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Nonabelian magnonics in antiferromagnets
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We present a semiclassical formalism for antiferromagnetic (AFM) magnonics which promotes the central
ingredient of spin wave chirality, encoded in a quantity called magnonic isospin, to a first-class citizen of
the theory. We use this formalism to unify results of interest from the field under a single chirality-centric
formulation. Our main result is that the isospin is governed by unitary time evolution, through a Hamiltonian
projected down from the full spin wave dynamics. Because isospin is SU(2) valued, its dynamics on the Bloch
sphere are precisely rotations, which, in general, do not commute. Consequently, the induced group of operations
on AFM spin waves is nonabelian. This is a paradigmatic departure from ferromagnetic magnonics, which
operates purely within the abelian group generated by spin wave phase and amplitude. Our investigation of
this nonabelian magnonics in AFM insulators focuses on studying several simple gate operations, and offering
in broad strokes a program of study for interesting new logic families in antiferromagnetic spin wave systems.
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I. INTRODUCTION

Recent years have seen a surge of interest in the generation
and in-flight manipulation of magnons in antiferromagnets
(AFMs). We now know that AFM magnons can couple to the
angular momentum carried by electrons [1,2], photons [3–5],
and other spin carriers. Detection of magnon-mediated spin
signals from AFM insulators, typically measured through the
inverse spin Hall effect, has also matured to the point of
experimental implementation [6–8]. It has been shown that
AFM spin waves possess pointed dynamical distinctions from
their ferromagnetic (FM) counterpart [9–11], especially in the
presence of spin texture [12–17] or broken inversion symme-
try [11,12,18,19]. In particular, collinear AFMs possess two
degenerate spin wave eigenmodes of opposite chirality [20].
They are often referred to as right- and left-handed modes,
according to the precessional handedness of the Néel vector
(Fig. 1). This notion of spin wave chirality has proved to be a
useful narrative tool for understanding how AFM magnonics
differs from the ferromagnetic (FM) case.

As a patchwork of novel results begins to populate the
field of AFM magnonics, a coherent framework for under-
standing their similarities, differences, and possible exten-
sions becomes necessary. Our central thesis is that many
of these results can be understood in terms of spin wave
chirality, through a spinor [SU(2)-valued] quantity we refer
to as the magnon isospin. One important corollary of this
formulation is that, because isospin dynamics proceeds by
intrinsically noncommutative unitary rotations on the Bloch
sphere, implementations of magnonic computing in AFMs
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will in general be nonabelian. This fundamental departure
from the behavior of FM magnonics calls for a serious
reinvestigation of primitive magnonic operations for AFMs;
working only off analogies to extant ferromagnetic propos-
als is a program restricted by commutativity, and inevitably
lifts only into a small subset of available AFM computing
schemes.

One practical disadvantage of FM magnonics has been
the need to constantly refresh the signal power in a device.
This is particularly problematic in interferometric [21,22]
spin wave logic, where the Boolean output of FM magnonic
logic gates is encoded by setting a threshold amplitude
for the spin wave power. Phase interference techniques are
then used to achieve the desired magnon amplitude. Since
half of the desired outputs are represented by suppressing
the power spectrum of the magnon signal, this scheme in-
curs significant energy inefficiencies and requires sources of
power to constantly refresh the signal [23]. Isospin com-
puting resolves this problem neatly since we can encode
and manipulate data in the spin wave chirality rather than
the spin wave amplitude. This improvement is reminis-
cent of proposals for polarization-based optical computing
schemes from the 1980’s [24]. A chief practical distinction
between AFM isospin computing and optical computing is
that the former can be carried out in nanoscale solid-state
systems.

Given the importance of the isospin in AFM magnonics,
we consider in this paper its dynamics for a broad class of
interactions that may manifest in AFMs, and offer an exten-
sible formalism by which others can easily incorporate the
effects of new physical interactions. In the development of this
formalism, we find that there are notable differences between
bipartite and synthetic AFMs, and we discuss the advantages
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FIG. 1. Schematic representations of right- and left-handed
modes. Red and blue arrows demonstrate the spin precession on each
of the two sublattices. Because the Ŝz components differ between the
sublattices during a spin wave precession, each eigenmode carries an
opposite sign of spin angular momentum.

and disadvantages of pursuing nonabelian magnonics in these
two types of systems. We then apply this formalism to a
number of examples, for the threefold purposes of illustrating
its use, validating it against a set of known results, and
generating results in a few interesting systems.

With several concrete results in hand, we then propose in
broad strokes a program of next-generation computing based
on nonabelian magnonics [25]. Although FM magnonics has
been studied extensively [21,22,26,27], we show that the
comparative richness of the AFM isospin offers dramatically
more and different avenues for progress. The fact that isospin
manipulations do not commute offers, by purely algebraic
considerations, a more bountiful landscape for composition
of logical operations than can be found in FMs.

We emphasize that the dual-sublattice nature of AFMs
does not merely amount to two copies of FM magnon sys-
tems. Although one may be able to import FM magnonic
schemes into the AFM architecture, one could also look
to more spinful classes of physics for inspiration in appli-
cation. Spintronic [11] and optical [12] analogies to AFM
magnonics have proved inspiring for novel device designs.
We close by offering possibilities for future research in this
direction.

II. FORMALISM

In this section, we review the AFM spin wave theory in the
sublattice formalism, as we expect many of our readers are
more familiar with the staggered-order-centric approach. We
begin by exploring spin wave chirality in a minimal model: a
collinear AFM with easy axis anisotropy. The description of
easy-axis AFMs such as MnF2, FeF2, or Cr2O3 may follow
from such a model. Using this familiar context, we review
chirality and the way in which it encodes spin carried by
the magnon excitation. We then review a common formalism
for handling spin texture and introduce the texture-induced
gauge fields. Finally, we derive the spin wave equations of
motion in the sublattice formalism by the variational principle.
These subsections set the stage for our main results, which are
presented in the next section.

A. Sublattice-centric magnonics

In terms of the two sublattices, the free energy
of an easy-axis collinear AFM in the continuum limit

is

F = Fexch + FEAA, (1a)

Fexch = 1

2

∫
ZmA · mB − J∇mA · ∇mB ddx, (1b)

FEAA = −K

2

∫
(mA · ẑ)2 + (mB · ẑ)2 ddx. (1c)

Here, K is the easy-axis anisotropy (EAA), while Z and J

are the so-called homogeneous and inhomogeneous exchange
interactions, respectively [28]. They have been chosen so that,
under the change of variables

m = mA + mB

2
and n = mA − mB

2
, (2)

the exchange free-energy density becomes [29]

Fexch = Z|m|2 + J

2
|∇n|2 + O(|m|4). (3)

The quantities m and n are the local magnetization and
the staggered order [30]. We have written in Eq. (1) a free
energy for the classic g-type antiferromagnet, but merely as a
convenient concretization. Our main result generalizes to any
kind of collinear AFM order, and in particular we use results
for synthetic AFMs later in the paper.

On each sublattice of the AFM, the semiclassical spin
dynamics is governed by the Landau-Lifshitz equation

ṁA = mA × 1

S

δF

δmA

, (4a)

ṁB = mB × 1

S

δF

δmB

, (4b)

where F is the free-energy functional and S = sh̄ the spin
magnitude on a lattice site. Define ẑ as the easy-axis direction,
and take the Néel ground state as mA = ẑ and mB = −ẑ.
Spin wave fluctuations, at linear order in the cone angle by
which precessing spins cant away from the ground state,
reside entirely in the xy plane [31]. It is convenient to rewrite
fluctuations from equilibrium as α± = (mx

A ± im
y

A)/
√

2 and
β± = (mx

B ± im
y

B )/
√

2. We will treat these four quantities
as independent variables [32]. Collecting the equations of
motion for this new basis [33] into matrix form, the spin wave
equations for � = (α+, β+, α−, β−) are

i(τz ⊗ σz)�̇ =
(

ĥ 0
0 ĥ∗

)
� = H�, (5)

where τj are the Pauli matrices in isospin space and σj the
Pauli matrices in the sublattice subspace. In other words, the
σj matrices distinguish α+ from β+ and α− from β−, while
τj distinguish from α+ from α− and β+ from β−. Our use of
the term “isospin” will be introduced more fully at the end of
this section. For the problem we outlined above, ĥ is a 2 × 2
Hermitian operator given by

ĥ = 1
2 [(Z + 2K )12 + σx (Z + J∇2)]. (6)

For the simple free energy we have adopted in Eq. (1),
Eq. (5) apparently contains two copies of the same two-
level dynamics. These two copies are related by complex
conjugation, which we write as the time-reversal operator T .
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The mapping of the Landau-Lifshitz-Gilbert (LLG) equation
onto a Schrödinger equation is standard practice in theoretical
magnonics [34,35], but note that our Eq. (5) differs from
the usual Schrödinger equation by the appearance of τz ⊗ σz

on the left-hand side. The mathematical and philosophical
details of Schrödinger equations with this structure have been
considered at length in Ref. [36].

Since the Hamiltonian (5) is block diagonal, let us first
focus on the subspace governing α+ and β+. Assuming our
system is stationary and translationally invariant, we can make
the ansatz ψ = ψ0e

i(k·x−ωt ). The resulting eigenproblem is

h̄ωσzψ = ĥψ. (7)

For a generic 2 × 2 Hermitian operator ĥ = a12 + bσx +
cσy + dσz, Eq. (7) has the solution [18]

ψ0 =
(

cosh ϑ
2

−eiϕ sinh ϑ
2

)
and ψ1 =

(
− sinh ϑ

2

eiϕ cosh ϑ
2

)
, (8)

where the angles ϑ and ϕ are given through

a = � cosh ϑ, (9a)

b = � sinh ϑ cos ϕ, (9b)

and c = � sinh ϑ sin ϕ. (9c)

The corresponding eigenvalues are

h̄ω = ±(d + �) = ± 1

S

√
1

2
JZk2 + ZK (10)

at leading order in K . The well-known resonant energy is
given then by h̄ω0 = √

ZK/S.
We note that the bosonic normalization condi-

tion [18,37,38] a2 − b2 − c2 = ±1 implies that the space
of Hamiltonians, as well as the eigenvectors themselves, live
on the hyperboloid of two sheets SU(1,1). When d = 0, as
in Eq. (6), the eigenvectors have particle-hole symmetry.
ψj exhibits eigenfrequency (−)j |ω|. Analysis of the basis
functions shows that ψ0 is a right-handed precession of mA

(and therefore n) while ψ1 is a left-handed precession. We
say that they have opposite chirality, namely, right-handed
and left-handed chirality.

Notice that the sister eigenproblem (for α− and β−) in the
lower two rows of Eq. (5) has positive frequency solutions
corresponding to left-handed modes and negative frequency
solutions corresponding to right-handed modes. This inver-
sion from the {α+, β+} problem arises precisely due to the
conjugate basis. We will take the positive-energy solution
from each block,

�0 =

⎛
⎜⎜⎝

cosh ϑ
2

−eiϕ sinh ϑ
2

0
0

⎞
⎟⎟⎠ and �1 =

⎛
⎜⎜⎝

0
0

− sinh ϑ
2

eiϕ cosh ϑ
2

⎞
⎟⎟⎠, (11)

as a chirally complete basis for the positive energy, de-
generate Hilbert subspace of Eq. (5). Note that whereas
the solutions (8) obey 〈ψi |σz|ψj 〉 = (−)j δij , the solutions
〈�i |τz ⊗ σz|�j 〉 = δij are properly normalizable. We will of-
ten work directly in the �0 and �1 basis, writing |0〉 = (1, 0)
and |1〉 = (0, 1) as in Fig. 2. The use of bra-ket notation here

FIG. 2. Linear combinations of the right- and left-handed modes
|0〉 ∼= �0 and |1〉 ∼= �1, respectively, produce an entire Bloch
sphere’s worth of possible isospin states. We have labeled selected
states by the polarization of the Néel order fluctuations in that state.
Right- and left-handed modes correspond to right- and left-handed
precession of n, while equal linear combinations produce linearly
polarized waves. The angle of linear polarization depends on the
relative phase of the spin waves between the sites. Note that X- and
Y -polarized states are orthogonal here, while in a traditional quantum
spin space |X〉 is orthogonal to |−X〉, not |Y 〉. Since our formalism
parametrizes this space in terms of a two-level spinor, we refer to
it as a Bloch sphere. Students of optics, however, will recognize
that it is analogous to the Poincaré sphere that parametrizes optical
polarization states.

is a formalism of convenience arising from the close math-
ematical similarities between our system and single-particle
quantum mechanics. However, we emphasize early on that
this is a purely notational convenience; it is impossible to re-
alize many-body quantum phenomena, such as entanglement,
in a purely semiclassical magnonic system.

Since cosh x > sinh x for all real x, the magnitude of the
spin wave precession is clearly dominated by the A sublattice
in �0 and the B sublattice in �1. The physical spin fluctua-
tions can be recovered by taking mx

A = Re[(α+ + α−)/
√

2],
m

y

A = Re[(α+ − α−)/
√

2i], and likewise with the B sublat-
tice, so that

δm(0)
A = 1√

2
(cos(ωt ), sin(ωt )) cosh

ϑ

2
, (12a)

δm(0)
B = − 1√

2
(cos(ωt − ϕ), sin(ωt − ϕ)) sinh

ϑ

2
, (12b)

δm(1)
A = − 1√

2
(cos(ωt ),− sin(ωt )) sinh

ϑ

2
, (12c)

δm(1)
B = 1√

2
(cos(ωt − ϕ),− sin(ωt − ϕ)) cosh

ϑ

2
. (12d)

We see in Eqs. (12) that the right-handed modes dominate on
the A sublattice, as in Fig. 1. One can also see from Fig. 1
that these two modes carry opposite magnetization since the
Ŝz component of the sublattices must differ if one of the
sublattices dominates. The reduction of magnetization on each
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sublattice is simply given by the squared magnitude of the
lattice spin wave, so that the total magnetization induced by a
spin wave is

mz = −S〈�|(12 ⊗ σz)|�〉, (13)

which will be negative for right-handed waves proportional to
�0 and positive for left-handed waves proportional to �1. This
operator 12 ⊗ σz corresponds to a so-called nongeometric
symmetry [39]. It has sometimes been given as the definition
of spin wave chirality. In electromagnetic analogies for AFM
spin wave dynamics it corresponds to optical helicity [39],
where the corresponding conserved quantity is the so-called
zilch [40].

So far, we have dealt only with a block-diagonal Hamil-
tonian. Restricting to the positive energy subspace, we see
that H has no off-diagonal terms that connect �0 and �1.
If such terms existed, we could manipulate the total spin
carried by the spin wave in transit, rotating our spin wave state
within the degenerate eigensubspace. We may imagine that
the coefficients balancing these eigenvectors in a superposi-
tion |η〉 = η0|0〉 + η1|1〉 define a degree of freedom which we
refer to as the magnonic isospin [41]. The desire to exploit
this internal degree of freedom motivates the remainder of the
paper.

B. Spin texture, characteristic length scales,
and perturbative parameters

In order to control η, we must find a way to break the
degeneracy between the right- and left-handed modes; that
is, we must break whatever symmetries are protecting either
conservation of chirality (that is, the block diagonality of H)
or conservation of the relative phase between right- and left-
handed modes. In this paper, the main tools we consider for
this purpose are spin texture and the Dzyaloshinskii-Moriya
interaction (DMI). The latter is well known and we introduce
the appropriate free energies when they are needed. Spin tex-
ture, however, is somewhat more subtle, so we briefly review
theoretical tools for handling it. These techniques have been
used to great success in describing transport effects arising
from both ferromagnetic [34,35,42,43] and antiferromagnetic
[44–46] textures.

To describe the spin texture in our formalism, we encode
the texture in a rotation matrix R defined by Rn = |n|ẑ. This
rotation matrix induces a generator of infinitesimal spin rota-
tions (∂μR)RT , which itself can be regarded as a collection
of vector potentials Ax

μJx + A
y
μJy + Az

μJz = (∂μR)RT , the
decomposition being directed through the standard generators
[47] of three-dimensional (3D) rotations Jj . Here, μ is a
spacetime index, and the components A

j
μ define the (1 + d)-

vectors Aj = (Aj
t , Aj ).

Because our spin texture is described with respect to the
ẑ axis, Az will be of paramount importance. It gives rise
to an emergent magnetic field B = ∇ × Az that produces a
Lorentz force on magnons in Eqs. (27), and the temporal
component Az

t likewise produces an emergent electric field.
We will usually describe the influence of the other two po-
tentials through the complex variable Aμ = (Ax

μ + iA
y
μ)/

√
2.

For more information on these fields, the reader is referred
to Appendix B. For a full discussion of this gauge field

formalism in the treatment of spin texture, the reader may
check Refs. [34,35].

We will soon need an approximation scheme to deal with
the many perturbative effects (anisotropy, DMI, etc.) of our
spin wave system. Since A

j
μ is a derivative of the texture-

defining angles, let it define a characteristic length scale λ of
the system,

∣∣Aj
μ

∣∣ ∼ 1

λ
. (14)

In textured systems with DMI, the characteristic length scale
is proportional [48] to J/D, where D is the DMI strength [49]
FDMI = DmA · (∇ × mB ). Therefore [50],

D/J ∼ ∣∣Aj
μ

∣∣. (15)

In systems with easy-axis anisotropy, meanwhile, the well-
known characteristic length of a domain wall is

√
J/K , and

thus

K/J ∼ ∣∣Aj
μ

∣∣2
. (16)

Finally, the local magnetization [51] μ = (Rm) · (x̂ +
iŷ)/

√
2 scales as a derivative of the staggered order, [28]

μ ∼ ∣∣Aj
μ

∣∣. (17)

As it happens, the magnetization will, in our calculations,
never show up as a lone linear-order term; even so, the
quadratic terms O(μ2) = O(K/J ) must be preserved.

We have established a hierarchy of perturbative orders
based on a single parameter |A|. In our spin wave treatment,
we will keep terms up to order ∂A ∼ O(A2), that is, to linear
order in the emergent electromagnetic field B = ∇ × Az.

C. Matrix structure of the spin wave Hamiltonian

Once we add extra terms to the free energy (spin texture,
the Dzyaloshinskii-Moriya interaction, and so on) the equa-
tion of motion becomes

i(τz ⊗ σz)�̇ = εd

nS

δF

δ�̄
− Az

t (12 ⊗ σz)� (18)

so that the spin wave Hamiltonian is given through H� =
δF/δ�̄. Here, ε is the lattice constant, d is the dimensionality
of the lattice, and n = 1 + |μ|2 is the effective index of
refraction for the spin wave speed, when viewed from the
perspective of the wave equation governing staggered order
dynamics. Equation (18) prescribes the correct harmonic spin
wave theory for any free energy F , where the independent
variables {α+, β+, α−, β−} are now defined as the purely in-
plane fluctuations of the sublattice spin wave modes after the
active rotation by R of the ground-state texture. The detailed
derivation of Eq. (18) is given in Appendix A.

For concreteness, we now present the detailed matrix form
of the exchange interaction Hamiltonian. Beginning from
Eq. (1b), we rotate the fields by R and change variables to
the in-plane complex fluctuations α+, β+, α−, and β−. The
corresponding Hamiltonian for the homogeneous exchange
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interaction is

Hhom = Z

2

⎛
⎜⎜⎜⎝

1 − 3|μ|2 1 − |μ|2 μ2 −μ2

1 − |μ|2 1 − 3|μ|2 −μ2 μ2

μ̄2 −μ̄2 1 − 3|μ|2 1 − |μ|2
−μ̄2 μ̄2 1 − |μ|2 1 − 3|μ|2

⎞
⎟⎟⎟⎠, (19)

where the bar over μ̄ (and, later, over Ā) indicates complex conjugation. The inhomogeneous exchange interaction Hinhom,
meanwhile, is given by J/(2n) times the matrix⎛
⎜⎜⎜⎝

−2|A|2 (∇ − iAz)2 + � · ∇ − |A|2 0 −(μ∇)2 + 4iμA · ∇ + A2

(∇ − iAz)2 − � · ∇ − |A|2 −2|A|2 −(μ∇)2 − 4iμA · ∇ + A2 0

0 −(μ̄∇)2 + 4iμ̄Ā · ∇ + Ā2 −2|A|2 (∇ + iAz)2 + � · ∇ − |A|2
−(μ̄∇)2 − 4iμ̄Ā · ∇ + Ā2 0 (∇ + iAz)2 − � · ∇ − |A|2 −2|A|2

⎞
⎟⎟⎟⎠,

(20)

where � = 2i(μ̄A − μĀ). These matrix Hamiltonians, and
the Hamiltonians corresponding to any other two-site inter-
action, exhibit notable structural differences when the syn-
thetic AFM case is considered instead. In the Supplemental
Material, we have provided a Mathematica notebook that
automates the derivation of H for any free energy given
in terms of mA and mB [52]. It also contains precomputed
Hamiltonians for anisotropy, DMI, external fields, and so on,
which we use in our applied examples later in the paper.

III. NONABELIAN WAVE-PACKET THEORY

In this section, motivated by the need to derive η dynamics
from Eq. (18) in the case of spatial inhomogeneity, we apply
the machinery of nonabelian wave-packet theory [53]. What
we call “wave-packet theory” was originally developed in
a paper by Chang and Niu [54] to explain the Hofstadter
butterfly spectrum, after which their treatment was codified
by Ref. [55]. Since then, the theory has been applied in a
variety of contexts, sometimes requiring extensions of the
theory to account for unique features of a particular physical
problem [56–58].

The most relevant extension for our purposes, and indeed,
one of the most ambitious and interesting developments in
wave-packet theory, is the treatment of multiple degenerate
bands [53,59]. In this case, the theory is called nonabelian
wave-packet theory because, in dealing with a vector of mul-
tiple band energies at once, the “coefficients” must become
matrix valued (and therefore, generally speaking, an element
of a nonabelian matrix representation) in order to act on the
multiband wave function. In this paper, we extend the non-
abelian wave-packet theory to account for both the unusual
τz ⊗ σz factor in our Lagrangian and our explicitly a priori
nonabelian gauge field [60]. A detailed derivation involving
the internal workings of wave-packet theory is crucial for
establishing our main results. Since details of wave-packet
theory, even in the abelian case, are not widely studied, we
carefully guide the interested reader through the derivation in
Appendix D.

The basic idea of abelian wave-packet theory is to con-
sider a momentum-space superposition |W 〉 = ∫

wqψq ddq
of eigenvectors, where the eigenvectors are drawn from the

spectrum of the Hamiltonian evaluated at some (xc, qc ) on
a classical phase space. In nonabelian wave-packet theory,
the eigenvector is expressed as a general state lying in the
degenerate subspace spanned by our right- and left-handed
modes

|W (xc, kc )〉
=

∫
dq w(q, t )[η0(q, t )|�0(q, t )〉 + η1(q, t )|�1(q, t )〉].

(21)

The coefficient w gives the shape of the wave packet, as in
Fig. 3. The vector |η〉 = (η0, η1) is, again, called the isospin.
We demand that the otherwise generic wave packet possess

(1) a momentum space distribution localized enough to be
approximated as δ(q − qc ),

(2) a well-defined mean position xc = 〈W |x̂|W 〉, and
(3) sufficient spatial localization that the environment

where the wave packet has appreciable support is approxi-
mately translationally invariant.

These assumptions form a set of sufficient conditions under
which a wave function’s semiclassical dynamics can be for-
mulated, using wave-packet theory, on a classical phase space
� 	 (xc, qc ). The nonabelian version, Eq. (D13), includes an
η-valued fiber over �.

By appealing to the time-dependent variational principle,
we can write the Lagrangian which generates the equation of
motion (18), namely, LWP = 〈�|L|�〉 with

L = i(τz ⊗ σz)
d

dt
− H − Az

t σz. (22)

We then assume |W 〉 as the solution for |�〉. Since the wave
packet is sufficiently [61] described by the 3-tuple (xc, qc, η),
we can reduce LWP to a Lagrangian of the phase-space
variables xc, qc, and η that specify |W 〉. The result is

LWP = Ldt + LH + LEM, where (23a)

Ldt = 〈η̃|ẋc · âx + q̇c · âq + ât + i∂t |η̃〉 − q̇c · xc, (23b)

LH = −〈η|H |η〉, (23c)

LEM = −Ȧz · �q − χ
(
Ȧz · xc + Az

t

)
. (23d)
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FIG. 3. Under the assumptions of wave-packet theory, the magnon wave packet has its magnitude w(q, t ) strongly localized in real and
momentum space. Consequently, the wave function is sufficiently specified by its mean coordinates (xc, kc ) on phase space. The wave-packet
theory machinery uses this assumption to resolve the wave theory (left) described by Eq. (18) into a particle theory (right) described by the
classical Lagrangian (23). Not pictured is the isospin degree of freedom, which lives in an SU(2) fiber over the classical phase space. The full
semiclassical dynamics described by Eqs. (27) occurs on the induced fiber bundle.

Ldt , LH , and LEM derive from the time derivative, Hamilto-
nian, and emergent field terms from Eq. (22), respectively.
Here in the main text, we simply pause to describe the various
physical variables in Eqs. (23) that fall out of the derivation.

First, let us define the 4 × 2 matrix

E = |0〉〈�0| + |1〉〈�1|, (24)

where |0〉 and |1〉 are understood as the basis vectors (1,0)
and (0,1) for the isospin |η〉 = η0|0〉 + η1|1〉. E is essentially
a change of basis matrix (which chooses �0 and �1 as
the canonical basis vectors), followed by a projection to the
forward-time degenerate Hilbert subspace that they span. E†

represents the embedding of the isospin dynamics into the
full spin wave dynamics, and as such the induced isospin
Hamiltonian is given by

H = EHE†. (25)

Next, we define the various 2 × 2 matrices âμ. These are the
matrix-valued Berry connections in isospin space

âij
μ = 〈

� i
q

∣∣iσz∂μ�j
q

〉
. (26)

These diagonal matrices will generate Berry curvatures (ef-
fective, emergent magnetic fields) in the equations of mo-
tion [53]. The term �q = 〈η|τzâq|η〉 − 〈η|τz|η〉〈η|âq|η〉 arises
uniquely due to the τz ⊗ σz metric structure of our full four-
dimensional Hilbert space, and is absent from existing non-
abelian wave-packet theories which deal only with Euclidean
spaces. It gives rise to a nonlinear potential Vχ = δ�q/δη.
Finally, the tilde decoration on η̃ = Gη refers to a gauge trans-
formation G = exp[−i(τz ⊗ 12)Az · x] discussed in Eq. (D9).
Hamilton’s principle δS = 0 gives us equations of motion for
the dynamical variables:

q̇c = χ (E + ẋc × B) − ∂E
∂xc

, (27a)

ẋc = ∂E
∂qc

+ 〈�qq〉q̇c + 〈�qx〉ẋc + 〈�qt 〉, (27b)

i
d

dt
η = [

H − At + τzA
z
t + V̂χ

]
η, (27c)

with At = ẋc · âx + q̇c · âq + ât , E the linearly perturbed spin
wave energy (as in Ref. [53]), and � are the various Berry

curvature terms

〈
�αβ

μν

〉 = 〈η|
(

∂âβν

∂αμ
− ∂âαμ

∂βν

)
|η〉. (28)

Finally, the emergent electromagnetic fields are B = ∇ × Az

and E = ∇Az
t , familiar to those who have studied magnetic

skyrmion physics [35,62].
The reduction of LWP to single-particle Lagrangian (23) is

quite technical, and we relegate the derivation to Appendix D.
The process is illustrated schematically in Fig. 3. The equa-
tions of motion (27), as well as their derivation, are tightly
related to the results of Ref. [53]. The differences arise due
to the non-Euclidean metric τz ⊗ σz in the Lagrangian. This
geometry gives rise to the dynamical charge χ = 〈η|τz|η〉
coupled to the Lorentz force, and also gives rise to the
nonlinear potential Vχ (through �q).

Although Vχ can contribute at O(A2) in perturbation the-
ory in principle, it only contributes at third order or above
for the interactions we consider concretely in this paper. To
contribute in our formalism, it would require that âq manifest
at leading order in the perturbation theory, or else that we go
to higher order in the perturbation theory, as a nonabelian
and non-Euclidean extension of second-order wave-packet
theory [63,64]. If such a system could be identified, then the
physics of Vχ , which induces a Gross-Pitaevskii equation for
the isospin, could be quite interesting. In the coupling between
a wave packet and a rigid soliton, for instance, we see that
this term produces at leading order a force proportional to χ̇ .
Thus, a change in the spin carried by the magnon produces a
real-space force on the soliton. We leave the search for sys-
tems in which Vχ could produce significant effects to future
research.

Finally, let us caution the reader that Eq. (27c) gives the
dynamics of the isospin, which is defined with respect to
the A and B sublattices, not with the laboratory frame. A
right-handed mode, for instance, is by our definition always
dominated by the A sublattice, which means that it carries
opposite spin on either side of a domain wall. To return to
the laboratory frame, one should apply the inverse rotation
operator R−1 to the spin texture. To extract the laboratory-
frame spin, then, lift R−1 to SU(2) by the standard homomor-
phism [65] and apply it to the isospin. The (semiclassical) spin
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z

xy
VG =⇒ exp iπτz

2j=eiζDj

FIG. 4. The system under investigation in Sec. IV A. An in-plane easy-axis (ẑ) AFM is oriented in a nanostrip geometry, perpendicular to
the easy axis (x̂). A section of the sample is subjected to a gate voltage VG applied normal to the sample plane, in the ŷ direction. We show
in Eq. (32) that the resulting isospin dynamics corresponds to a rotation about σz on the Bloch sphere (Fig. 2). We define here the notation
Dj = diag(1, eiπ/2j

), and is given by this applied DMI gate up to a dynamical phase eiζ . Note, as a reference, that τz = D0.

carried at time t by the magnon with isospin η(t ) is then [66]

|s(t )〉 =
(

ei(ψ+φ) cos θ
2 ei(ψ−φ) sin θ

2

−e−i(ψ−φ) sin θ
2 e−i(ψ+φ) cos θ

2

)
|η(t )〉, (29)

where the Euler angles defining the texture are evaluated at
xc(t ). The observable magnetization carried by the isospin
is then mz = −〈s|σz|s〉, the sign arising from the fact that
right-handed waves |0〉 carry negative spin. Since we are
generally interested in systems with easy-axis anisotropy, the
matrix transformation in Eq. (29) will typically result in a
simple sign mz = ∓〈η|σz|η〉 depending on whether the local
Néel order along the easy axis is pointing along ±ẑ.

The key result of our wave-packet analysis, as regards the
remainder of this paper, is that the isospin η obeys an emergent
Schrödinger equation, and its dynamics is therefore governed
by unitary time evolution. By tailoring our Hamiltonian, we
can generate unitary rotations about multiple different axes in
isospin space. We display a collection of different rotations in
the coming examples, which taken together will be sufficient
to generate any generic rotation (in three Euler angles) of the
isospin.

IV. APPLICATION TO SELECTED
MAGNONIC PRIMITIVES

In the previous section, we derived a set of semiclassi-
cal equations governing the isospin-coupled dynamics of a
magnon wave packet. Now, we apply that formalism to two
AFM magnonic systems: a gated 1D wire and a 1D domain
wall. We conclude by mentioning the effects of magnetic
fields and hard-axis anisotropy.

A. A gated AFM nanostrip: The magnon FET

In this section, we consider the application of a gate volt-
age across a one-dimensional (1D) AFM nanowire (extended
along x̂) with in-plane easy-axis anisotropy (along ẑ). The
gate voltage breaks inversion symmetry, and will therefore
generate a nonzero DMI simply by symmetry considera-
tions [21]. In comparison to the DMI statically generated by
inversion asymmetry due to interfacial or crystal structure
effects, though, one expects the DMI produced by the gate
to be tunable, and therefore a useful knob to access in a
magnonic computing scheme. The system has been outlined
schematically in Fig. 4.

Our motivation here is threefold. First, this gate will be
extremely important in our device proposals later in the paper,
so it is worthwhile to present the theoretical treatment here.
Second, this simple example which does not possess any spin
texture will provide a transparent presentation to demonstrate

the general solution method to the reader. Finally, solving
this problem, which has already been considered in the Néel
vector picture, for the special case of linearly polarized waves,
by Ref. [11], will serve as a validation of our theoretical
methods against the literature.

The free energy has four parts: homogeneous and inhomo-
geneous exchange, easy-axis anisotropy, and DMI. The first
three of these are the same as is given in Eqs. (1), and the
DMI term is

FDMI = 1

2

∫
D · [mA × ∂xmB + mB × ∂xmA]dx, (30)

where D = Dẑ. From the corresponding 4 × 4 Hamiltonian,
we construct the 2 × 2 isospin Hamiltonian by using the
embedding E† and Eq. (25). Writing out H = H0 + Hj σj

explicitly for this problem, we find that it has an unimportant
[67] constant part as well as a σz component:

Hz = J |D|kε
(
1 − (kε)2

2

)
h̄s

√
2KJ + (Jkε)2

. (31)

If we assume both that K/J is small and that k is in a regime
where the distance between the split bands is constant in k,
namely, well above the resonance frequency, then the denom-
inator of Eq. (31) can be approximated merely by h̄sJ kε,
canceling the linear contribution in the numerator and leaving
only the constant term with a weak quadratic correction.
Making these approximations in Eq. (31), we arrive at an
isospin Hamiltonian

Hz = D/S. (32)

How does this Hamiltonian act on the isospin state? Since we
are dealing with a Schrödinger equation [Eq. (27c)], we need
only compute the unitary time evolution operator

U (t1, t0) = exp

[
iτz

h̄s

∫ t1

t0

D dt

]
(33)

= exp

[
iτz

h̄s

(
∂ω

∂k

)−1 ∫ x1

x0

D dx

]
. (34)

This is a rotation operator in isospin space, rotating about
the ẑ axis on the Bloch sphere by a total angle proportional to
D and the length of the gate, but inversely proportional to the
spin wave speed ∂kω and the spin magnitude S. The rate of
rotation on the Bloch sphere works out to

∇φ = 1

s

D

J
. (35)

Note that we have cited the rate of rotation on the Bloch
sphere, where φ is the azimuthal angle: this differs by a factor
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of 2 from the polarization angle of the staggered order. X- and
Y -polarized states, which appear to be rotations of π/2 away
from each other in the trace of a spin excitation, are actually
π away from each other on the Bloch sphere (Fig. 2).

Because the rate of rotation scales with the DMI itself, the
rotation on a single gate can be manipulated online simply
by modulating the gate voltage. We concerned ourselves in
Ref. [11] [with which our result in Eq. (32) agrees] mostly
with a rotation between X and Y polarizations, but access to
generic rotations will be crucial for a mature implementation
of nonabelian magnonics.

B. Domain-wall retarder

Since applied AFM magnonics has become fashionable
in the last decade, the AFM domain wall has undergone
quite a bit of new analysis [12–14,16], and in decades past
was a prototypical nontriviality for the AFM nonlinear sigma
model [68–71]. Many such studies have concluded that spin
waves passing through a domain wall experience a relative
frequency shift between the right- and left-handed compo-
nents [14]. In systems with DMI, they can express even more
pronounced shifts between linearly polarized modes, giving
rise to a retarding waveplate effect [12]. Our formalism allows
us to calculate this shift precisely, and in terms of the SU(2)
isospin.

In this section, we consider a Bloch-type domain wall in
a synthetic AFM with easy-axis anisotropy and a bulk-type
DMI. Take the Walker solution for the 1D texture as

θ (x) = −2 arctan

(
exp

x

λ

)
and φ(x) = −π/2, (36)

with λ = √
J/K = O(A−1) the domain-wall width.

With this texture, we can immediately calculate the texture-
induced gauge fields from Eq. (B2) (taking ψ = 0 for con-
creteness): we have Az = 0 and

Ax = 1

λ
sin ψ sech

x

λ
(37a)

and Ay = 1

λ
cos ψ sech

x

λ
(37b)

⇒ A = i

λ
√

2
sech

x

λ
, (37c)

where we have suppressed the space-time index since there is
only one [72]. The bulk-type DMI is written as Dij = Dr̂ij ,
and minimization of DMI energy has been used to determine
φ(x).

Using spin wave Hamiltonian H for synthetic AFMs de-
tailed in the Supplemental Material [52], we compute the
appropriate coefficients of the semiclassical dynamics in
Eqs. (27). The resulting isospin Hamiltonian has an again
unimportant 12 component as well as a τx component. The
τx term is

Hx = DK (Z + 2Jk2)

4�
√

JK
sech

x

λ
. (38)

Since H has no other nontrivial component, we see imme-
diately that it will carry out a rotation of the isospin about x̂

on the Bloch sphere, and will do so most strongly near the

center of the domain wall due to the exponential localization
provided by sech(x/λ).

From there, we have E (since we have H), H (since we
have H and E), and we know that the B = E = 0 by inspec-
tion of Az. The other Berry curvature terms are easily seen
to vanish as well. We immediately construct the semiclassical
equations (27) and integrate them with an adaptive-step size
Runge-Kutta-Fehlberg solver (RKF45), using the parameters
for yttrium iron garnet to define our ferromagnetic layers
[73]. Our results are displayed and discussed in Fig. 5. Note
that, deep within the domain wall, the “easy axis” is no
longer aligned with the textural slow mode, and the dispersion
becomes imaginary for modes below a critical energy. In this
case, spin transferred to the domain wall is the dominant pro-
cess, and our numerical calculations break down close to this
regime. Augmenting our theory with a collective coordinate
theory of the domain wall, effectively allowing it to absorb
spin, may be used to address this problem. Here, however, we
keep the problem pedagogical by simply assuming that spin
waves are sufficiently high energy that the local Hamiltonian
remains Hermitian.

In our analysis of the domain-wall retarder, we note an
important difference between the g-type and synthetic AFM
in action. Define C = σx ⊗ 12, which exchanges each under-
lying basis field with its conjugate (time-reversed) partner.
This operation corresponds to charge conjugation. C changes
the sign of the coupling between spin wave and the emergent
electromagnetic fields arising from spin texture and DMI.
Together with time reversal (given by complex conjugation),
the full chirality operator S = T C is a symmetry of the
degenerate Néel-state Hamiltonian H = ĥ ⊕ ĥ∗. The breaking
of S symmetry by spin texture in the domain wall is what
allows the relative amplitudes of right- and left-handed modes
to change in the overall wave function.

Now, define I = 12 ⊗ σx , which defines the sublattice
interchange operation. T I is also a symmetry of the de-
generate Hamiltonian. In the g-type AFM case, spin texture
will break T I symmetry in general because an infinitessimal
misalignment is present in each unit cell [28]. In the synthetic
antiferromagnetic (SAF), however, the two sublattice sites in
a unit cell are never misaligned, so that T I is preserved even
in the presence of spin texture.

Algebraically, the T I symmetry of the SAF restricts off-
block-diagonal terms of the 4 × 4 spin wave Hamiltonian
to be purely real. Since the embedding E is itself real, it
follows that the isospin Hamiltonian cannot have a nonzero
τy component. The disentangling of T I from S symmetry in
SAFs should be seen as a virtue: it means that we can use
SAFs to carry out rotations about precisely known axes. By
contrast, the g-type calculation in Fig. 5 shows that symmetry-
unconstrained rotations can be quite complex. Not only is
the axis of rotation not about a canonical basis vector, but
the axis of rotation changes dynamically as the wave packet
travels through the continuum of different local Hamiltonians
presented by the spin texture. Precise rotations appear to
be insufferably difficult to control in such an AFM, so our
prescription to experimentalists and device engineers is to use
an SAF when precision is needed. However, SAFs present
their own challenges. Unlike pure g-type AFMs, SAFs present
a shape anisotropy that may make the realization of uniaxial
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FIG. 5. Semiclassical dynamics of a single magnon passing through a Bloch-type domain wall. The horizontal axes represent time, given
in picoseconds. Left: integration of Eqs. (27) for a wave packet, initially with right-handed polarization η = |0〉, passing through a domain
wall in a synthetic AFM. The SAF material parameters were taken from YIG, and the initial frequency of the wave packet was tuned to result
in a π/2 rotation on the Bloch sphere. The top plot gives the isospin expectation values; bottom, these have been rotated to give the true spin
current. Right: the same semiclassical dynamics, domain wall, and YIG parameters are simulated, but the system is assumed to be g-type
AFM. We merely substitute the ferromagnetic exchange for the inhomogeneous exchange, and antiferromagnetic for homogeneous exchange.
Because T I symmetry is broken in the g-type configuration, the rotation is unavoidably more complex. Bottom: schematic illustration of a
g-type versus a synthetic AFM domain wall. We have illustrated Néel-type walls for simplicity, but the calculation was done for Bloch-type
walls.

perpendicular magnetic anisotropy (PMA) difficult to main-
tain. A possible solution would be to use a-type AFMs. These
materials are magnetically ordered at the lattice level, but
are AFM ordered in layers, rather than by nearest neighbors.
These may present the best of both worlds: their symmetry
constraints will disentangle different rotations, as with an
SAF, but they would avoid shape anisotropy issues. Further
materials research in this direction is warranted.

We emphasize that although our wave-packet theory de-
scribes a single semiclassical particle, it nonetheless applies to
a global spin wave state [74]. Our results for both the domain
wall and the magnon field effect transistor (FET) match the
micromagnetic simulations of Refs. [12] and [11] to within
5% error in the driving frequency [75]. Formally, the global
wave function can be decomposed usefully into wave packets
through a Gabor transformation. Standard signal analysis
indicates that this use of isospin wave packets as a basis for
the spin wave signal is accurate as long as the grid spacing
needed to sample the spatially inhomogeneous texture does
not exceed the spread of wavelengths under consideration:
�xc�kc � 2π .

C. Other gates

We have carried out explicit example calculations in the
previous sections because they can be immediately compared
to results in the literature, unifying these previous investiga-
tions under a single formalism and allowing the reader to put
our results in context.

However, our formalism is far reaching and several other
gates can be readily designed. From straightforward calcu-
lations of H and H , one sees that a hard-axis anisotropy
will provide a rotation about σx [76]. Note that this actually
implies spin nonconservation since the magnetization (relative
to the local quantization axis) carried by a spin wave corre-
sponds to the polar angle of its isospin. Such nonconservation
mechanisms have been explored elsewhere [77]; here we
merely accept that they fall out of the isospin dynamical
equations. Meanwhile, an applied magnetic field parallel with
the AFM order will provide a rotation about σz since it
breaks the chiral degeneracy but not the U(1) symmetry of
the ground state. In this way, a parallel B field gives the
same effect as a normal E field used to generate the DMI in
Sec. IV A.
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eiπτzτx

τxτz

=iτy

FIG. 6. Applying different unitary gates to different branches
of a spin wave signal makes the entire Lie algebra of rotational
generators available from a set of two, as in the generation of σy

from the known σx and σz gates in the figure. By applying σx on
one branch and σz on another, one could for instance generate a
Hadamard gate. Note that in such a Hadamard gate, the designer
must take care to ensure that the overall dynamical phase between
the branches is equivalent, so as to avoid wave interference in the
output channel. Since the U(1) phase is abelian, though, one need not
worry about this in the iτy gate pictured above. Using a D1 = −iτz

gate instead of a pure τz gate would generate the same, “extraneous”
π/2 phase on both branches.

A local modification of the easy-axis anisotropy can raise
or lower the local AFMR frequency, and can therefore be
used to adjust the relative U(1) phase between two spin
wave arms of a multichannel magnonic signal. For instance,
such a modification could be used to generate the blue eiπ

gate in Fig. 6. There, the sign provided by the U(1) relative
phase is crucial for computing the commutator, rather than the
anticommutator, of σx and σz, without the eiπ gate, the loop
in Fig. 6 would simply produce total destructive interference,
annihilating the input signal. If one could implement this in
a gate-controlled, switchable fashion, then electronic control
over the eiπ gate (EAA) and the σz gate (DMI) would turn
Fig. 6 into a switchable σx ↔ σy gate. The presence of an eiπ

gate allows multichannel schemes such as Fig. 6 to explore the
full Lie algebra structure of SU(2). Options for implementing
a switchable eiπ gate could include gate-controlled easy-axis
anisotropy or a perpendicular (to n) applied B field. An espe-
cially important use of this gate in a isospin computer would
be to compensate the accidental dynamical phase accumulated
during the execution of rotational gates.

If one is interested in investigating the effects of inter-
actions not considered here, one can simply derive the spin
wave Hamiltonian in the four-dimensional basis we have
used in this paper and then project it to the operator space
over the degenerate subspace. One immediately obtains the
corresponding isospin Hamiltonian. We have tried to cover the
main classes of interactions in the Supplemental Material [52]
but more unique interactions such as compass anisotropy [78]
or honeycomb DMI [18] could provide useful interfaces to
other isospin operations.

V. DISCUSSION

Our objective to this point has been to present the reader
with a cohesive program for isospin magnonics. We started
by reviewing the idea of chirality and the isospin vector
that parametrizes it. Our key foundational results were the
semiclassical equations (27) describing the isospin dynamics
of an AFM magnonic wave packet. With these equations in

hand, we described a collection of physical gates, with a focus
on voltage gates and domain walls, that could manipulate the
isospin in predictable, calculatable ways.

As this paper draws to a close, let us reflect on our
results and potential avenues for future research. From the
computing standpoint, recognition of the chiral degree of
freedom in AFM magnons is of paramount importance. Using
the isospin vector as a data carrier represents a paradig-
matic improvement, on multiple fronts, over the amplitude-
modulating proposals that permeate FM magnonics. First,
power management and energy efficiency concerns that arise
when information is encoded in the FM spin wave power
spectrum become immaterial when the data are carried by
AFM isospin. Many of the problems of architecture scal-
ing, which plague FM magnonic computing, are significantly
alleviated in AFMs. Second, the isospin carries a higher
dimensionality of information. We have seen that this con-
siderably broadens the scope of magnon algorithmics. For
instance, it may be possible to replicate semiclassical quantum
computing gates in isospin logic. If one is willing to accept
the use of 2N isospin signals in place of 2N qubits, and can
map between these schemes faithfully, then perhaps one can
“classically simulate” nonentangling quantum circuits on a
classical magnonic platform. To this end, a great deal of study
is needed here to properly characterize the power and scope
of isospin computing.

Our key contribution to the field of magnonics is the
development of a generic, unified formalism for describing
the isospin dynamics in terms of unitary time evolution, a
framework with which every physicist is intimately familiar.
Together with our mechanical recipe (A10) for generating
the isospin Hamiltonian from the free energy, we expect that
our theory provides a cohesive platform for future theoretical
and experimental investigations into the challenges of isospin
magnonics.

Among these challenges are both extensions and applica-
tions of our theoretical apparatus. The gates we investigated in
Sec. IV were purely one dimensional, and from these simple
components one can produce quite sophisticated computing
devices. We have taken pains, however, to keep the spatial
dimensionality of our theory generic; one can apply the re-
sults of this paper to 2D and 3D systems. Even in quasi-1D
magnetic strips, two-dimensional textures such as skyrmions
or magnetic vortices could produce interesting effects. The
interactions between such solitons and AFM spin waves in
open systems is also an open question. Our theory could be
used to address these issues.

There of course exist magnonic applications outside the
spin wave approximation that underlie the theory in this
paper. There, our technical theory may not be a suitable
tool, but we hope that our phenomenological description of
the SU(2) isospin, a concept which relies solely on a the
fact that there are two sublattice degrees of freedom with a
relative phase between them, will prove useful. Recently, for
instance, AFM auto-oscillators have been proposed [79,80].
The dynamical differences between AFM and FM (Klein-
Gordon versus Schrödinger) suggest that existing theories
of magnetic auto-oscillation [81] will need to be extended
for the AFM case. This has already been done in the case
of easy-plane oscillators, where the magnetization produced
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by an oscillation is relatively fixed [82]. Other second-order
oscillator theories exist, but, especially once they become
coupled, are often intractable [83,84]. They are also usually
considered as phase oscillators. Whether these are the most
natural theories for describing isospin oscillators is an open
question.

In the AFM case, for instance, will the concept of an auto-
oscillation bandwidth extend to neighborhoods on the isospin
Bloch sphere? Such questions, which inherently depend on
nonlinearity, call for an understanding of isospin beyond the
harmonic spin wave regime. Along a different direction, the
adventurous theorist might consider extending our theory to
an AFM of more than two sublattices, attempting to derive
the dynamics of an SU(N ) isospin.

Practical questions remain about the classes of materials
that can reliably support the sort of dynamics we have es-
poused in this paper. Although our theory readily applies to
uniaxial AFMs such as MnF2, AFMs with biaxial or multiax-
ial anisotropy may not support low-lying circularly polarized
modes. Circularly polarized modes may still be used as a
basis, especially if the second anisotropy axis is weak, but as
the band splitting becomes greater and greater, our “nearly
degenerate” assumption breaks down. More thorough work is
needed in understanding isospin dynamics in this regime [77].

Finally, we note that ferrimagnets satisfy conceptual pre-
requisites for an SU(2) isospin, but are usually treated [in
the yttrium iron garnet (YIG) case, at least] merely as low-
damping FMs. Given the importance of ferrimagnets to mod-
ern magnonics, a theoretical extension of our formalism to
these systems could be of immense interest. Although the
two modes in ferrimagnets would not be degenerate as they
are in AFMs, and therefore would require more energy for
switching, one might still in principle be able to carry out
isospin logical operations. Research into such systems could
be critical for applied isospin computing.
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APPENDIX A: TEMPORAL DYNAMICS
FROM THE BERRY PHASE LAGRANGIAN

Although we introduced spin wave dynamics via Eq. (4), it
is possible to bypass the Landau-Lifshitz equation altogether.
Instead, we can appeal directly to the Lagrangian of our
classical field theory on αpm and β±, given by

L[α+, β+, α−, β−] = LBP − F, (A1)

where F is the magnetic free energy and LBP is the so-called
Berry phase Lagrangian. The Berry phase Lagrangian is given

by

LBP = S

εd

A,B∑
�

∫
�� × m�

1 − ��

· dm�

dt
ddx, (A2)

where ε is the lattice constant and � is the gauge-dependent
orientation of the local Dirac string [85–87]. If one takes the
variational derivative of LBP by α and β, we will find the
left-hand side of Eq. (5). Even though we have already arrived
at this result from the perspective of the Landau-Lifshitz
equation, we repeat the derivation here using the Lagrangian
picture. We do so because the Lagrangian formalism should be
of greater generality and modularity [88], so that others may
simply add terms to the Lagrangian and repeat the process we
are about to demonstrate.

Define λA =
√

1 − 2|α|2, λB =
√

1 − 2|β|2, and λm =√
1 − 2|μ|2 (we use the convention that |α|2 = α+α− and so

on). The basic idea in evaluating LBP is simply to make the
substitutions

RmA = x̂√
2

[α+ + α− + λA(μ + μ∗)]

+ ŷ

i
√

2
[α+ − α− + λA(μ − μ∗)]

+ ẑ(λAλm − α−μ − μ∗α+), (A3a)

RmB = x̂√
2

[β+ + β− + λB (μ + μ∗)]

+ ŷ

i
√

2
[β+ − β− + λB (μ − μ∗)]

− ẑ(λBλm − β−μ − μ∗β+) (A3b)

into the Lagrangian and expand the result. The “monolithic
substitutions” (A3) are derived in Appendix C. As long as the
Lagrangian is a linear operator on the spin wave fields α± and
β±, we end up with a collection of terms

LBP = LBP
0 + LBP

1 + LBP
2 , (A4)

where we have collected terms at zeroth, linear, and quadratic
order in the spin wave fields. Linear spin wave theory, upon
which our formalism is built, cannot support terms at cubic
order or higher, as these would constitute nonlinearities in the
equations of motion.

Because we are interested in taking functional derivatives
with respect to the spin wave fields, we can immediately
neglect the terms LBP

0 [89]. As for LBP
1 , we see that functional

derivatives of this term would actually introduce inhomoge-
neous terms in the equations of motion. The fastidious reader
will find in her derivations that we apparently do have such
terms in our Lagrangian, which do not vanish a priori. Such
terms, if they properly belong to a physical description of the
system, would seem to imply spontaneous emission of spin
waves since they will let �̇ take on a nonzero value even when
� is everywhere zero.

However, the reader is simultaneously invited to notice
that we have introduced more “perturbations” than we can
actually control. The problem is that A, which we treat as
an independent field, encodes the ground state of the system,
as predetermined by anisotropy and DMI. In fact, once the
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boundary conditions are given, A is strictly determined by
these parameters [90]. In equilibrium, one may compute A
in principle by minimizing the free-energy functional with
respect to the textural gauge fields{

δF [D,K]

∂A
j
μ

= 0

}
μ,j

⇒ Aequilibrium[D,K]. (A5)

Formally, these equations should be solved simultaneously
with the actual spin wave equation. On physical grounds,
though, we assume that these inhomogeneous terms always
vanish when the system under consideration is in equilibrium
or else, the system would not in equilibrium, leading to a
contradiction. The mathematical mechanism transmitting this
assumption is precisely the set of constraints (A5). If the
system is not in equilibrium, say, if a soliton is moving,
then generally speaking it should generate spin waves inho-
mogeneously. Although our formalism allows for temporal
behavior of the underlying spin texture, we assume that it
is always in quasistatic equilibrium, that is, we neglect any
inhomogeneous spin waves it generates.

After the above considerations are implemented, we find
that we need deal only with the harmonic Lagrangian

LBP �→ LBP
2 . (A6)

Keeping only the quadratic terms in the spin wave modes,
keeping terms only to order O(|A|2) in our perturbative
expansion, and summing over the sublattices � ∈ {A,B}, we
are left merely with

LBP
2 = S

[
Az

t α−α+ + in

2
(α−α̇+ − α+α̇−)

]

− S

[
Az

t β−β+ + in

2
(β−β̇+ − β+β̇−)

]
, (A7)

where n = 1 + |μ|2 is the effective index of refraction be-
tween the local and vacuum values of the spin wave speed,
as seen from the Klein-Gordon formulation (see Appendix E).
One readily observes the difference of a minus sign separating
sublattices A and B, as well as a minus sign between each
field and its conjugate partner. These signs are precisely our
τz ⊗ σz factor from Eq. (5). Defining � = (α+, β+, α−, β−),
we find that setting δL/δ�̄ = 0 results in

i(τz ⊗ σz)�̇ = εd

nS

δF

δ�̄
− Az

t (12 ⊗ σz)�, (A8)

where ε is the lattice constant. Since we will only keep the
quadratic terms in F by the arguments that lead to Eq. (A6),
we know that δF/δ�∗ is a linear operation on � that can be
written in the form

i(τz ⊗ σz)�̇ = εd

nS
H� − Az

t (12 ⊗ σz)� (A9)

analogous to Eq. (5). In general, the spin wave Hamiltonian is
given by

H =

⎛
⎜⎜⎜⎜⎝

〈
δF
∂α−

∣∣α+
〉 〈

δF
∂α−

∣∣β+
〉 〈

δF
∂α−

∣∣α−
〉 〈

δF
∂α−

∣∣β−
〉

〈
δF
∂β−

∣∣α+
〉 〈

δF
∂β−

∣∣β+
〉 〈

δF
∂β−

∣∣α−
〉 〈

δF
∂β−

∣∣β−
〉

〈
δF
∂α+

∣∣α+
〉 〈

δF
∂α+

∣∣β+
〉 〈

δF
∂α+

∣∣α−
〉 〈

δF
∂α+

∣∣β−
〉

〈
δF
∂β+

∣∣α+
〉 〈

δF
∂β+

∣∣β+
〉 〈

δF
∂β+

∣∣α−
〉 〈

δF
∂β+

∣∣β−
〉

⎞
⎟⎟⎟⎟⎠,

(A10)

where the bra-ket notation simply indicates a functional inner
product under which the basis vectors corresponding to α±
and β± are orthogonal. Since the formula we have given for
H is explicit and straightforward [just make the substitutions
(A3) into the free energy and start taking functional deriva-
tives of the quadratic sector], we will not bore the reader with
pages of algebra by deriving concrete manifestations of H in
the main text. We have provided computer algebra code (in the
Wolfram language) that derives H for an assortment of useful
free energies in the Supplemental Material [52], with a focus
on those free energies needed to explore our various examples
in Sec. IV. We hope readers interested in their own systems
will use the recipe described above to generate their own spin
wave Hamiltonians, which project onto a Hamiltonian H
governing the unitary dynamics of the isospin vector |η〉 in
Sec. III.

APPENDIX B: SPIN TEXTURE

A principal mechanism [91] by which we break U(1)
symmetry and mix the chiralities is through the introduction
of a nonuniform ground state. To that end, we require a formal
structure for encoding information about the ground state in
our dynamical equations.

Much of the contemporary literature dealing with spin
texture opts to assemble a local coordinate frame, generally
{êr , êθ , êφ}, so that the linearization process we used to derive
Eq. (6) can be recycled in the {êθ , êφ} plane. This amounts to a
passive transformation, taking the oscillatory plane of the spin
wave fluctuations to align with the local texture.

We instead opt to carry out the equivalent active trans-
formation, rotating each spin so that its spin wave plane
coincides with the global xy plane [34,35,44]. A thorough
introduction to this technique in the ferromagnetic case is
given by Ref. [34]. In ferromagnets, one simply defines a
rotation matrix R̂(x, t ) by R̂m0 = ẑ, so that it sends the
ground-state configuration m(x, t ) at each point to the global
ẑ axis. This rotation matrix gives rise to a gauge field Aμ =
(∂μR̂)R̂T . Formally, ω may be regarded as a matrix-valued
[SO(3)-valued] one-form.

One can show in the lattice formalism that A represents the
infinitesimal rotation 1 + RiR

T
j = expAij between two sites,

that is, A is a generator of rotations. It can thus be decomposed
into the standard basis for SO(3):

Aμ = Ax
μĴx + Ay

μĴy + Az
μĴz. (B1)

Defining R in terms of the Euler angles R =
e−iψĴz e−iθ Ĵy e−iφĴz , we can express the vector fields Aj

in terms of the spherical angles describing the spin texture.
This is why we have chosen to include minus signs in the
exponentials defining R: they show that we first “undo” the
spherical angles by sending the azimuth to φ − φ = 0 and
then sending the polar angle to zero. Taking this convention
gives us

Ax
μ = − sin ψ ∂μθ + cos φ sin θ ∂μφ, (B2a)

Ay
μ = − cos ψ ∂μθ − sin θ sin ψ ∂μφ, (B2b)

Az
μ = − cos θ ∂μφ − ∂μψ. (B2c)
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Since only two angles are needed to specify the state of each
spin, the third rotation by ψ appears to by extraneous, though
certainly permitted since it leaves invariant the spin texture
now lying along ẑ. In this sense, it represent the U(1) gauge
freedom associated with the U(1) symmetry of a coherent
spin. In practice, though, ψ will often not be a gauge freedom
because the U(1) symmetry will often be broken by means
other than the immediate spin texture. If the spin texture has
any misalignment with the easy axis, that is, if there is any
deviation from the Néel ground state, then the anisotropy
energy will not be invariant under the rotation by ψ . DMI or
hard-axis anisotropy vectors lying perpendicular to the ground
state would also break this symmetry.

The fact that we have chosen ẑ as the global axis to which
the texture is rotated means that we will mostly be concerned
with the Jz component of the curvature form � = dA. The
main consequence is that it is the curl of Az, rather than the
curl of Ax or Ay , which will provide the emergent electromag-
netic field, familiar to students of magnetic skyrmions [62],
generated by a spin texture.

The reader may recall that A, and therefore the 3-tuple
(Ax, Ay, Az), was supposed to describe an infinitesimal ro-
tation between neighboring spins. Such a rotation belongs
to a two-dimensional group, and should be describable by
exactly two numbers; therefore, we should seek a single
constraint among our three vector potentials Aj . By analyzing
the curvature form, one can quickly show that this constraint
is

∇ × Az = Ax × Ay. (B3)

Because ẑ is privileged, it will be convenient to keep using Az

in our equations. For Ax and Ay , though, we define a more
concise complex field via

Aμ = Ax
μ + iA

y
μ√

2
. (B4)

Then, we see that we can substitute the right-hand side of
Eq. (B3) for [92]

ẑ · (Ax × Ay ) = Ax
xA

y
y − Ax

yA
y
x = 2iA∗

xAy. (B5)

We conclude that A∗
xAy , and, therefore, A∗

yAx , is a physically
interesting quantity, as it encodes the same emergent electro-
magnetic field as the curl of Az.

What of the symmetric products A∗
μAμ? It turns out that

these elements are also gauge-invariant physical quantities. In
the general case, one finds

A∗
μAν = gμν + i

2
Fμν, (B6)

defining Qμν = AμA∗
ν, (B7)

where gμν = Ax
μAx

ν + A
y
μA

y
ν reduces in spherical angles of

the texture to

gμν = ∂μθ∂μθ + sin2 θ∂μφ∂νφ (B8)

⇒ g = dθ2 + sin2 θ dφ2. (B9)

In other words, g is just the first fundamental form on the
sphere. It is the differential line element ds2 by which arc

lengths of the spin texture through spin space are measured.
The matrix g is the spherical metric.

Qμν is called the quantum geometric tensor. There is very
little “quantum” about it in our case, but the nomenclature is
already out there [10,93–95].

APPENDIX C: A MONOLITHIC SUBSTITUTION
FOR INTRODUCING THE SPIN WAVE FIELDS

In the antiferromagnetic case, we choose the rotation ma-
trix to send the staggered order to the global ẑ. Generally
speaking, mA and mB are not perfectly antiparallel, so after
this rotation we will still be left with in-plane components of
the (rotated) local magnetization.

We have already alluded to the fact that our two-level
system does not fully describe the spin wave dynamics. This is
because the basis fields ax + iay and bx + iby only represent
circular modes. If we want to access modes with linear
components, say, fluctuations of ax with ay = 0, then our
Hamiltonian needs to couple to a linear combination of both
ax + iay and its complex conjugate.

To address this, we have introduced the fields
α+, α−, β+, and β− to represent our spin wave fluctuations
on each sublattice. Now, let us fold these new variables into
our formalism. First, split each rotated field into its slow (m̃0

A

and m̃0
B) and fast (α and β) modes, which are perpendicular

by construction, and then split the slow modes into the
local staggered order and local magnetization (Rn = λmẑ and
m̃ = Rm, with λm = √

1 − m2) of the quasistatic equilibrium
spin texture. We have introduced factors of λA =

√
1 − |α|2

and λB =
√

1 − |β|2 in order to maintain the normalization
of the slow modes m̃A and m̃B in the presence of spin wave
fluctuations. In other words, we have

RmA = λA(m̃ + λmẑ) + α, (C1a)

RmB = λB (m̃ − λmẑ) + β. (C1b)

A few notes about the quantities we have just defined. First,
m̃ lies in the xy plane since ñ = λmẑ is perfectly out of plane.
Second, though we have opted out of a concern for brevity
not to decorate n and m with any kind of indicator, keep in
mind that these variables only encode the slow modes of the
system. All spin wave fluctuations of these quantities have
been restricted by construction to the excitations α and β.

Notice that we have chosen R through the realignment
of n to avoid choosing a preferred sublattice. Because each
m0

A and m0
B is subtly misaligned from n in the presence of a

texture, however, our rotated spin wave fluctuations are α and
β have small out-of-plane components. It would be convenient
instead to restrict them to the xy plane, so let us now compute
exactly what their out-of-plane component is. Since they are
orthogonal to the sublattice slow modes by construction, we
have (on the A sublattice, for instance)

0 = α · m̃0
A = α · m̃ + λmαz (C2)

so that αz = −λ−1
m α · m̃ and βz = λ−1

m β · m̃. Defining a and b
as the planar projections of the spin wave fields, we can then
simply write α = a − λ−1

m (a · m̃)ẑ and so on.
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Finally, we define complex variables α± = (ax ± iay )/
√

2,
β± = (bx ± iby )/

√
2, and μ = (m̃x + im̃y )/

√
2. These four

complex variables will be treated as independent; with the
understanding that the real part must be taken before extract-
ing physical quantities from this complex formalism, four
real degrees of freedom are maintained. Taking all of these
definitions together, we have our two monolithic substitutions

m̃A = x̂√
2

[α+ + α− + λA(μ + μ∗)]

+ ŷ

i
√

2
[α+ − α− + λA(μ − μ∗)]

+ ẑ(λAλm − α−μ − μ∗α+), (C3a)

m̃B = x̂√
2

[β+ + β− + λB (μ + μ∗)]

+ ŷ

i
√

2
[β+ − β− + λB (μ − μ∗)]

− ẑ(λBλm − β−μ − μ∗β+). (C3b)

With these quantities in hand, the free energy can be computed
explicitly, and by taking variations by α and β of the conse-
quent Lagrangian, we can ultimately determine the spin wave
equation of motion.

APPENDIX D: A MORE DETAILED DISCUSSION
OF NONABELIAN WAVE-PACKET THEORY

Before computing a phase-space Lagrangian governing the
semiclassical dynamics, we establish some self-consistency
properties of the wave packet that will provide for useful
identities during our calculation.

1. Normalization condition

First, let us enforce a normalization condition on |W 〉,
given by

〈W |τz ⊗ σz|W 〉 = 1. (D1)

This leads to a normalization condition for the η, namely, that

〈W |τzσz|W 〉 = (−1)j
∫

dq dk w∗
kwqη

∗
j,kηj,q

〈
ψ

j

k

∣∣σz

∣∣ψj
q

〉
(D2)

= (−1)2j

∫
dq |wq |2|ηj |2 (D3)

⇒ 1 = 〈η|η〉. (D4)

Equation (D4) suggests that, unlike |W 〉 and |�〉, |η〉 will
be subject to a traditional, Euclidean Schrödinger dynamics.
Recall that the σz inner product in the two-level system did
not provide a useful normalization condition, as a result of the
internal hyperbolic geometry. It is only here in the four-level
system, where the signs from internal and external geometries
cancel each other, that we arrive at a normalizable spin wave
density (rather than spin density).

The calculational patterns from Eq. (D2) detail the internal
derivations of wave-packet theory. We briefly outline the
logical flow of the computation for readers unfamiliar with

the formalism. The key stages needed to reduce any of our
wave-packet inner product are as follows:

(1) Use the fact that the wave vectors are “block-diagonal”
[in the sense of Eq. (11)] to reduce the τz to a single (−)j , and
to avoid any cross terms between eigenvectors from different
bands.

(2) Establish an inner product of the internal band struc-
ture (e.g., 〈ψj

k |σz|ψj
q 〉). Extract the translation operators to

find a factor of exp[i(q − k)x] and use the inner product, a
real-space integral over the sample, to produce a δd (q − k).

(3) Carry out one of the momentum-space integrals to
activate the Dirac delta function and reduce the problem to
a single Brillouin zone.

(4) If the inner product from step 2 was a normalization
condition of the internal geometry, then it produced a (−)j

that, together with the sign from τ , cancels to give positive
unity. Otherwise, there is a nontrivial inner product 〈η|Ô|η〉
that must be tracked.

(5) Integrate by parts, use product rules, and use the
normalization condition as necessary to manifest a factor of
|wq |2 in the integrand. Interpret |wq |2 �→ δd (q − qc ) to carry
out the final integral.

Before evaluating the Lagrangian proper, we have one
more useful identity to compute: the expectation value of the
position operator.

2. Position operator

Let us consider the self-consistency condition for the wave-
packet center. This means that we require the observable x̂ to
be diagonal in the wave-packet basis, with eigenvalue xc for
wave packet |W (xc, qc, η, t )〉. Therefore,

〈W |(τz ⊗ σz)x̂|W 〉 = xc〈W |(τz ⊗ σz)|W 〉. (D5)

The bra-ket on the right then reduces to unity by the wave-
packet normalization.

Before we proceed, let us define the nonabelian Berry
connection

âj
μ =

(〈
�0

q

∣∣iσz∂μ�0
q

〉
0

0 −〈
�1

q

∣∣iσz∂μ�1
q

〉), (D6)

wherein μ is a coordinate of the phase-space dynamics. We
will therefore be concerned alternatively with âx, âq, and ât .
Calculating the left-hand side of Eq. (D5) using the matrix
elements of the position operator from Ref. [96], we find [97]

xc = 〈W |(τz ⊗ σz)x̂|W 〉 (D7)

= 〈η|âq|η〉 + ∂γc

∂q
. (D8)

In deriving Eq. (D8), we see our first example of a noncancel-
lation between σz and τz. The Berry connection is not merely
the normalization condition 〈�|σz|�〉, and therefore cannot
produce the sign needed to cancel the (−)j factor. Instead,
these signs have all been contained within â.

3. Extracting the electromagnetic Lagrangian

In Sec. II B, we introduced the collection of vector
potentials Aj which encode the spin texture. Generally
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speaking, the introduction of spin texture breaks the contin-
uous translational symmetry of the (continuum limit of the)
Néel ground state. Since the Aj are not necessarily gauge
invariant, though, one expects that the translational proper-
ties of the vector potentials need not align in general with
translational properties of the physical system. The situation
is similar to introducing an electromagnetic vector potential in
standard quantum mechanics; there, the canonical momentum
operator −i∂x must be adjusted to the mechanical momentum
operator, −i∂x − ieA, where only the latter is properly con-
served.

Even without explicitly computing the spin wave Hamilto-
nian, we expect that the kinetic energy term we explored in
the two-level system will appear to undergo a sort of Peierls
substitution by Az. With this in mind, we will now perform
a gauge transformation, removing the Az from the kinetic
energy terms and collecting it into a new Lagrangian term
which will completely encapsulate the emergent electromag-
netic interaction.

Define the matrix

G = exp[−i(τz ⊗ 12)(Az · x)]. (D9)

Then, inserting factors of G†G into the Lagrangian, we have

〈W |G†G
(

iτzσz

d

dt
− H − Az

t σz

)
G†G|W 〉, (D10)

where the wave packets and Hamiltonian are, at this point, still
in the original gauge choice, and the brackets represent the
matrix element of the operator on the diagonal in the wave-
packet basis. To save space, we have removed the explicit
tensor product notation. We leave it to the reader to interpret
τz �→ τz ⊗ 12 and σz �→ 12 ⊗ σz as the context demands.

The value of the transformation by G is not only in an in-
ternal simplification of H, but also in elegantly extracting the
emergent electromagnetic Lagrangian early in the calculation.
One readily sees after carrying out the time derivative that the
Lagrangian is

〈W̃ |
(

−(σzȦz · x̂) − Az
t σz + iτzσz

d

dt
− H̃

)
|W̃ 〉, (D11)

where H̃ = GHG†. Collecting the first two terms together, this
can be naturally split into three components:

L = LEM + Ldt + LH . (D12)

These components represent the emergent electromagnetic,
dynamical, and free-energy sectors of the spin wave equation.

The gauge transformation has also affected the wave packet
itself. Concretely, the wave packet is now

|W̃ 〉 := G|W 〉 =
∫

dq w(q, t )

× [η̃0(q, t )|�0(q, t )〉 + η̃1(q, t )|�1(q, t )〉], (D13)

where |η̃〉 = (η̃0, η̃1) locates the gauge-transformed wave
packet within the degenerate subspace.

From Eq. (D11), we see the need to evaluate

− Ȧ
z · 〈W̃ |(12 ⊗ σz)x̂|W̃ 〉 − Az

t 〈W̃ |12 ⊗ σz|W̃ 〉 (D14)

the first of which terms will invoke a calculation analogous to
those in Appendix D 2. We have

〈W̃ |(12 ⊗ σz)x̂|W̃ 〉 = 〈η|τzâq|η〉 + 〈η|σz|η〉∂γc

∂q
. (D15)

Substituting in the self-consistency condition (D8) on xc for
the γc derivative, we end up with

LEM = −Ȧz · �q − χ
(
Ȧz · xc + Az

t

)
, (D16)

where χ = 〈η|τz|η〉, and �q is the covariance 〈η|τzâq|η〉 −
〈η|τz|η〉〈η|âq|η〉. Note that we have simplified these terms
back to η, rather than η̃, since G commutes with τz and âμ.

Interpreting χ as a charge, the second half of Eq. (D16)
is just the interaction Lagrangian for a charged particle in an
electromagnetic field [98]. Note that, in particle physics, there
is also a sense in which the electromagnetic charge is a τz

expectation value: one can rotate the isospin of a positively
charged proton, through some SU(2) “isospin” space, to the
neutrally charged neutron. That we have a similar sort of
continuum-valued (emergent) charge is our motivation for
employing the “isospin” nomenclature in our definition of η.

4. Time derivative term

Although we have already encountered a few time deriva-
tives without comment in the wave-packet theory, a few
words are certainly in order concerning the time variable. Its
treatment is one of the most delicate and subtle parts of wave-
packet theory, and it is easy to make dangerous systematic
errors without a proper treatment. For the reader interested in
replicating our derivation, we have given some notes on the
matter in Appendix D 7.

The time derivative term Ldt in the Lagrangian is

i

∫
dq dk

〈
� i

q

∣∣η̃∗
i,qw

∗
q (τzσz)

d

dt

(
wkη̃j,k

∣∣�j

k

〉)
. (D17)

Since our eigenvectors are themselves block diagonal, and
since τz ⊗ σz as well as G are both diagonal, we know there
can be no terms connecting i �= j .

The first term (on wk) in a product rule of expansion of
Eq. (D17) is simply ∂tγc. The next term, on η̃j,k , gener-
ates the isospin dynamics, and the final term gives rise to
matrix-valued Berry connections. All together, these terms
become

Ldt = 〈η̃|ẋc · âx + q̇c · âq + ât + i∂t |η̃〉 − q̇c · xc. (D18)

We have used the self-consistency condition to replace the
Berry phase term ∂tγc with xc − 〈η|âq|η〉.

5. Hamiltonian terms

Finally, we have the terms coming from the spin wave
Hamiltonian itself. These are

LH = −〈W |H|W 〉 (D19)

= − 1

ns

∫
dq |wq |2[η̃∗

i η̃j 〈�i |H̃|�j 〉]. (D20)

Let us define the matrix

H̃ =
(〈

�0
c

∣∣H̃∣∣�0
c

〉 〈
�0

c

∣∣H̃∣∣�1
c

〉
〈
�1

c

∣∣H̃∣∣�0
c

〉 〈
�1

c

∣∣H̃∣∣�1
c

〉
)

. (D21)
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One may think of H as a projection of the original H into the
two-dimensional orthochronous degenerate subspace that we
are now calling “isospin space,” the copy of SU(2) in which η

resides. Defining the embedding

E† = |�0〉〈0| + |�1〉〈1| (D22)

which sends vectors in the isospin subspace to their represen-
tation in parent 4 × 4 Hilbert space space, H is merely

H̃ = EH̃E†. (D23)

This Hermitian matrix will govern the dynamics of |η̃〉 in
the semiclassical dynamics we are about to describe. The
total contribution from these energy terms to the wave-packet
Lagrangian is, simply,

LH = −〈η̃|H̃ |η̃〉. (D24)

6. Phase-space EOM

Let us take stock of our progress. We have a Lagrangian of
three terms, which have been reduced to

LEM = −Ȧz · �q − χ
(
Ȧz · xc + Az

t

)
, (D25a)

Ldt = 〈η̃|ẋc · âx + q̇c · âq + ât + i∂t |η̃〉 − q̇c · xc, (D25b)

LH = −〈η̃|H̃ |η̃〉. (D25c)

Now, we can take variations against xc, qc, and |η〉 to derive
semiclassical equations of motion (EOM).

First, let us find the force equation by taking a variation
against xc. For the Lorentz force term, we unsurprisingly have

δLA

δx
μ
c

= −χ
[
∂tA

z
μ + ∂x

μ
c
Az

t + ẋc · ∂x
μ
c
Az − (ẋc · ∇)Az

μ

]
(D26)

= χE + χ ẋc × B, (D27)

where we define the fields E = −∇Az
t − ∂tAz and B = ∇ ×

Az in the obvious ways. The time derivative term meanwhile
gives

δLdt

δx
μ
c

= −q̇c + 〈
�xx

μν

〉
ẋν

c + 〈
�xq

μν

〉
q̇ν

c + 〈
�xt

μ

〉
, (D28)

where 〈
�αβ

μν

〉 = 〈η|
(

∂âβν

∂αμ
− ∂âαμ

∂βν

)
|η〉 (D29)

is the η-density trace of the nonabelian Berry curvature, as
discussed in Ref. [53].

Finally, we have a contribution from the gauged Hamilto-
nian. In most cases we consider in this paper, no such terms
survive at O(|A|2); the terms that might nominally survive are
those wrapped encoded in LEM. Examples of terms that may
survive and not be included in LEM could include spatially de-
pendent anisotropy or DMI, arising from, e.g., wedge-shaped
layers in magnetic heterostructures. Taking this term and the
Lorentz force together, the force equation is

q̇c = Tr

[
ρ̂

(
τz(E + ẋc × B) − ∂E

∂xc

)]
, (D30)

where E is the energy of the unperturbed degenerate bands,
and where we have defined the density operator

ρ̂ = ρ0|0〉〈0| + ρ1|1〉〈1|. (D31)

Now, we turn to the velocity equation. The results are
little different from what we would expect from standard non-
abelian wave-packet theory, giving us the classical velocity
together with Berry-curvature-induced transverse velocities

ẋc = Tr[ρ̂(∂qE + �qq q̇c + �qx ẋc + �qt )]. (D32)

Now, we turn to the most interesting equation of motion,
generated by the variation again 〈η|. This generates terms of
the form

δLEM

δη̃∗ = −Ȧz · δ�q

δη̃∗ − (Ȧz · xc )τzη̃ − Az
t τzη̃, (D33)

δ�q

δη̃∗ = τzâqη̃ − τz(〈η̃|âq|η̃〉)η̃ − χâqη̃, (D34)

δLdt

δη̃∗ =
[

q̇c · âq + i
∂

∂t

]
η̃, (D35)

δLH

δη̃∗ = −H η̃. (D36)

The final general equation of motion is

i

(
d

dt
+ At

)
η = [

H + τzA
z
t + V̂χ

]
η, (D37)

where H = EHE† (note that we have removed the gauge
transformation G), A is the time-covariant connection on
phase space

At = q̇q · âq + ẋc · âx + ât , (D38)

A ij
t = 〈

ψi
c

∣∣iσz

d

dt

∣∣ψj
c

〉
, (D39)

and V̂χ is a nonlinear term deriving from �q. It is given by

V̂χ = −Ȧz · (τzâq − τzP̂ηâq − âqP̂ητz), (D40)

where P̂η = |η〉〈η| is the projector onto the isospin state, and
as before the dot product (with Ȧz) is taken with the subscript
in âq. This potential is nonlinear in the sense that, through P̂η,
it depends quadratically on the current state, and the resulting
term in the Hamiltonian has the schematic form |ψ |2|ψ〉.
However, this nonlinear term balances precipitously on the
edge of irrelevance. Ȧz is itself O(A2), so this term survives
only if âq is O(A0). Although there is no reason (to our
knowledge) this could not happen in principle, none of the
concrete systems we consider later in the paper can activate
this term. What is more, the term would seem only relevant in
the case of a moving spin texture, so that Ȧz is nonzero. Such
a term may be of interest for those working in the dynamics
of AFM solitons, but we leave that to future research.

7. Notes on time derivatives in wave-packet theory

There are two variables, x and q, that have been float-
ing around as dummy variables of integration in some of
our calculations. Several functions, such as the wave-packet
envelope aq = a(q, t ) or the Bloch eigenvectors eiqxu(q, t ),
are functions of both q (or x) and time. For these functions,
there is no difference between a total time derivative and a
partial time derivative because q and x are clearly independent
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variables (merely coordinates of a space) that do not, them-
selves, possess any temporal dynamics.

On the other hand, the gauge field Az = Az(xc, t ) was
originally, and will always be, evaluated at xc in its spatial
argument. This xc is a dynamical variable, which does de-
pend on time and has dynamics. Our notation, which follows
Ref. [55], is that a partial time derivative of such a function
acts only on the second argument slot, where there is an
explicit time dependence. A total time derivative, on the other
hand, would include the time dependence through xc, so that

d

dt
= ∂

∂t
+ ẋc · ∂

∂xc

. (D41)

So far, our discussion has perhaps clarified the notation, but
is by no means unusual. The delicacy of these operations in
wave-packet theory occurs when evaluation of a wave-packet
expectation value promotes a function in the integrand, where
it may have possessed only an explicit time dependence, to a
function of qc(t ), due to the firing of the Dirac delta function
|aq |2. The question is as follows: Should the time derivative
under the integrand be lifted to a total time derivative or a
partial time derivative once the function acquires a new time
dependence in the phase-space coordinate arguments xc(t )
and qc(t )?

The answer is that we must promote it to a partial time
derivative. The original, physical meaning of such a time
derivative in the integrand was to ask how, at any given point
in space, a function changed with time. We are concerned with
the function’s temporal behavior, not the temporal behavior of
the combined wave-packet/function system. From a different
perspective, we note that we are certainly free to take the time
derivative as early as possible. Suppose we “carry out” the
time derivative in the integrand by replacing ∂tf (t, q) with
its formal derivative F (t, q). Now, F is just a function which
we have determined in principle before ever introducing the
phase-space path (xc, qc ), so after firing the Delta function we

simply have F (t, qc(t )). Clearly, F (t, qc(t )) = ∂tf (t, qc(t )),
with the derivative only in the first argument.

APPENDIX E: STAGGERED ORDER

Suppose we changed the basis of Eq. (6) by a Hadamard
matrix

M = 1

2

(
1 1
1 −1

)
, (E1)

sending α and β to δm = mx + imy and δn = nx + iny ,
respectively. Neglecting anisotropy for the moment, the re-
sulting Schrödinger equation on ĥ is

iσx

d

dt

[
δm

δn

]
= 1

2

[
Z + σz(Z − J∇2)

][δm

δn

]
. (E2)

Neglecting the dynamics of δm, this can be solved by
taking a second time derivative and plugging the original
equation for ṅ into the new equation for n̈. The result is

0 =
(

1

c2

d2

dt2
− ∇2

)
δn, (E3)

where c = √
ZJ/2. Therefore, our σz-measured Schrödinger

dynamics given (in either of the equivalent 2 × 2 blocks) by
Eq. (5) are in fact equivalent (in this simple regime, at least)
to the Klein-Gordon–type second-order dynamics found more
commonly in the literature. It is no surprise that relativistic
dynamics describes the system whose modes, as we have seen,
are restricted to timelike points in a hyperboloid of two sheets.
In the case where K = 0, we actually have massless particles,
the hyperboloid of two sheets becomes a light cone. Adding
the anisotropy restores a mass term (� − m2)δn = 0 to the
Klein-Gordon equation, just as it opens a mass gap in our
hyperboloid.
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