent pairs are de-
termined from the signs of orbitals in the convention shown
in Fig. 9. The difference of the onsite potential between the
eg orbitals is 5.0 eV. The position of apex oxygen varies
depending on the type of the block layer. In the Hg system,
it makes the crystal field splitting of the eg orbits large. The
nearest-neighbor hopping of the x2 − y2 orbital is −0.43 eV,
and the next-nearest-neighbor hopping is 0.10 eV. Since the
x2 − y2 orbital extends to the (100) and (010) directions, the
third neighbor hopping is somewhat large (−0.05 eV). All of
the hoppings of the 3z2 − r2 orbital are small. One of the
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2-band Hamiltonian (GWA)

Γ X D Γ

FIG. 8. Electronic band structure of two-band Hamiltonian in the
GWA originating from the Cu eg Wannier orbitals for HgBa2CuO4.
The zero energy corresponds to the Fermi level. For comparison, the
17-band structure near the Fermi level in the GWA is also given
(black dotted line).

FIG. 9. Sign of the transfer integral between the Cu dx2−y2 and
O 2p orbitals for the three-band Hamiltonian for (a) the nearest-
neighbor hopping and (b) the next-nearest-neighbor hopping. Red
and blue colors show opposite signs of the wave function.

most important consequences expected from the parameters
of the two-band Hamiltonian is that the screening effect from
the 3z2 − r2 orbital to the x2 − y2 orbital would be very
small. The nearest-neighbor hopping between the different eg

orbitals is as small as 0.08 eV. In addition, both onsite and
next-nearest-neighbor hopping are exactly 0 from the symme-
try reason. Moreover, as mentioned above, the difference in
the onsite potential between the eg orbitals is not small, so the
polarization between the eg orbitals is very small. Then the
occupation number of the 3z2 − r2/x2 − y2 orbital is nearly
full/half-filling, respectively.

The band structure in the cGW+SIC is shown in Fig. 10;
the corresponding one-body parameters in the cGW+SIC are
listed in Table II. Since the cGW+SIC method considers
only the correlation effect (self energy) of the high-energy
contribution to remove the double counting of the correlation
effect between the low-energy degrees of freedom, the one-
body parameters are different from those obtained from the
expected value of the Wannier orbital calculated from the
full GW calculation. The difference of the onsite potential
becomes larger than that in the Wannier ’s expectation value
because of the absence of the correlation within the target
bands. Since the effective interaction is larger for the 3z2 − y2

orbital, it pushes up the 3z2 − y2 band more in the full GW

2-band Hamiltonian (cGW-SIC)
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FIG. 10. Electronic band structure of the two-band Hamiltonian
in the cGW -SIC originating from the Cu eg Wannier orbitals for
HgBa2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the band structure in the GWA is also given (black
dotted line).
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TABLE II. Transfer integral and effective interaction in the two-band Hamiltonian for HgBa2CuO4 (in eV). We show the transfer integral
in the GWA as well as in the cGW -SIC for comparison, while the effective interaction is same in both the GWA and the cGW -SIC. v and Jv

represent the bare Coulomb interaction/exchange interactions respectively. U (0) and J (0) represent the static values of the effective Coulomb
interaction/exchange interactions (at ω = 0). The index “n” and “nn” represent the nearest unit cell [1,0,0] and the next nearest unit cell [1,1,0],
respectively. The occupation number in the GWA is also given in this table.

t (GWA) (0,0,0) (1,0,0) (1,1,0) (2,0,0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 − 2.282 0.000 − 0.018 0.084 − 0.006 0.000 − 0.003 0.010
x2 − y2 0.000 0.144 0.084 − 0.453 0.000 0.074 0.010 − 0.051
t(cGW -SIC) (0,0,0) (1,0,0) (1,1,0) (2,0,0)

3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 − 3.811 0.000 0.013 0.033 − 0.003 0.000 0.000 0.002
x2 − y2 0.000 0.197 0.033 − 0.426 0.000 0.102 0.002 − 0.048

v U (0) Jv J (0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 24.348 18.672 6.922 3.998 0.808 0.726
x2 − y2 18.672 17.421 3.998 4.508 0.808 0.726

vn Vn(0) vnn Vnn(0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 3.669 3.922 0.764 0.833 2.657 2.696 0.486 0.502
x2 − y2 3.922 4.155 0.833 0.901 2.696 2.749 0.502 0.522
occ.(GWA) 3z2 − r2 x2 − y2

1.992 1.008

band structure, while in the cGW+SIC calculation such effect
is excluded. In addition to the increase of the onsite potential
difference, the nearest-neighbor hopping between the differ-
ent eg orbitals is reduced to less than half compared with
that in the Wannier’s expectation value, so that the screening
effect from the 3z2 − r2 orbital to the x2 − y2 orbital would
be almost negligible in the cGW+SIC Hamiltonian. The
parameters within the same orbital do not change so appre-
ciably. The nearest-neighbor and third-neighbor hoppings of
the x2 − y2 orbital are about the same as those calculated by
the Wannier ’s expectation value. The next-nearest-neighbor
hopping is, however, about 40% larger. The band originating
from the 3z2 − r2 orbital is flat as is the case with the Wannier
’s expectation value. More detailed parameters beyond 10
meV are listed in Ref. [31]. The longer ranged hoppings are
smaller than 10 meV.

The two-body parameters are also shown in Table II. The
bare onsite and intraorbital Coulomb interaction of the 3z2 −
r2/x2 − y2 orbital is 24/17 eV, respectively. The Coulomb
interaction is largely screened by bands other than the target
ones, and the energy scale is reduced by one order of magni-
tude. The effective interaction of the 3z2 − r2/x2 − y2 orbital
is 6.9/4.5 eV, respectively. The effective exchange interaction
is 0.73 eV. The effective interaction between adjacent sites
is about 20% (11%) of the onsite effective interaction for
the x2 − y2 (3z2 − r2) orbital. More detailed longer range
interactions beyond 50 meV are listed in Ref. [31]. The onsite
effective interaction over the absolute value of the nearest-
neighbor hopping is about 10, and the correlation effect of the
system is very strong. More detailed longer-range interactions
beyond 50 meV are listed in Ref. [31].

2. One-band Hamiltonian

We use the same Wannier function of the x2 − y2 or-
bital in the one-band Hamiltonian as that in the two-band

Hamiltonian. This is because the largest energy window for
the construction of the maximally localized Wannier orbital
by keeping the physically correct antibonding orbital for the
x2 − y2 orbital is the same as the two-band construction (the
14-band window). Unlike the two-band Hamiltonian, since
only the x2 − y2 orbital is disentangled from the entire band,
the hybridization between the 3z2 − r2 orbital and other or-
bitals except the x2 − y2 orbital is retained. The band structure
originating from the Wannier function of the x2 − y2 orbital is
shown in Fig. 11. This is exactly the same as that of the two-
band Hamiltonian. The corresponding one-body parameters
are listed in the upper row of Table III.

The band structure in the cGW is shown in Fig. 12. In
the case of the single-band Hamiltonian, there is no need to
consider SIC. The one-body parameter in the cGW+SIC and
the two-body parameter obtained from the cRPA are listed
in the second row group of Table III. Parameters for longer
ranged pairs up to the unit cell distance (3,3,0) are given

1-band Hamiltonian (GWA)
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FIG. 11. Electronic band structure of one-band Hamiltonian in
the GWA originating from the Cu dx2−y2 Wannier orbital for
HgBa2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the 17-band structure near the Fermi level in the GWA
is also given (black dotted line).
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TABLE III. Transfer integral and effective interaction of one-
band Hamiltonian for HgBa2CuO4 (in eV). We show the transfer
integrals in the GWA as well as in the cGW for comparison, while
the effective interactions are the same in both the GWA and the
cGW . v represents the bare Coulomb interaction. U (0) represents
the static values of the effective Coulomb interaction (at ω = 0). The
index “n” and “nn” represent the nearest unit cell [1,0,0] and the next
nearest unit cell [1,1,0], respectively.

t (GWA) (0,0,0) (1,0,0) (1,1,0) (2,0,0)
x2 − y2 0.164 −0.453 0.074 −0.051

t(cGW ) (0,0,0) (1,0,0) (1,1,0) (2,0,0)
x2 − y2 0.190 −0.461 0.119 −0.072

v U (0) vn Vn(0) vnn Vnn(0)
x2 − y2 17.421 4.374 4.155 1.093 2.749 0.736

in Ref. [31]. Beyond (3,3,0), one-body parameters are all
below 10 meV, and the two-body parts beyond (3,3,0) can
be estimated from the 1/r dependence both for Hg and La
compounds. The difference from the one-body parameters of
the x2 − y2 orbital for the two-band Hamiltonian is small.
This is because the polarization effect from the 3z2 − r2

orbital to the x2 − y2 orbital is significantly small from both
the symmetry and energy reasons, as is addressed in the above
analyses of the two-band Hamiltonian.

3. Three-band Hamiltonian

The three-band Hamiltonian consists of the Cu 3d and O
2p orbitals. We set the energy window for the maximally
localized Wannier functions the same as that in the previous
calculation of the GWA. The Wannier functions of the three-
band Hamiltonian are illustrated in Figs. 7(c) and 7(d) and
their spreads are listed in Ref. [31]. The three Wannier orbitals
are close to the Cu x2 − y2 and O 2p atomic orbitals.

The band structure calculated from the Wannier functions
is shown in Fig. 13. Although the Wannier functions are close
to the atomic orbitals, in the three-band Hamiltonian, bonding,
nonbonding, and antibonding bands generated from the Cu
x2 − y2 and the O 2p orbitals are naturally formed because
of the strong hybridization between the d and p orbitals.
The highest band closest to the Fermi level in the GWA
consists of the antibonding orbital constructed from the Cu

1-band Hamiltonian (cGW)
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FIG. 12. Electronic band structure of one-band Hamiltonian
in the cGW originating from the Cu dx2−y2 Wannier orbital for
HgBa2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the band structure in the GWA is also given (black
dotted line).
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FIG. 13. Electronic band structure of the three-band Hamiltonian
in the GWA originating from the Cu dx2−y2 and O 2p Wannier
orbitals for HgBa2CuO4. The zero energy corresponds to the Fermi
level. For comparison, the 17-band structure near the Fermi level in
the GWA is also given (black dotted line).

x2 − y2 and the O 2pσ orbitals. The lower two bands are the
O 2p nonbonding and bonding bands. At the � point, due
to the symmetry, the hybridization between the three orbitals
completely disappears and the O 2p band degenerates.

The corresponding one-body parameters of the Wannier
function are listed in the upper rows of Table IV. The dif-
ference in the onsite potentials between the Cu x2 − y2 and O
2p orbitals is 2.4 eV. The nearest-neighbor hopping between
the Cu x2 − y2 and O 2p orbitals reaches 1.26 eV, making a
large splitting of bonding and antibonding bands. The nearest-
neighbor hopping between the two nearest O 2p orbitals
is also large, 0.75 eV. The long-range hopping in the two
and one-band Hamiltonians has a relatively large amplitude
through the hybridization with the O 2p orbitals. In contrast,
in the three-band Hamiltonians, the direct long-range hopping
between the atomiclike Cu x2 − y2 orbital is relatively small.
The occupation number of the Cu x2 − y2/O 2p orbital is
∼1.4/1.8, respectively. The deviation from the full filling of
the occupancy number of the O 2p orbital arises from the
hybridization.

The band structure in the cGW+SIC is shown in Fig. 14.
The corresponding one-body parameters in the cGW+SIC
are listed in the second group of rows of Table IV. The
difference in the onsite potential between the Cu x2 − y2

and O 2p orbitals (2.4 eV) is nearly the same as that in
the GWA. The nearest-neighbor hopping between the Cu

3-band Hamiltonian (cGW-SIC)
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FIG. 14. Electronic band structure of the three-band Hamiltonian
in the cGW -SIC originating from the Cu dx2−y2 and O 2p Wannier
orbitals for HgBa2CuO4. The zero energy corresponds to the Fermi
level. For comparison, the band structure in the GWA is also given
(black dotted line).
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TABLE IV. Transfer integrals and effective interactions for the three-band Hamiltonian of HgBa2CuO4 (in eV). We show the transfer
integral in the GWA as well as in the cGW -SIC for comparison, while the effective interaction is the same in both the GWA and the
cGW -SIC. v and Jv represent the bare Coulomb and exchange interactions, respectively. U (0) and J (0) represent the static values of the
effective Coulomb and exchange interactions, respectively (at ω = 0). The index “n” and “nn” represent the nearest [1,0,0] and the next-nearest
sites [1,1,0], respectively. The occupation number in the GWA is also given in the bottom column “occu.(GWA)” in this Table.

t (GWA) (0,0,0) (1,0,0) (1,1,0) (2,0,0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 −1.597 −1.184 1.184 −0.014 −0.026 −0.016 0.020 0.004 −0.004 0.002 −0.005 −0.002
p1 −1.184 −3.909 −0.659 1.184 0.111 0.659 −0.016 0.039 0.003 0.026 −0.008 0.003
p2 1.184 −0.659 −3.909 −0.016 −0.003 −0.061 0.016 0.003 0.039 −0.002 0.006 −0.004
t(cGW -SIC) (0,0,0) (1,0,0) (1,1,0) (2,0,0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 −1.696 −1.257 1.257 −0.012 −0.033 −0.056 0.021 −0.012 0.012 −0.012 0.004 −0.003
p1 −1.257 −4.112 −0.751 1.257 0.181 0.751 −0.056 0.054 0.004 0.033 −0.006 0.004
p2 1.257 −0.751 −4.112 −0.056 −0.004 −0.060 0.056 0.004 0.054 −0.003 0.001 −0.004

v U (0) Jv J (0)
x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 28.821 8.010 8.010 8.837 1.985 1.985 0.063 0.063 0.048 0.048
p1 8.010 17.114 5.319 1.985 5.311 1.210 0.063 0.041 0.048 – 0.020
p2 8.010 5.319 17.114 1.985 1.210 5.311 0.063 0.041 0.048 0.020

vn Vn(0) vnn Vnn(0)
x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 3.798 8.010 3.339 0.804 1.985 0.650 2.706 3.339 3.339 0.380 0.545 0.544
p1 2.577 3.877 2.417 0.499 0.847 0.450 2.172 2.678 2.417 0.286 0.415 0.356
p2 3.339 5.319 3.601 0.650 1.210 0.705 2.172 2.417 2.678 0.286 0.356 0.414
occ.(GWA) x2 − y2 p1 p2

1.437 1.781 1.781

x2 − y2 and O 2p orbitals with the energy scale of 1 eV
exhibits several percent (∼70 meV) increase from the GWA
result and the nearest-neighbor hopping between the O 2p

orbitals also increases by 100 meV compared to that in the
GWA, which makes the energy splitting between the bonding
and antibonding states at the X point larger than that in the
GWA. Longer range hoppings in the cGW+SIC with the
energy scale of 10 meV also increase compared to those in
the GWA. Further neighbor hoppings larger than 10 meV are
listed in Ref. [31]. The two-body parameters are also listed
in Table IV. The effective onsite interaction of both the Cu
x2 − y2 and O 2p orbitals is reduced to about 30% of the bare
onsite interactions. The nearest-neighbor effective interaction
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FIG. 15. Electronic band structures of La2CuO4 as a starting
point of calculation, where the 4f band is raised up by the GW

self-energy after the LDA calculation. The zero energy corresponds
to the Fermi level.

between the Cu x2 − y2 and O 2p orbitals is large, about 2 eV.
The other interactions are 1 eV or less, and the further neigh-
bor interactions beyond the next-nearest neighbors gradually
decrease with approximately 1/r behavior and are listed in
Ref. [31].

B. La2CuO4

After calculating the GW self-energy to the 4f orbitals
(Fig. 15), band structures of La2CuO4 in the GWA for the
dp 17 orbitals near the Fermi level are calculated (Fig. 16).
The basic framework for the derivation is the same as the La
compound and we do not repeat it here.
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FIG. 16. Electronic band structures of La2CuO4 obtained by the
GWA for the dp 17 bands. The zero energy corresponds to the Fermi
level. For comparison, the 0th shot band structure shown in Fig. 15
is also given (black dotted line).
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Cu x2-y2 anti-bonding(b)Cu 3z2-r2

Cu x2-y2(c) (d) O 2p

(a)

FIG. 17. Isosurface of the maximally localized Wannier function
for ±0.03 a.u for (a) the Cu 3z2 − r2 orbital and (b) the Cu x2 − y2

antibonding orbital of the two-band Hamiltonian and (c) the Cu x2 −
y2 orbital and (d) the O 2p orbital of the three-band Hamiltonian in
La2CuO4. Notations are the same as Fig. 7.

1. Two-band Hamiltonian

For the two-band Hamiltonian, the Wannier functions are
illustrated in Figs. 17(a) and 17(b) and their spreads are listed
in Ref. [31]. The band structure obtained from the full GWA
is illustrated in Fig. 18, while the cGW -SIC results are shown
in Fig. 19. The choice of the window to construct the Wannier
orbital is more subtle than the case of the Hg compound, be-
cause the 3d3z2−r2 orbital may play more active role. Although
the window should be taken as large as possible to make
the Wannier orbital maximally localized, the “3d3z2−r2 band”
may not become the hybridized antibonding band. Here we
show the two-band Hamiltonian parameters derived from the
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2-band Hamiltonian (GWA)

FIG. 18. Electronic band structure of the two-band Hamiltonian
in the GWA originating from the Cu eg Wannier orbitals for
La2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the 17-band structure near the Fermi level in the GWA
is also given (black dotted line).

2-band Hamiltonian (cGW-SIC)
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FIG. 19. Electronic band structure of the two-band Hamiltonian
in the cGW -SIC originating from the Cu eg Wannier orbitals for
La2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the band structure in the GWA is also given (black
dotted line).

Wannier orbital excluding the apex oxygen 2pz atomic orbital
in the main text. Another choice where one of the Wannier
orbitals is constructed from the 2pz − 3d3z2−r2 antibonding
band is discussed in Appendix.

The obtained parameters for the two-band Hamiltonian is
listed in Table V. Here we show the results obtained from
the choice of 14 bands by excluding three bands among the
17 bands for the window to determine the Wannier orbital.
This means that the Wannier orbital for the antibonding band
constructed from the Cu 3dx2−y2 and in-plane oxygen 2pσ

band is employed, while the Cu 3d3z2−r2 band in the two-band
Hamiltonian is constructed by excluding the apex oxygen 2pz

orbital, because the 2pz orbital constitutes another Wannier
orbital orthogonal to the Cu 3d3z2−r2 Wannier orbital. In
Appendix, we list the parameters obtained from the two-band
Hamiltonian, in which one band is explicitly constructed from
the antibonding 3d3z2−r2 and the apex oxygen 2pz orbitals.
This is obtained by excluding the lowest seven bands among
the 17 bands for the construction window of the Wannier or-
bitals. The effective Hamiltonian parameters up to the relative
unit-cell coordinate (3,3,0) are listed in Ref. [31] in the same
way as the Hg compound.

2. One-band Hamiltonian

We show the band structure and parameters for the one-
band Hamiltonian in Fig. 20 and Table VI, respectively.
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FIG. 20. Electronic band structure of the one-band Hamiltonian
in the GWA originating from the Cu dx2−y2 Wannier orbital for
La2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the 17-band structure near the Fermi level in the GWA
is also given (black dotted line).
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TABLE V. Transfer integral and effective interaction in the two-band Hamiltonian for La2CuO4 (in eV). Notations are the same as Table II.

t (GWA) (0,0,0) (1,0,0) (1,1,0) (2,0,0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 −1.996 0.000 −0.007 0.082 −0.019 0.000 0.012 −0.002
x2 − y2 0.000 0.159 0.082 −0.451 0.000 0.088 −0.002 −0.041
t(cGW -SIC) (0,0,0) (1,0,0) (1,1,0) (2,0,0)

3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 −3.426 0.000 −0.008 0.057 −0.013 0.000 0.006 0.009
x2 − y2 0.000 0.313 0.057 −0.389 0.000 0.136 0.009 0.003

v U (0) Jv J (0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 26.091 20.037 7.993 4.906 0.874 0.793
x2 − y2 20.037 18.694 4.906 5.482 0.874 0.793

vn Vn(0) vnn Vnn(0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 3.793 4.021 1.431 1.497 2.745 2.779 1.186 1.196
x2 − y2 4.021 4.230 1.497 1.562 2.779 2.824 1.196 1.210
occ.(GWA) 3z2 − r2 x2 − y2

1.989 1.011

3. Three-band Hamiltonian

We show the Wannier function, GWA band structure,
cGW+SIC band structure and parameters for the three-band
Hamiltonian in Figs. 17(c), 17(d) 22, 23, and Table VII,
respectively. More detailed data can be found in Ref. [31] in-
cluding smaller energy parameters. We note here that Figs. 21
and 23 show a small wavy structure in the obtained dispersion.
The case of La compounds in the one-band and three-band
Hamiltonians, where the relatively strong hybridization be-
tween the x2 − y2 and z2 orbitals and their entanglement seem
to be responsible for it. In fact, this is clearly a consequence of
the disentanglement of the hybridized two bands, namely the
eg orbitals near the Fermi level. When the GW calculation is
performed, the self-energy of the x2 − y2 and z2 orbitals have
their off-diagonal part, which makes an effective hybridiza-
tion, resulting in the hybridization gap. This gap opening is
indeed seen in the two-band (eg) Hamiltonian. However, in
the cGW procedure of the one-band and three-band effective
Hamiltonians, such an effective hybridization term is switched
off and only the diagonal part of the self-energy is retained.
Such partial consideration may result in a nonmonotonic self-
energy effect if the off-diagonal self-energy is large. However,
in the present case, the energy scale of the wavy structure in
the obtained band is smaller than that of the bandwidth and
the effective interaction, and therefore its effect gives only
a minor contribution to the long-range hopping part. When

TABLE VI. Transfer integral and effective interaction of the one-
band Hamiltonian for La2CuO4 (in eV). The notations are the same
as Table III.

t (GWA) (0,0,0) (1,0,0) (1,1,0) (2,0,0)
x2 − y2 0.187 −0.451 0.088 −0.041

t(cGW ) (0,0,0) (1,0,0) (1,1,0) (2,0,0)
x2 − y2 −0.003 −0.482 0.073 −0.102

v U (0) vn Vn(0) vnn Vnn(0)
x2 − y2 18.694 4.995 4.230 1.109 2.824 0.765

we solve the effective Hamiltonian by the low-energy solver,
this small wavy structure would not be crucial. In addition,
the causality of the self-energy is of course confirmed from
the spectral function. Nonetheless, as a complete effective
Hamiltonian, it looks better to include the z2 orbital in the
effective Hamiltonian as in the two-band Hamiltonian for the
case of La compound. For the case of Hg compound, this
problem does not occur.

IV. DISCUSSION

A. Comparison of the parameters for the La and Hg compounds

The main difference of the ab initio effective Hamiltonians
in between the Hg and La compounds arises from the nature
of the antibonding band formed from Cu x2 − y2 orbital and
two in-plane O 2pσ orbitals in relation to the band mainly
originating from Cu 3z2 − r2 orbital hybridizing with the apex
oxygen pz orbital.

The first difference comes from the level difference �dp

between the Cu x2 − y2 orbital and two O 2pσ orbitals in the
three-band Hamiltonian. For the Hg compound, �dp∼2.4 eV,
while ∼3.7 eV for the La compound. This difference makes
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FIG. 21. Electronic band structure of the one-band Hamiltonian
in the cGW originating from the Cu dx2−y2 Wannier orbital for
La2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the band structure in the GWA is also given (black
dotted line).
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TABLE VII. Transfer integrals and effective interactions for three-band Hamiltonian of La2CuO4 (in eV). The notations are the same as in
Table IV.

t (GWA) (0,0,0) (1,0,0) (1,1,0) (2,0,0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 −1.743 −1.399 1.399 −0.010 −0.012 −0.042 0.013 −0.006 0.006 −0.004 −0.000 −0.001
p1 −1.399 −4.657 −0.659 1.399 0.120 0.659 −0.042 0.041 −0.000 0.012 −0.002 −0.000
p2 1.399 −0.659 −4.657 −0.042 0.000 −0.011 0.042 −0.000 0.041 −0.002 0.000 −0.002
t(cGW -SIC) (0,0,0) (1,0,0) (1,1,0) (2,0,0)

x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 −1.538 −1.369 1.369 0.038 −0.036 −0.028 0.025 −0.020 0.020 −0.005 0.005 0.005
p1 −1.369 −5.237 −0.753 1.369 0.189 0.754 −0.028 0.047 0.010 0.036 −0.005 0.009
p2 1.369 −0.753 −5.237 −0.029 −0.010 0.021 0.028 0.009 0.047 0.005 −0.002 0.002

v U (0) Jv J (0)
x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 28.784 8.246 8.246 9.612 2.680 2.680 0.065 0.065 0.049 0.049
p1 8.246 17.777 5.501 2.680 6.128 1.861 0.065 0.036 0.049 – 0.019
p2 8.246 5.501 17.777 2.680 1.861 6.128 0.065 0.036 0.049 0.019

vn Vn(0) vnn Vnn(0)
x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2 x2 − y2 p1 p2

x2 − y2 3.897 8.246 3.441 1.511 2.680 1.353 2.779 3.441 3.441 1.208 1.354 1.354
p1 2.656 4.002 2.502 1.199 1.503 1.156 2.241 2.770 2.502 1.104 1.217 1.157
p2 3.441 5.501 3.727 1.354 1.862 1.394 2.241 2.502 2.770 1.104 1.157 1.217
occ.(GWA) x2 − y2 p1 p2

1.350 1.825 1.825

the hybridization between the Cu x2 − y2 orbital and two
O 2pσ orbitals substantially larger for the Hg compound.
Consequently, the antibonding Wannier orbitals constructed
from the x2 − y2 and 2pσ atomic orbitals are more extended
toward the atomic O position. This more covalent nature of
the Hg compound makes the effective interaction for the Hg
compound smaller than the La compound in the one- and two-
band Hamiltonians because of the extended Wannier orbital
and the stronger screening. This is reflected in the onsite
effective interaction of the x2 − y2 antibonding band, which
is U ∼ 4.5 (4.4) eV for the two-band (one-band) effective
Hamiltonian of the Hg compound in comparison to U∼5.5
(5.0) eV for the La compound.
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FIG. 22. Electronic band structure of the three-band Hamiltonian
in the GWA originating from the Cu dx2−y2 Wannier orbital for
La2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the 17-band structure near the Fermi level in the GWA
is also given (black dotted line).

The difference also comes from the fact that the conduction
bands of HgBa2CuO4 originating from the s orbitals of the
Hg and Ba atoms have wide bandwidths. It is hybridized
with 17 bands of the dp orbitals around the Fermi level, and
cross to the bottom of the 17 bands at the � point (Fig. 6).
On the other hand, since La2CuO4 does not have cations
that effectively screen the target orbitals, it shows a stronger
interaction than the HgBa2CuO4. The poorer screening also
makes the effective interaction U for the 3z2 − r2 band of the
two-band Hamiltonian larger (∼8.0 eV) for the La compound
than the Hg compound (6.9 eV).

Another difference could come from the existence of La 4f

bands that requires an additional treatment of GW specifically
for the 4f bands although they do not belong to the 17
bands. On physical grounds, we expect that although La 4f is
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FIG. 23. Electronic band structure of the three-band Hamiltonian
in the cGW+SIC originating from the Cu dx2−y2 Wannier orbital
for La2CuO4. The zero energy corresponds to the Fermi level. For
comparison, the band structure in the GWA is also given (black
dotted line).
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located close to the Fermi level in LDA, the correlation effect
on the 4f bands pushes up the 4f levels and the screening
effects from the 4f bands become small, which makes the
distinction from the Hg compound less serious in this aspect.
This contributes to preserve the larger effective interaction for
the La compounds.

The level difference of the antibonding x2 − y2 and the
3z2 − r2 bands is slightly smaller for the La compound
(∼3.7 eV) in comparison to the Hg compound (∼4.0 eV).
Together with the larger U , the La compound has a heavier
entanglement of the two bands. Therefore it is plausible that
the 3z2 − r2 orbital is substantially involved in the low-energy
physics near the Fermi level and careful comparisons between
the two-band and one-band Hamiltonians would be required
for the La compound. The strong entanglement that depends
on the momentum in the La compound revealed already in the
DFT level makes the one-band treatment of the La compound
questionable. At the DFT level, the two eg bands strongly
hybridize around the D point in the Brillouin zone. At least, it
is necessary to confirm the similarity to the solution of the
two-band Hamiltonian to justify the one-band Hamiltonian
treatment after solving and comparing the both.

The one-body parameters show another substantial differ-
ence: although the nearest-neighbor transfer of dx2−y2 orbitals,
tx2−y2 , for the one-band (two-band) Hamiltonian is similar
[−0.46 (−0.43) eV for the Hg compound and −0.48 (−0.39)
eV for the La compound], the next-nearest-neighbor transfer
t ′
x2−y2 shows a substantial difference [0.12 (0.10) eV for the

Hg compound and 0.07 (0.14) eV for the La compound]. The
ratio |t ′

x2−y2/tx2−y2 | between the nearest- and next-nearest-
neighbor transfers of the 3dx2−y2 orbital is then around 0.26
(0.24) for the one-band (two-band) Hamiltonian of the Hg
compound, while it is 0.15 (0.35) for the La compound. A
large difference in t ′ between the two- and one-band param-
eters of La2CuO4 is ascribed to the fact that the x2 − y2 and
3z2 − r2 orbitals in the two-band Hamiltonian entangle and
mix strongly in the one-band Hamiltonian especially at the D
point of the Brillouin zone. The present |t ′

x2−y2/tx2−y2 | for the
one-band Hamiltonian shows substantially larger value for the
Hg compound than the La compound. This tendency is qual-
itatively similar to that in Ref. [32], where |t ′

x2−y2/tx2−y2 | �
0.3 for the Hg compound and |t ′

x2−y2/tx2−y2 | � 0.2 for the
La compound at the LDA level, while the ratios for the
two compounds are substantially smaller in the estimation of
Ref. [33]. Moreover, the third neighbor transfer has a non-
negligible value ∼0.048 eV for the Hg compound, while it is
small ∼0.002 eV for the La compound.

Since the hybridization between the Cu 3dx2−y2 and the
oxygen 2pσ orbitals is strong, we have large splitting of the
antibonding band from the nonbonding and bonding orbitals.
This is the basis of justifying the one- or two-band Hamiltoni-
ans rather than the three-band form [34]. However, since the
interaction scale is not absolutely smaller than the splitting, it
is conceivable that the effect of the charge fluctuation between
the Cu 3dx2−y2 and the oxygen 2pσ orbitals appears in some
physical quantities as first pointed out in Ref. [35]. The
present three-band Hamiltonians will serve for the purpose
of examining the relevance of dynamical 3dx2−y-2pσ fluctu-
ations from the comparisons with the one-band results based

on first-principles and realistic analyses. This is especially
important for the Hg compound because �dp is smaller.

We believe that the substantial differences revealed above
must lead to various differences in physical properties, partic-
ularly differences in the critical temperature. This paper pro-
vides a starting point for understanding such differences. By
solving the effective Hamiltonians in future studies, the con-
sequences of the differences will be elucidated. Especially, it
was shown [13] that the phase separation is enhanced if |t ′/t |
becomes small for the Hubbard model. The phase separation
is also enhanced for larger U/t in the Hubbard model. Then
in the present realistic Hamiltonians, these two differences
may cooperatively enhance the charge inhomogeneity of the
La compound in comparison to the Hg compound. This is
consistent with the experimental observation that the La com-
pound has a stronger tendency toward the stripe and charge
inhomogeneities. Stronger effective attraction of carriers is
required to reach high Tc, while this is a double-edged sword
because it also drives inhomogeneity including stripes and
charge orders [36]. The relation of the inhomogeneity and the
critical temperature and ways to enhance Tc by suppressing
the inhomogeneity is an interesting future issue.

The one-band Hamiltonian is justified when the Hilbert
subspace for the antibonding band is essentially retained even
after taking the effective Coulomb interaction into account
at and around the Mott insulator. The reconstruction that
invalidates the one-band description will be negligible when
the level splitting μab − μb between the antibonding orbital
and the bonding (or nonbonding) orbitals is larger than the
difference Ub − U ′

bab between the onsite effective Coulomb
repulsion within the bonding or nonbonding oribtal (Ub or
Unb) and the onsite repulsion U ′

bab between an antibonding
electron and a bonding (or nonbonding) electron. The level
splitting μab − μb is 4 eV or larger as one sees in Figs. 14
and 23, while Ub − U ′

bab may not exceed 4 eV. Namely, the
energy level of the upper Hubbard band for the bonding or
nonbonding orbital may be lower than the energy level of the
lower Hubbard for the antibonding band. Hence the doped
hole is expected to preserve the character of the antibonding
orbital. This is one reasoning for the justification of the
one-band Hamiltonian and the description by a Zhang-Rice
singlet [34]. Since the energy difference discussed above is
not overwhelmingly large, uncertainties remain. Therefore the
final answer to the validity of the description by one-band
Hamiltonians will be obtained after solving the Hamiltonian
in the future.

V. SUMMARY

We have derived ab initio low-energy effective Hamil-
tonians for La2CuO4 and HgBa2CuO4, on the basis of the
multiscale ab initio scheme for correlated electrons (MACE).
Among MACE, we have employed a refined scheme to elimi-
nate the double counting of electron correlations arising from
the DFT and the procedure of solving the presently derived
Hamiltonians by low-energy solvers afterwards. Three differ-
ent effective Hamiltonians are derived: (1) a one-band Hamil-
tonian for the antibonding orbital generated from strongly
hybridized Cu 3d x2 − y2 and O 2pσ orbitals and (2) a two-
band Hamiltonian constructed from the Cu 3d 3z2 − r2 orbital
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in addition to the above antibonding 3d x2 − y2 orbital. For
the two-band Hamiltonian, we have prepared two options.
In the first choice, the Cu 3d3z2−r2 orbital is treated as an
atomiclike orbital and the direct contribution from the oxygen
2pz orbital is treated as the eliminated high-energy part.
In the second choice, the 2pz orbital hybridizing with the
Cu 3d3z2−r2 orbital is taken into account in the low-energy
Hamiltonian. Then the antibonding orbital constructed from
the Cu 3d3z2−r2 and the 2pz orbitals constitutes one of the
two bands in the effective Hamiltonian. The two choices
give substantially different effective interactions for the band
involving the Cu 3d3z2−r2 orbitals. After solving the effective
Hamiltonian, however, we expect that the two choices give
similar results, if the Cu 3d3z2−r2 orbitals play minor roles
in the low-energy thermodynamic properties at the scale of
the room temperature. If the 3d3z2−r2 orbitals are involved,
a careful comparison between the two choices is required.
(3) Finally, a three-band Hamiltonian consisting mainly of Cu
3d x2 − y2 orbitals and two O 2pσ orbitals was considered.

The main differences between the Hamiltonians for
La2CuO4 and HgBa2CuO4 are summarized in the following
three points. (i) The two oxygen 2pσ orbitals are farther
(∼3.7 eV) below from the Cu dx2−y2 orbital for the La
compound than the Hg compound (∼2.4 eV), which makes
the effective onsite Coulomb interaction U for the antibonding
dx2−y2 -2pσ band larger for the La compound [5.5 (5.0) eV]
than the Hg compound [4.5 (4.0) eV] in the two-band (one-
band) Hamiltonian. The difference is also enhanced by the
screening by the s band originating from the cations (Hg
and Ba), which is located closer to the CuO2 plane and has
energy closer to the Fermi level than the La cation s band.
(ii) The ratio of the second-neighbor to the nearest transfer
t ′/t is also substantially different (0.26 for the Hg and 0.15
for the La compound for the one-band Hamiltonian). (iii)
The level difference of the bands mainly consisting of the
copper dx2−y2 from the d3z2−r2 orbitals is slightly larger for the
Hg compound (∼4.0 eV) than the La compound (∼3.7 eV).

Combined with the larger onsite interaction, the La com-
pound has heavier entanglement of the two bands for the
La compound. Therefore the one-band Hamiltonian could be
insufficient in representing some aspects of the La compound.

The effective Hamiltonians obtained in the present study
serve as platforms of future studies aiming at accurately
solving the low-energy effective Hamiltonians beyond the
density functional theory. Further studies on the physics of
superconductivity on the cuprates based on the present ab
initio effective Hamiltonians are highly desirable. The present
study may also promote future design of higher Tc based on
a first-principles approach, which is another intriguing future
subject.
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TABLE VIII. Transfer integral and effective interaction in the two-band Hamiltonian for La2CuO4 (in eV) where one of the two bands is
constructed from the antibonding band of the copper 3z2 − r2 and apex oxygen pz orbitals. Notations are the same as Table II.

t (GWA) (0,0,0) (1,0,0) (1,1,0) (2,0,0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 −0.958 0.000 −0.047 0.151 −0.035 0.000 0.019 0.007
x2 − y2 0.000 −0.012 0.151 −0.448 0.000 0.089 0.007 −0.043
t(cGW -SIC) (0,0,0) (1,0,0) (1,1,0) (2,0,0)

3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 −0.212 0.000 −0.038 0.086 0.009 0.000 −0.017 0.012
x2 − y2 0.000 0.138 0.086 −0.389 0.000 0.143 0.012 0.001

v U (0) Jv J (0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 16.172 15.558 4.878 3.826 0.673 0.550
x2 − y2 15.558 18.505 3.826 5.320 0.673 0.550

vn Vn(0) vnn Vnn(0)
3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2 3z2 − r2 x2 − y2

3z2 − r2 3.452 3.775 1.325 1.411 2.584 2.684 1.145 1.164
x2 − y2 3.775 4.240 1.411 1.539 2.684 2.823 1.164 1.193
occ.(GWA) 3z2 − r2 x2 − y2

1.949 1.051
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APPENDIX: TWO-BAND HAMILTONIAN FOR La2CuO4

WITH ANTIBONDING 3dz2−r2 − 2 pz ORBITAL

Here we present two-band Hamiltonian parameters in
Table VIII, which is an alternative to Table V. One of the two

bands is constructed from the antibonding band consisting of
the copper 3dz2−r2 orbital and the apex oxygen 2pz orbital.
The other band is the antibonding band consisting of the
copper 3dx2−y2 orbital and the in-plane oxygen 2pσ orbitals.
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