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The spin-disorder resistivity (SDR) of a disordered fcc-(Ni1−x, Fex) alloy is determined from first principles.
We identify the SDR at and above the critical temperature with the residual resistivity of the corresponding
paramagnetic state evaluated in the framework of the disordered local moment (DLM) model. The underlying
electronic structure is determined by means of the tight-binding linear muffin-tin orbital method, which employs
the coherent potential approximation (CPA) to describe both the DLM state and the chemical disorder in
alloys. An extension of the DLM fixed-spin moment method for two independent magnetic moments is
used and combined with the paramagnetic lattice gas entropy to determine local moments by minimizing
the corresponding free energy. The effect of phonon scattering is included through the mapping of static
atomic displacements into a multicomponent random alloy which is then treated in the CPA. Finally, the
Kubo-Greenwood-CPA approach is employed to estimate the SDR. We also address the problem of the validity
of the Matthiessen rule at the Curie point. Good agreement of calculated and measured SDR is obtained over the
whole studied concentration range; the results point to the importance of nonzero Ni magnetic moments in the
limit of pure nickel.
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I. INTRODUCTION

The temperature dependence of resistivity is one of the
basic properties of any metallic system. In particular, in mag-
netic metals, in addition to the conventional residual resistivity
due to impurities ρimp and the contribution due to scattering
on phonons ρph or static displacements of atomic nuclei,
an additional scattering mechanism due to spin fluctuations
ρsf also exists. It usually reaches its maximum close to the
corresponding critical temperature (Curie temperature TC in
the present case) and remains constant above it. The latter,
the spin-disorder part of the resistivity (SDR), is an important
characteristic of the paramagnetic state, and it is the main
subject of this paper. The SDR is also readily available from
the experiment: one measures the low-temperature resistiv-
ity or ρimp and resistivity well above critical temperature,
where ρph varies linearly [1] with temperature T while ρsf

remains constant. The SDR is then obtained by extrapo-
lating the linear dependence of ρph at high temperatures
above TC down to T = 0 and subtracting ρimp, as illustrated
in Fig. 1. Clearly, this is an approximate approach which
assumes the validity of the Matthiessen rule: if one ne-
glects the many-body effects, the total resistivity is expressed
as

ρtot = ρimp + ρph + ρsf . (1)

As shown by Fert and Campbell [2], the temperature depen-
dence of the resistivity can be affected by deviations from the
Matthiessen rule due to the presence of two spin channels
for conduction. We therefore also investigate the validity of
the Matthiessen rule at the Curie temperature. It should be
noted that the evaluation of the SDR is a simpler problem
than the estimate of the resistivity over the whole temperature
range because at and above TC the contribution due to spin
fluctuations is constant.

There were numerous attempts in the past to estimate resis-
tivity due to spin fluctuations on a model level (based on the
s-d model Hamiltonian; see, e.g., Refs. [3–6]). A quantitative
description of the SDR using first-principles calculations was
not attempted until recently. We mention Ref. [7] for the
estimate of the SDR of elemental ferromagnets Ni and Fe and
Ref. [8], in which several ferromagnets, mostly ordered ones,
were studied.

Systematic first-principles estimates of the SDR for disor-
dered alloys are still missing in the literature. In the present
study we wish to fill in this gap by choosing as a case study
the disordered fcc-(Ni1−x, Fex) alloy for which extensive ex-
perimental data also exist [9]. This system is also interesting
theoretically because important longitudinal spin fluctuations
on one of the alloy constituents (Ni) exist. We therefore
develop a corresponding formal theory to estimate the SDR
in such alloys.
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FIG. 1. The schematic illustration of the temperature-dependent
resistivity and its main contributions due to impurities, phonons,
and spin fluctuations which assumes the validity of the Matthiessen
rule. How the SDR is determined experimentally from the ρext

found by extrapolation from the high-temperature region and the
residual (impurity) resistivity ρimp as ρSDR = ρext − ρimp is also
shown.

II. FORMALISM

The evaluation of the SDR requires us to answer two
questions, namely, (i) how to describe the paramagnetic state
and (ii) how to evaluate its resistivity [8]. We approximate
the paramagnetic state by the disordered local moment (DLM)
model as an uncorrelated ensemble of randomly oriented spins
with zero total magnetic moment. It can be treated in the co-
herent potential approximation (CPA) as an equiconcentration
binary alloy of atoms with moments up (↑) and with moments
down (↓) [10]. More specifically, in the present alloy model
with two types of magnetic atoms we have a four-component
alloy, namely, fcc-(Ni↑(1−x)/2, Ni↓(1−x)/2, Fe↑

x/2, Fe↓
x/2). This

approach is implemented in the framework of the scalar-
relativistic tight-binding linear muffin-tin orbital (TB-LMTO)
method [11] and the local-density approximation [12]. We
employ the spdf basis and the same atomic sphere radii of
alloy constituents. We also neglect small changes in the lattice
constant due to both alloying and temperature, which also
depend on the alloy annealing. We have chosen as a reference
value the lattice constant of permalloy.

The DLM local moment collapses to zero in some cases,
e.g., fcc-Ni, the local Ni moment in fcc-(Ni1−x, Fex), and
bcc-Fe in Earth’s core conditions. The fluctuating moment
can be, nevertheless, stabilized even in these cases by the
magnetic entropy effects [13–15] and can be estimated from
the minimization of the free energy, which contains the ran-
domness of the local-moment directions and longitudinal spin
fluctuations. In numerical calculations we employ the fixed-
spin moment (FSM) method [16,17] applied to the DLM state
[18]. The local magnetic moments are treated as independent
variables, and total energy is calculated for prescribed values
of moments. The specific form of the magnetic entropy which
enters the free-energy expression is still under discussion.
We employ the entropy of a paramagnetic lattice gas (S ∝
ln(1 + m), see Refs. [19,20], which is sometimes connected

with the names of Heine and Joynt [21] and Grimvall [22]).
It is a good approximation if the thermal energy of the mo-
ment is considerably larger than the energy of its interaction
with the neighborhood. This is the situation in the DLM
state [20].

The fcc-NiFe alloy studied here is complicated due to the
presence of two moments which behave differently; namely,
Ni moments exhibit pronounced longitudinal fluctuations,
while the Fe moments are rather rigid. We have therefore
extended the formalism which was successfully used for pure
metals (fcc-Ni and bcc-Fe at the Earth’s core conditions
[15]) to the case of two local moments, and we allow for
longitudinal fluctuations on both Ni and Fe atoms. We refer
the reader to the Appendix for details.

The SDR itself is then determined by the linear-response
theory as formulated in the framework of the TB-LMTO
method using the Kubo-Greenwood-CPA formula [23] ap-
plied to the DLM state. In the present cubic system, the SDR
equals the calculated diagonal elements of the resistivity ten-
sor ρμ,ν , i.e., SDR = ρxx = ρyy = ρzz. The disorder-induced
vertex corrections [24], which describe the correlated motion
of two electrons in a random alloy potential, are also included.
Their inclusion is simplified by the present formulation of the
velocity as the intersite hopping [23], which leads to nonran-
dom effective velocity matrices. Such formulation relies on
the neglect of electron motion inside atomic spheres, and it
is an excellent approximation in the limit of the static linear
response regime used here.

The inclusion of temperature-induced static displacements
of atoms (phonons) in resistivity calculations is similar in
spirit to the approach developed within the Korringa-Kohn-
Rostoker-CPA technique [25]. Here we apply it in the frame-
work of the TB-LMTO-CPA method [26,27]. This scheme
assumes static random displacements of the atomic nuclei
around the equilibrium positions (sites of an ideal crystalline
lattice). The change in the LMTO structure-constant matrix
due to the atomic displacements can be recast into a change
in the potential parameters of atoms located formally at the
sites of the undistorted crystalline lattice, which are then
treated using the multicomponent CPA. Correlations between
the displacements of neighboring atoms are neglected. The-
ory depends on an external parameter, namely, on the rms
deviations which characterize the effect of temperature. The
temperature dependence of rms deviations either is empirical
or is determined explicitly on the basis of a simple Debye-
Grüneissen model [1]. The formalism developed originally
for transition metals is extended here to random alloys. In
principle, deviations of individual atoms in alloy are differ-
ent. Here we used one common rms deviation, which is an
acceptable approximation due to similar masses of Ni and Fe.
It is important to note that the present formulation allows us
to treat all involved scattering mechanisms (chemical disorder,
atomic displacements, and spin fluctuations) on equal footing
in the framework of the CPA.

In conclusion we mention also an alternative approach
for the estimate of the SDR which is based on the Kubo-
Landauer approach which employs the direct averaging over
spin-disordered supercells and which also allows us to include
the effect of phonons [7,28]. Until now it was applied to only
ordered crystals.
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FIG. 2. The local Ni (solid circles) and Fe (open circles) mag-
netic moments for the disordered fcc-(Ni1−x, Fex) alloy as a function
of the Fe concentration: (a) calculated in the FM state and (b)
calculated in the DLM state without and with the FSM method. Local
Ni moments collapse to zero for all concentrations in the DLM state
and are not shown. The DLM-FSM values for xFe = 0.05 and 0.35
were obtained with the help of interpolated experimental values [9]
of TC for xFe = 0.0 and 0.1 and xFe = 0.3 and 0.4, respectively.

III. RESULTS AND DISCUSSION

A. Local magnetic moments in fcc-(Ni1−x, Fex)

Local magnetic moments are basic quantities in magnetic
alloys. It should be noted that the local moments depend
slightly on the division of space between Ni and Fe atoms.
Space-filling spheres with the same radii for both components
are used here. The NiFe alloy has the fcc structure for xFe �
0.5. In Fig. 2 we present calculated local moments as a func-
tion of the iron concentration used in the SDR experiment.
We show, in addition to DLM-FSM moments, local moments
in the ferromagnetic (FM) state (at temperature T = 0) and
also those for the conventional DLM state. The following
conclusions can be made: (i) In the FM state [Fig. 2(a)] local
Ni moments are essentially concentration independent, while
the local Fe moments decrease weakly with increasing Fe
content. As a result, we obtain an almost linear increase of
the average magnetization from the value of about 0.6μB for
pure fcc-Ni. This is in agreement with the experiment [29].

(ii) The calculated local Ni moments in the DLM state col-
lapse to zero over the whole concentration range. This would
yield zero SDR for pure fcc-Ni, in contradiction to exper-
iment, which gives nonzero SDR. The DLM-FSM method
leads to fluctuating local Ni moments stabilized by the mag-
netic entropy, while the local Fe moments are essentially the
same as those obtained from the DLM method. However, their
decrease with increasing Fe content is larger than in the FM
state. The local Ni moment in the DLM-FSM state is close to
0.4μB for pure fcc-Ni and weakly decreases with xFe being
essentially constant for xFe > 0.2. The value of the local Ni
moment for pure fcc-Ni obtained in the framework of the
DLM-FSM method agrees with the experiment [30]. We also
include the DLM-FSM results for xFe = 0.05 and 0.35, for
which the experimental TC are not given in Ref. [9]. The linear
extrapolation was used for these TC in the present study.

B. SDR in fcc-(Ni1−x, Fex)

1. The effect of alloy composition

We have calculated the SDR for DLM- and DLM-FSM
models as a function of the Fe content and summarize the re-
sults in Figs. 3(a) and 3(b), respectively. We present calculated
SDR together with experimental results [9]. The following
conclusions can be made: (i) The SDR is about 15 μ� cm
for pure fcc-Ni (xFe = 0), in agreement with the experiment
(see, e.g., Ref. [8]). It should be noted that the choice of the
DLM-FSM model for a correct value of the SDR is relevant, as
shown below. (ii) The experiment shows a monotonic increase
of the SDR as a function of the Fe content. The wiggly
shape of this dependence is most likely due to the sample
preparation, like annealing, a tendency to ordering close to
xFe = 0.25 or 0.5, etc. (iii) The monotonic increase in the
SDR with increasing xFe is due to the increasing amount of
strong spin-disorder scatterings on Fe sites (because of large
d-level splitting or large local magnetic moments) compared
to Ni sites. (iv) The SDR-DLM-FSM calculations agree with
the experiment in detail. In particular, three concentration
regions, two with smaller slope [xFe = (0, 0.15) and (0.30,
0.50)] and the other [xFe = (0.15, 0.30)] with larger slope,
agree well with the experiment. (v) The observed satura-
tion of the concentration dependence of the SDR is due to
the Nordheim-like behavior; that is, the scattering is largest
around the equiconcentration case. (vi) Finally, the results
of the SDR-DLM calculations are shown in Fig. 3(a) for
comparison. Although an increase of the SDR with Fe content
is obtained also in this model, its agreement with experiment
is much worse than in the DLM-FSM case [Fig. 3(b)], in
particular for the Ni-rich case. Specifically, the SDR is zero
for pure Ni. Such disagreement has to be expected because
local Ni moments collapse to zero in the DLM case. The
agreement with the experiment improves with increasing Fe
concentration.

2. The effect of ordering and relativistic effects

We have investigated the effect of the spin-orbit coupling
on the SDR by using alloys with xFe = 0.25 and 0.50 as case
studies. To this end we have employed the fully relativistic
transport codes [31] under simplifying conditions: (i) Only the
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FIG. 3. Calculated SDR (solid circles) for disordered fcc-
(Ni1−x, Fex) as a function of the Fe concentration: (a) the DLM
method and (b) the DLM-FSM method. Theoretical (th) results are
compared with the experiment [9] (exp) in both cases. No experi-
mental data are available for xFe = 0.05 and 0.35 concentrations.

DLM, not the DLM-FSM, input is used, and (ii) we describe
the relativistic DLM with the help of a 50:50 random alloy, as
in the scalar-relativistic limit, rather than use a more accurate
multiconcentration model. We showed in Ref. [8] that this is
an acceptable approximation for light metals like Fe and Ni.
Finally, the effect of alloy ordering was investigated for two
existing superstructures, namely, L12 Ni3Fe and L10 NiFe.
The L12 Ni3Fe preserves its cubic symmetry for components
of the resistivity tensor, while for the L10 NiFe alloy there
are different values of the SDR for components parallel and
normal to the Ni and Fe planes. In Table I we present only
average values. It should be noted, however, that we speak
about alloys ordered chemically but not magnetically, with the
present strong spin disorder due to the Fe spin fluctuations.
The results are compared with their disordered counterparts
(xFe = 0.25 and 0.50). All results are summarized in Table I
with the following conclusions: (i) The reference disordered
fcc-NiFe alloy (xFe = 0.25) has slightly larger SDR for the
model which neglects Ni spin fluctuations (values in parenthe-
ses). Such a result comes from a competition of two effects,
namely, missing weak disorder on Ni sites (which should

TABLE I. Calculated reference scalar-relativistic SDR values for
disordered fcc-(Ni75, Fe25) and fcc-(Ni50, Fe50) alloys are compared
with corresponding ordered L12 Ni3Fe and L10 NiFe alloys, re-
spectively. Two different model potentials were used for ordered
alloys, namely, those constructed (i) from the DLM-FSM poten-
tials of corresponding disordered alloys and (ii) from the DLM
potentials of disordered alloys (shown in parentheses). The local
Ni moments collapse to zero in this model. Finally, we include for
completeness the fully relativistic SDR for disordered samples based
on a simple DLM model (see text for details). The local Ni moments
collapse to zero also in the relativistic limit.

SDR (μ� cm)

xFe Reference L12 Ni3Fe L10 NiFe Dirac

0.25 56.5 (61.1) 45.4 (17.7) (71.8)
0.50 71.4 (75.9) 73.0 (99.0) (79.0)

decrease the SDR) and a smaller density of states (DOS) at
the Fermi energy EF (proportional to the number of carriers at
EF) which should increase the SDR. Specifically, DOS(EF)
amounts to 10.85 and 11.77 states/Ry for the DLM and
DLM-FSM cases, respectively. (ii) We note a smaller SDR
for the ordered DLM-Ni3Fe alloy compared to that for the
case of a disordered counterpart treated with the DLM-FSM
method. It is a result of missing scattering on Ni sites (we have
three ideal, unperturbed Ni sublattices in the DLM model),
and the spin disorder is present only on the Fe sublattice.
(iii) The SDR of L10 NiFe calculated using the DLM input is
larger than the SDR calculated from the input taken from the
disordered counterpart because the local Fe moment is larger
in the ordered phase than in the disordered one (2.40μB vs
2.15μB). The Fe moment is a much stronger scatterer than
the Ni moment. We illustrate the SDR anisotropy for L10

NiFe alloys using the DLM-FSM input: ρsf = 64.76 μ� cm
and ρsf = 89.42 μ� cm for current parallel and normal to the
Ni and Fe planes, respectively. Similar results are obtained
also for the DLM input. (iv) The spin-orbit coupling slightly
enhances the SDR value similarly, as was found previously for
the bcc-Fe case [8]. The reason is mixing of spin channels in
the relativistic theory.

C. The Matthiessen rule

The experimental studies of the SDR are based on the
assumption of the validity of the Matthiessen rule (MR),
Eq. (1). We have therefore, for consistency, calculated the
SDR in the same limit. There exist, however, metals for which
the MR rule is not valid. Let us mention at least two recent
examples, namely, the hcp-Gd [32] and the bcc-Fe under
Earth’s core conditions [15].

We study the validity of the MR by evaluating the total
resistivity of disordered fcc-(Ni1−x, Fex) alloys in two models
to which we add the effect of phonons: (i) an alloy with
the presence of only impurities (imp+ph) and (ii) an alloy
which includes the effect of impurities and spin fluctua-
tions (imp+ph+sf). The validity of the MR for phonons
can be thus checked. As discussed above, an advantage of
the present approach is the inclusion of all listed types of
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FIG. 4. The validity of the Matthiessen rule: (a) The resistivity
of the fcc-(Ni75, Fe25) alloy as a function of the rms displacement√

〈u2〉. The label “imp+ph” (open circles) denotes the model in
which impurities (imp) and static displacements (ph, phonons) are
present, while the label “imp+sf+ph” (solid circles) denotes the
model in which spin fluctuations (sf) are also present. All types of
disorder are treated on the same footing by using the multicomponent
CPA. (b) The same as in (a), but for the fcc-(Ni50, Fe50) alloy. The
long vertical lines indicate the rms displacement at TC estimated from
the Debye theory [1,33].

scattering mechanisms on equal footing in the framework
of the multicomponent CPA approach [15,32]. We closely
follow the approach adopted in Ref. [15] and evaluate the total
resistivity of alloys for models (i) and (ii) as a function of
the rms displacements or, indirectly, as a function of temper-
ature. The rms displacements can be related approximately to
temperature on the basis of the Debye theory [33]. Results
are summarized in Figs. 4(a) and 4(b) with two conclusions:
(i) There is a monotonic increase of the total resistivity
with the rms displacement which amounts to almost 10 and
20 μ� cm at TC for fcc-(Ni75, Fe25) and fcc-(Ni50, Fe50),
respectively. (ii) The resistivity in the imp+ph case increases
with the rms displacement slightly more than in the case of
imp+ph+sf, indicating a weak violation of the MR in both
cases, a stronger one for the fcc-(Ni50, Fe50) alloy.

IV. CONCLUSIONS

We have developed the first-principles approach to estimate
the SDR for alloys when longitudinal spin fluctuations are

relevant. We have determined the magnetic moments and
potentials by minimizing the free energy, in which the fluctu-
ating moment directions and the longitudinal spin fluctuations
are described by the DLM-FSM method and the magnetic
entropy has a form corresponding to a paramagnetic lattice
gas. The developed theory was applied to the case of fcc-
(Ni1−x, Fex) alloys. The main conclusions are as follows:
(i) There is very good agreement between the theoretical and
experimental values of the SDR. (ii) The model neglecting
longitudinal spin fluctuations fails in the Ni-rich region, but it
gives an acceptable description for larger Fe content where
scattering on Fe moments dominates. (iii) The MR is only
weakly violated with increasing temperature, and its violation
is larger for higher Fe concentrations.
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APPENDIX: FLUCTUATING LONGITUDINAL MAGNETIC
MOMENTS

Local magnetic moments in metallic systems usually do
not disappear at and above the Curie temperature, but they
rather acquire random orientations, so that the total mag-
netization becomes zero (the paramagnetic state). This state
can be described using the disordered local moments [10].
It has been shown that it is equivalent to an equiconcen-
tration binary alloy of atoms with moments up (50%) and
with moments down (50%). The binary alloy Ni1−xFex in
the DLM state is then equivalent to a four-component alloy,
Ni↑(1−x)/2Ni↓(1−x)/2Fe↑

x/2Fe↓
x/2. Various methods to find thermo-

dynamical equilibrium are described in the literature. Here we
look for the minimum of the free energy per site,

F (m1,m2, T ) = Etot (m1,m2)

− T [(1 − x)S(m1) + xS(m2)], (A1)

where the magnetic moments m1 and m2 of the alloy species
are expressed in Bohr magnetons μB. We employ the entropy
of a paramagnetic lattice gas [19,20],

S(m) = kB ln(1 + m), (A2)

which is a good approximation if the thermal energy of the
moment is considerably larger than its interaction energy with
the rest of the system as it is in the DLM state. This approach
was successfully used in several studies of materials with
disordered local moments [20,34–36]. For further discussion
see Ref. [37].

The calculation of the electronic structure yields magnetic
moments m0

1 and m0
2, corresponding to a minimum of total

energy. At nonzero temperature the entropic effect leads to
different moments m1 and m2 that minimize the free energy
(A1). In order to calculate these moments we need to know
the total energy Etot (m1,m2) as a function of moments m1

and m2. It can be obtained using the fixed-spin moment (FSM)
method [16,17] extended to the DLM state [18], which allows
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FIG. 5. Magnetic part of the free energy of the fcc-(Ni75, Fe25)
alloy as a function of averaged local magnetic moments m(Ni) and
m(Fe) on Ni and Fe atoms at the Curie temperature (850 K). The
numbers attached to isolines are values of the free energy in Ry units.
The cross indicates the position of the free-energy minimum. The
corresponding local moments are then 0.22μB and 2.45μB for Ni
and Fe, respectively.

us to describe the longitudinal moment fluctuations. Origi-
nal formulation of the FSM method was based on auxiliary
magnetic fields that split up- and down-spin subbands. It
turned out, however, that the magnetic moments are often

multivalued functions of applied fields [16,17], which leads to
nonphysical results. The solution is to prescribe moments [38]
and introduce several Fermi energies (for each alloy species
and for each spin orientation). In our case there are four Fermi
energies, namely, Ni↑, Ni↓, Fe↑, and Fe↓, and we require that
magnetic moments have values m1 and m2; the total number
of electrons per site is n = (1 − x)n(Ni) + xn(Fe), and the
charge transfer between Ni and Fe atoms has a prescribed
value. In this work we assume that charge transfer is identical
to that found from the total-energy minimization. We note that
the minimum of the free energy F (m1,m2) and moments m1

and m2 can be found in a single self-consistent calculation if
the entropic term is added to the energy functional [20]. In
our case the elementary cell contains only one atom, so the
calculations are not demanding. We thus made calculations
for a grid of moments, which gives the possibility to inspect
the energy surface for the presence of other minima.

In calculations of transport properties a single, common
Fermi energy is needed. Within the LMTO method it can be
selected arbitrarily, but the potential parameters C and Eν of
all alloy species have to be shifted accordingly. We illustrate
the above approach for the case of disordered fcc-(Ni75, Ni25)
alloys (see Fig. 5). Figure 5 shows contours of constant free
energy (energy values are attached to isolines) around the
free-energy minimum corresponding to the Curie temperature
(850 K). Estimated local Ni and Fe moments are 0.24μB and
2.54μB, respectively. Corresponding potentials then serve as
an input for transport calculations. A similar approach is also
used for other iron concentrations.
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