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Magnetic moment generation in small gold nanoparticles via the plasmonic inverse Faraday effect

Jérôme Hurst and Peter M. Oppeneer
Department of Physics and Astronomy, Uppsala University, P. O. Box 516, SE-75120 Uppsala, Sweden

Giovanni Manfredi and Paul-Antoine Hervieux
Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France

(Received 27 June 2018; revised manuscript received 5 October 2018; published 23 October 2018)

We theoretically investigate the creation of a magnetic moment in gold nanoparticles by circularly polarized
laser light. To this end, we describe the collective electron dynamics in gold nanoparticles using a semiclassical
approach based on a quantum hydrodynamic model that incorporates the principal quantum many-body and
nonlocal effects, such as the electron spill-out, the Hartree potential, and the exchange and correlation effects.
We use a variational approach to investigate the breathing and the dipole dynamics induced by an external
electric field. We show that gold nanoparticles can build up a static magnetic moment through the interaction
with a circularly polarized laser light at the localized surface plasmon (LSP) resonance. We analyze that the
responsible physical mechanism is a plasmonic, orbital inverse Faraday effect, which can be understood from
the time-averaged electron current that contains currents rotating on the nanoparticle’s surface. The computed
laser-induced magnetic moments are sizable, of about 0.35 μB/atom for a laser intensity of 45 × 1010 W/cm2 at
LSP resonance.
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I. INTRODUCTION

The field of magnetoplasmonics has stimulated a large
amount of scientific interest over the past few decades both
for reason of fundamental curiosity and in view of potential
technological applications [1–3]. The basic principle of this
new field of research is to use plasmonic properties to en-
hance and tune the magneto-optical response. For instance,
it has been shown [4] that the Faraday rotation in gold-coated
maghemite nanoparticles can be enhanced owing to the plas-
monic properties of gold. Another example is the observation
of a tunable magneto-optical response from nickel nanodisks
that can be adjusted by the phase of localized plasmons [5].
Conversely, magnetoplasmonics can also be used to modulate
the plasmonic properties of metals with an external magnetic
field. This has been shown for instance in Ref. [6], where the
transmission of light through a thin metal film with a periodic
subwavelength hole array could be manipulated via an ex-
ternally applied magnetic field. Also, magnetic-field-induced
modulation of circular magnetoplasmonic modes has been
demonstrated for gold nanoparticles by means of magnetic
circular dichroism spectroscopy [7].

The plasmonic properties are mediated by plasmons and
result from the coupling between an electromagnetic wave
and a collective oscillation of the surface free charges at the
interface between two media with permittivities of opposite
signs, typically a dielectric and a metal. A well-known exam-
ple of plasmons are the localized surface plasmons (LSP) [8]
in a gold nanoparticle, which correspond to oscillations of the
electron cloud along the direction of the applied electric field.
This leads to a strong enhancement of the electric field at the
surface of the nanoparticle due to the charge displacements.

Plasmonic systems are of great interest since they strongly
interact with light. For instance, they can be used to focus

the light in a small region of space leading to a strong local
enhancement of the laser field [9]. Moreover, it is well known
that light carrying spin angular momentum can couple it
into the electronic system through the inverse Faraday effect
[10,11]. This is a nonlinear optical effect that is character-
ized by the creation of a static-induced magnetization that is
proportional to the laser intensity [11]. The inverse Faraday
effect has very recently drawn attention as a possible pathway
to enable fast, all-optical switching of the magnetization in a
ferri- or ferromagnetic material [12–18]. The magnetization
induced by a circularly polarized laser pulse acts on the equi-
librium magnetization and thereby effectuates its switching.
The inverse Faraday effect has recently been investigated for
many systems such as metals [19–23], molecular magnets
[24], and plasmonic systems [25–28]. To make the switching
more efficient the induced magnetization has to be as large as
possible. It is currently being investigated whether this can be
realized by plasmonic antennas or nanoparticles [28–31]. In
that sense, plasmon could be used to enhance the conversion
of light angular momentum into electronic angular momen-
tum, opening the possibility for ultrafast plasmon-assisted
all-optical switching.

In this paper, we focus on the inverse Faraday effect in gold
nanoparticles. The latter are known to support strong plas-
monic effects [9]. We use a quantum hydrodynamic (QHD)
model [32–34] to describe the interaction between the surface
plasmons in gold nanoparticles and a circularly polarized
laser field. QHD models are orbital-free methods that are
used to study the dynamics of large systems, including some
quantum effects and many-body interactions. Such models
were recently used to model the electron dynamics in thin
films [35], metallic nanostructures [36–39], semiconductor
quantum wells [40], and molecular systems [41]. Many recent
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studies have emphasized the importance of spatial nonlocal ef-
fects in the optical response of plasmonic systems [36,38,42–
44]. The latter are suitably incorporated in the QHD model
through the self-consistent fields and lead to spatial variations
of the electron density.

The paper is organized as follows. In Sec. II, we describe
the system and the QHD model. In Sec. III, we present the
results that we have obtained for the laser-generation of a
static magnetization in gold nanoparticles. In Sec. IV, we
propose an explanation of the mechanism responsible for the
inverse Faraday effect in gold nanoparticles. In Sec. V, we
study the influence of the nanoparticle size and the laser
intensity on the inverse Faraday effect.

II. DESCRIPTION OF THE MODEL

We consider spherical gold nanoparticles with a radius rc

and composed of N ions and N electrons. In our simulations,
rc will be on the order of 1 − 2.5 nm. Both parameters are
related by rc = rsN

1/3, where rs is the so-called Wigner-
Seitz radius. We use the following value for gold rs = 3.01
a0 (Bohr radii). We work in the framework of the jellium
approximation, i.e., we consider that the ions are fixed and
homogeneously distributed. Thus the ion density is given by
ni = n0 = 3N/(4πr3

c ) inside the cluster and zero outside.
This assumption is justified by the fact that there is a timescale
separation between the ion and the electron dynamics. The
timescale for the electrons is given by the plasma frequency
ωp = (4πn0)1/2. In the case of gold, we obtain a timescale of
the order of 1 femtosecond. Here and henceforth, all equations
will be written in atomic units.

The electron dynamics is described by the QHD equations
[32,33], that are derived in a standard way from the kinetic
equation (Wigner-Poisson), averaging the electron distribu-
tion function over different velocity moments and choosing
appropriate closure relations. Its validity is limited to systems
that are large compared to the Thomas-Fermi screening length
λF = vF/ωp, where vF = (3π2n0)2/3 is the Fermi velocity.
The QHD equations reads

∂n

∂t
+ ∇ · (nu) = 0, (1)

∂u
∂t

+ u · ∇u = − E + ∇VH − ∇ VX − ∇ VC

− ∇P

n
+ 1

2
∇

(∇2√n√
n

)
, (2)

∇2VH = 4π (n − ni ). (3)

In Eqs. (1)–(3), n(r, t ) is the electron density, u(r, t ) is the
electron mean velocity, and VH(r, t ) is the Hartree potential.
The latter corresponds to the mean-field part of the electron-
electron interactions and is a solution of the Poisson Eq. (3)
that corresponds to the quasistatic limit of the Maxwell equa-
tions. Such an approach neglects retardation effects and is
valid when the size of the nanostructure is much smaller than
the light wavelength, which is the case in this study. Equation
(1) is a continuity equation that represents the conservation
of the number of electrons in the system. Equation (2) is
an Euler equation that provides the evolution of the electron

mean velocity under the action of the different forces that
appear on the right-hand side. The electric field E corresponds
to the laser excitation and the potential VX(r, t ) represents the
exchange interaction,

VX = − (3π2)1/3

π
n1/3 − 4β

3

(∇n)2

n7/3
+ 2β

(∇n)2

n4/3
, (4)

where the first term is the local density approximation (LDA)
and the other two terms are gradient corrections. The prefactor
β is a free parameter that we set equal to β = 0.005, which is a
best-fit value frequently used in atomic-structure calculations
[45]. For the correlations, we use the functional proposed
by Brey et al. [46], which yields the following correlation
potential,

VC = −γ ln[1 + αn1/3], (5)

with γ = 0.03349 and α = 18.376. The quantity P is a pres-
sure term, for which we use the standard expression of the
Fermi pressure of a zero-temperature electron gas,

P = 1
5 (3π2)2/3n5/3, (6)

which is an acceptable approximation since the Fermi tem-
perature for metals is much larger than ordinary temperatures
(e.g., for gold, TF = 64 200 K). The last term in Eq. (2), often
referred to as the von Weizsäcker correction or the Bohm
potential, takes into account quantum diffraction effects. De-
tails about the derivation of the QHD model can be found in
Refs. [32–34,47].

A full resolution of the QHD model is a complex numerical
problem that we do not attempt to solve here. Instead, we
will follow the same method that was developed earlier in
Ref. [37], which is based on a variational approach to the
QHD equations. The full details of the method can be found
in the original work. The QHD model Eqs. (1)–(3) can be
derived from the following Lagrangian density:

LD (r, t ) = n

[
∂S

∂t
+ (∇S)2

2

]
+ (∇n)2

8n
+ 3

10
(3π2)2/3n5/3

− 3

4π
(3π2)1/3n4/3 − β

(∇n)2

n4/3

− (∇VH)2

8π
(ni − n)VH − nV. (7)

The Lagrangian density depends on three dynamical fields:
the electron density n(r, t ), the Hartree potential VH(r, t ),
and S(r, t ), which is related to the electron mean velocity as
follows: u(r, t ) = ∇S(r, t ). The fields VH(r, t ) and u(r, t )
are determined by the electron density via the Poisson and
the continuity equation. The laser field is described in the
dipole approximation by the following electric potential: V =
−r · E.

The idea of the variational approach consists of using a
particular ansatz for the electron density to compute exactly
the Lagrangian density of the system. The ansatz should
reproduce with good approximation the correct electron den-
sity obtained with ab initio techniques. The chosen ansatz
should contain a few time-dependent variables [e.g., the
center of mass of the electron cloud d(t )] to describe the
dynamics of the system. Next, one computes the Lagrangian
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L(t ) of the system by integrating the Lagrangian density
over space, L(t ) ∝ ∫

LD (r, t )d r . Finally, using the standard
Euler-Lagrange equations, one obtains a set of differential
equations for the dynamical variables introduced in the ansatz
of the electron density. Nevertheless, to derive a tractable sys-
tem of equations, one needs to perform the integration of the
Lagrangian density in an exact way. This puts restrictions on
the applicability of the method, because the parametrization
of the electron density cannot be too complicated.

In Ref. [37], the authors found an acceptable ansatz for the
electron density that allows one to perform all the calculations
in an exact fashion. They introduced two dynamical variables
dz(t ) and σ (t ) that represent, respectively, the center of mass
of the electrons along the z axis and the spreading of the
electron density at the surface of the nanoparticle, an effect
known as the spill-out [9]. Since the ions are frozen, a motion
of the center of mass of the electrons leads to the creation
of an electric dipole. In contrast, the time evolution of σ (t )
corresponds to an isotropic extension or compression of the
electron gas, which is also known as a breathing motion.
Under these assumptions, the authors were able to describe
the dipole and the breathing dynamics of the electron gas
for a laser excitation that was linearly polarized along the z

direction. If we now want to consider a laser excitation that is
circularly polarized, then one needs to introduce an additional
time-dependent variable, namely the center of mass along the
y direction dy (t ). In this work, we always consider a laser field
that propagates in the x direction with an electric field that
is polarized in the y − z plane. By generalizing the formula
found in Ref. [37], the new ansatz for the electron density
reads

n(r, t ) = A

1 + exp
[(

s(r,t )
σ (t )

)3 − (
rc

σ0

)3] , (8)

where A is chosen to normalize the density: A =
3N/(4πσ 3)[ln(1 + exp(rc/σ0)3)]−1, s is a displaced radial
coordinate, s(r, t ) = [x2 + (y − dy (t ))2 + (z − dz(t ))2]1/2,
and σ0 is the equilibrium value of the electron spill-out effect.
In addition to the electron density, exact solutions for VH(r, t )
and S(r, t ) that satisfy, respectively, the Poisson equation
and the continuity equation are given in Ref. [37]. Here
we report one of those solutions: S(r, t ) = σ/(2σ̇ )s2(r, t ) +
ḋy (z − dy ) + ḋz(z − dz), where the dot stands for the time
derivative. The associated electron mean velocity is

u = σ̇

σ
x x̂ +

[
σ̇

σ
(y − dy ) + ḋy

]
ŷ +

[
σ̇

σ
(z − dz) + ḋz

]̂
z.

(9)

Even though the average electron velocity diverges at infinity,
it is physically acceptable because the relevant quantity is
the electronic current, j = nu, which rapidly drops to zero
outside the nanoparticle. Using Eqs. (8) and (9), one can
compute the total orbital magnetic moment as follows:

M(t ) = 1

2

∫
r × j d r = N

2
[ḋydz − ḋzdy ]̂x. (10)

Hence, one can in principle describe the generation of an or-
bital magnetic moment, provided that we excite both dipoles.
Surprisingly, this expression is similar to the one derived in

Ref. [48]: M(t ) = −eN/2[r (t ) × ṙ (t )], where the authors
computed the classical magnetization in the framework of the
classical Drude model. Nonetheless, even though the results
look similar, our work considers the fully self-consistent
motion of an electron gas confined in a gold nanoparticle.

Using the ansatz Eq. (8) for the electron density, one can
integrate the Lagrangian density Eq. (7) over the whole space
to obtain an analytical expression for the Lagrangian of the
system:

L = −1

N

∫
LD (r, t ) d r

= M (a)σ̇ 2(t )

2
− U (σ ) + ḋ2

y + ḋ2
z

2
− �2

d (σ )

2

(
d2

y + d2
z

)
+ K (σ )

(
d2

y + d2
z

)2 + dyEy + dzEz. (11)

The dipole terms are described by two coupled nonlinear
oscillators whereas the breathing terms correspond to a fic-
titious particle of mass M (a), where we introduce the small
parameter a = exp (−r3

c /σ 3
0 ), moving in a time-dependent

potential U (σ ). In Eq. (11), the fictitious mass

M (a) = −�(5/3)Li5/3(−1/a)

ln(1 + 1/a)
(12)

is given in terms of the gamma function �(5/3) � 0.90 and
the polylogarithm function1 Li5/3. The multiplicative factor
−(1/N ) was introduced in Eq. (11) for convenience of nota-
tion. The other terms in Eq. (11) are the pseudopotential

U (σ ) = fB(a)

σ 2
+ N2/3fF(a)

σ 2
− N1/3fX(a)

σ
− βfX′ (a)

N1/3σ

+ fC (a)σ 2

N
− fC ′ (a)σ

N
− fC ′′ (σ )

N

+ Nfee(a)

σ
− Nfei (σ )

R
(13)

and the functions

�2
d (σ ) = N

R3 ln(1 + 1/a)

{
R3

σ 3
+ ln(1 + a)

− ln[1 + a exp(R3/σ 3)]

}
, (14)

K (σ ) = 9NRa

40 ln(1 + 1/a)σ 6

exp(R3/σ 3)

[1 + a exp(R3/σ 3)]2
, (15)

which are both positive definite. Equation (11) was obtained
after some tedious algebra; the details of this can be found
in Ref. [37]. The only difference with the original derivation
is that we have two dipole variables dy (t ) and dz(t ) in our
Lagrangian instead of one. Mathematically, this difference
appears via the substitution of (d2

y + d2
z )1/2 for dz.

The quantities fB(a), fF(a), fX(a), fX′ (a), fC (a), fC ′ (a),
fC ′′ (σ ), fee(a), and fei (σ ), which appear in the pseudopo-
tential Eq. (13), are given explicitly in the Supplemental

1The polylogarithm function is defined as Lip (−1/a) =
−[1/�(p)]

∫ ∞
0 dX Xp−1/(a eX + 1), where Re(p) > 0, Im(a) = 0,

and 1/a > −1.
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Material of Ref. [37]. They are related, respectively, to the
Bohm potential, Fermi pressure, exchange energy (LDA),
gradient correction to the exchange energy, electron-electron
and electron-ion Hartree interaction terms. All these functions
are positive, as well as the fictitious mass M (a), in accordance
with the role played by the Bohm, Fermi and electron-electron
terms, which are repulsive, and by the exchange and the
electron-ion terms, which are attractive. The correlation terms
have both an attractive and a repulsive part. The quantity
�2

d (σ ) corresponds to the second-order term in the develop-
ment of the electron-ion interacting energy, whereas K (σ )
corresponds to the fourth order.

Using the Euler-Lagrange equation for L, we obtain the
following equations of motion:

σ̈ = 1

M (a)

[
− dU (σ )

dσ
− �d (σ )

d�d (σ )

dσ

(
d2

y + d2
z

)
+ dK (σ )

dσ

(
d2

y + d2
z

)2
]
, (16)

d̈y = −�2
d (σ )dy + 4K (σ )dy

(
d2

y + d2
z

) − γ ḋy + Ey, (17)

d̈z = −�2
d (σ )dz + 4K (σ )dz

(
d2

y + d2
z

) − γ ḋz + Ez. (18)

Equation (16) describes the breathing dynamics of the elec-
tron cloud, whereas Eqs. (17) and (18) describe the dynamics
of the center of mass of the electrons. The equations of motion
of the dipoles consist of two nonlinearly coupled oscillators.
In the linear regime, both dipoles are decoupled and evolve as
independent harmonic oscillators. This is in agreement with
previous studies that predict a harmonic behavior in the linear
regime for the center of mass of an electron gas confined
in metallic nanoparticles [49,50]. In the nonlinear regime,
this property does not hold anymore and all the dynamical
variables are coupled to each other.

We have also introduced a phenomenological damping
term γ = γbulk + γrad + γL in the dipole dynamics to simu-
late dissipative processes. It consists of three different com-
ponents: (i) γbulk describes the nonradiative Ohmic losses;
here we take the bulk value for gold γbulk = 0.072 eV [51],
(ii) γrad = 2�4

dr
3
c /(3c3) describes the radiative losses, which

increase with the size of the nanoparticle [52], and (iii) γL �
0.33 vF/rc corresponds to the nonradiative Landau damping
[52,53] that scales as the inverse of the nanoparticle ra-
dius. In Fig. 1, we plot the different damping channels as a
function of the nanoparticle radius. For small nanoparticles
(rc < 5 − 10 nm), the damping is mainly dominated by the
Landau damping and the nonradiative Ohmic losses. On the
contrary, for large nanoparticles (rc > 20 nm), the damping
is dominated by radiative losses that are large enough to
considerably reduce the amplitude of the plasmon oscillations.

III. LINEAR REGIME AND ORBITAL MAGNETIC
MOMENT GENERATION

The ground-state density is obtained by setting the center
of mass variables to zero, i.e., dy = dz = 0 and the bordering
of the electron density to σ = σ0. The latter value corresponds
to the minimum of the pseudopotential U (σ ) in Eq. (13).
Several values of σ0 are given in the Table I for different
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FIG. 1. Different damping parameters as a function of the
nanoparticle’s radius: Landau damping γL (black curve), nonradia-
tive Ohmic losses γbulk (red curve), radiative losses γrad (blue curve),
and the total damping γ = γL + γbulk + γrad (black dashed curve).

nanoparticle sizes. The corresponding ground-state densities
and potentials are plotted, respectively, in Figs. 2 and 3. We
notice that the electron density spreads at the border of the
nanoparticle as expected. Moreover, the bordering parameter
σ0 is proportional to the size of the nanoparticle and therefore
the spreading of the electron density is almost the same for
nanoparticles of different sizes. The exchange potential is
three times larger than the Hartree and the correlation poten-
tials, something that was already observed for thin metal films
with DFT (density functional theory) calculations [35]. We
limit our study to nanoparticles between 1 nm and 2.5 nm. The
lower value is constrained by the fact that for smaller nanopar-
ticles quantum effects play a significant role in the electron
dynamics [54]. For the upper limit, we are constrained by our
ansatz for the electron density that only includes the breathing
and the dipole modes. Indeed, multipolar modes should be
also considered for larger nanoparticles [9].

Our model predicts the following LSP resonance �d (σ0) =
ωMie

√
1 − ln (2)/ ln (1 + exp (r3

c /σ 3
0 )), which was obtained

by evaluating the linear dipole frequency (14) at σ = σ0.
Due to the spatial inhomogeneity of the electron density, the
LSP resonance increases with the size of the nanoparticle
and in the limit of a large nanoparticle, i.e., rc/σ0 � 1, tends
to the bulk Mie frequency [9] ωMie = ωp/

√
3. Thus, our

TABLE I. Ground state and linear response parameters for gold
nanoparticles of different sizes. The different parameters given are
the radius of the nanoparticles rc, the number of electrons N , the
spreading of the electron density at the surface σ0, the plasmon
frequency �d (σ0), and the damping constant γ .

rc [nm] N σ0 [at. u.] �d (σ0) [eV] γ [eV]

1 248 8.46 5.05 0.37
1.5 836 10.95 5.10 0.27
2 1982 13.19 5.14 0.22
2.5 3870 15.24 5.15 0.19
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FIG. 2. Radial profile of the ground state electronic density
computed from Eq. (8), for rc = 1 (red curve) and rc = 2.5 nm (blue
curve). The dashed curve corresponds to the ion density. The inset
displays the values of σ0 for different radii rc given in Table I.

model reproduces the expected blue shift of the resonant LSP
frequency [55] that cannot be reproduced with a local Mie
theory [56].

We use a continuous laser field to excite the electron dy-
namics. The laser field propagates in the x direction and is de-
scribed by the following electric field: EL = E0 cos (ωLt )̂ y +
E0 cos (ωLt − φ )̂z. The phase parameter φ allows us to de-
scribe different light polarizations going from linear polariza-
tion (φ = 0) to circular left (φ = π/2) or right (φ = −π/2)
polarization. We neglect the spatial variations of the electric
field because the corresponding wavelength is much larger
than the size of the nanoparticles.

In a first simulation, we excite the system with a circu-
lar right-polarized field of intensity IL = 5.1 × 1010 W/cm2,
which corresponds to an electric field E0 = 6.2 × 108 V/m.
In all the simulations, we took the laser frequency equal to the
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FIG. 3. Radial profile of the self-consistent ground state poten-
tials: Hartree (black curve), exchange (red curve) and correlation
(blue curve), for rc = 1 nm. The dashed green curve corresponds to
the effective potential Veff = −VH + VX + VC felt by the electrons.
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FIG. 4. (a) Plot of the calculated dipole dynamics dy (t ) (black
curve) and dz(t ) (red curve) for a gold nanoparticle with a radius
rc = 1 nm. The system is excited with a circular right-polarized laser
field (φ = −π/2) with an amplitude E0 = 6.2 × 108 V/m. Plots (b)
and (c) are zooms taken at different times.

resonant LSP frequency of the system, ωL = �d (σ0), given
in Table I. We have checked that with such an intensity we
are in the linear regime. The dipole responses dy (t ) and dz(t )
are given in Fig. 4. The results were obtained by solving
the equations of motion Eqs. (16)–(18) with a Runge-Kutta
method of order 4. The dynamics is characterized by two
regimes. During the first ten femtoseconds, one observes a
transient regime in which the dipoles increase in amplitude.
The typical timescale for this regime is given by the inverse
of the damping parameter γ . After that, the system reaches
a stationary regime, where the dipoles are oscillating with
a phase shift of π/2. We point out that, when one switches
off the laser field, the dipoles behave as anharmonic damped
oscillators, see Eqs. (17)–(18). Therefore, they will be expo-
nentially damped on a timescale given by the inverse of the
damping parameter γ .

Employing Eq. (10), we can directly compute the total
orbital magnetic moment along the x direction from the
dipole responses dy (t ) and dz(t ). The results are given in
Fig. 5 for different polarizations of the incoming laser field,
φ = ±π/2, ± π/4, and 0. We notice that in the case of
a linearly polarized electric field, the total orbital magnetic
moment remains zero. In this case, one can check that both
dipoles are oscillating in phase. However, if we use a circular
right- (black curve) or left- (red curve) polarized field, then
a net orbital magnetic moment is created in the system.
This magnetic moment increases during the transient regime
until it reaches a stable value in the stationary regime. This
situation corresponds to the case where the electric dipoles are
oscillating with a phase offset as pictured in Fig. 4. Moreover,
one observes an opposite effect for circular left and circular
right polarizations. Finally, if we excite the system with an
elliptically polarized electric field (here φ = ±π/4), then we
still obtain a nonzero magnetic moment but smaller than the
one obtained with full circular polarization. To summarize,
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FIG. 5. Time evolution of the total laser-induced orbital mag-
netic moment in a Au nanoparticle computed with formula Eq. (10)
for different laser polarizations φ. The simulation parameters used
are the same as those of Fig. 4.

to create a nonzero magnetic moment in gold nanoparticles,
one has to excite the system at the resonant LSP frequency. If
one excites the system far from the LSP resonance, then the
dipoles will be significantly reduced as well as the magnetic
moment. This is simply due to the fact that the dipole dynam-
ics are described by nonlinear damped oscillators.

These observations are typical signatures of the inverse
Faraday effect, where a part of the spin angular momentum
of the light has been transferred to the electrons. An inverse
Faraday effect has been predicted in a large gold nanopar-
ticle [26] (rc = 100 nm) using a full-wave electrodynamics
solver (Lumerical) combined with individual electron mo-
tions. There, the authors have shown that the inverse Faraday
effect emerges from an ensemble of solenoidlike motions for
each electron inside the nanoparticle. In the next section, we
propose a different explanation of the origin of the inverse
Faraday effect observed in our system.

IV. MECHANISM OF ORBITAL MAGNETIC MOMENT
GENERATION

According to Eq. (10), the orbital magnetic moment is
defined in terms of the electronic current density j . The latter
can be expressed as the product of the electron density and the
electron mean velocity,

j = nu = n(r, t )
σ̇

σ
x x̂ + n(r, t )

[
σ̇

σ
(y − dy ) + ḋy

]
ŷ

+ n(r, t )

[
σ̇

σ
(z − dz) + ḋz

]̂
z, (19)

where the time-dependent electron density n(r, t ) is defined in
Eq. (8). The time dependence of the electronic current density
is embedded in the dipole and breathing variables as well as
in their time derivatives. It is straightforward to see that in the
ground state the electronic current is zero. However, during
the dynamics, the spatial profile looks rather complicated
especially near the surface of the nanoparticle.

FIG. 6. Plot of the current density vector field jy and jz in the
plane {x = 0} at a given time. The red star near the origin represents
the position of the center of mass of the electrons. The system is a
gold nanoparticle with a radius rc = 1 nm and the laser excitation is
circularly polarized with an amplitude E0 = 6.2 × 108 V/m.

In Fig. 6, we plot the current density vector field at a
given time using the values of the dipoles obtained in Fig. 4.
We only plot the y and z components of j in the plane
defined by {x = 0} since the x component is exactly zero in
this plane. We notice that almost all the vectors point in the
same direction. This direction is defined by the instantaneous
laser field and is changing in time since we excite the system
with a circularly polarized electric field. The current density
is strongest at the center of the nanoparticle and decreases
rapidly at the border of the nanoparticle. From this plot, it
is not easy to understand the origin of the orbital magnetic
moment. It would seem that if we sum up all the contributions
j × r in the integral of Eq. (10), one obtains zero, but this
is not the case. Notably in Fig. 6, the current density vector
field is not centered around the origin but around the center
of mass of the electrons (dy (t ), dz(t )). The latter enscribes a
small circle around the center of the nanoparticle during one
pulse oscillation. Mathematically speaking, this explains why
the integral in Eq. (10) is not zero but adopts a finite value that
depends on both dipole variables, j and r .

To have a better understanding of the underlying mech-
anism that is responsible for the generation of an orbital
magnetic moment, let us define a time-averaged electron cur-
rent density: 〈 j〉 = 1/Td

∫ t+Td

t
j (t ′) dt ′. The time integration

has to be done in the stationary regime over a full dipole
period Td . In Fig. 7, we plot the time-averaged current density
corresponding to the same simulation as shown in Fig. 6. The
averaged current density vanishes everywhere except at the
surface of the nanoparticle. Moreover, the current density is
rotating around the x axis. This structure emerges from the
superposition of many current densities that are all pointing in
different directions defined by the instantaneous laser field.
On average, they cancel everywhere except at the surface
of the nanoparticle, because, as was mentioned before, each
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FIG. 7. Plot of the time-averaged current density vector field jy

and jz represented in the plane {x = 0}. The time average is over
one dipole period. The red line represents the successive positions of
the center of mass of the electrons during one laser oscillation. The
simulated system is the same as in Fig. 6. The laser field propagates
in the x direction and is circularly left-polarized as indicated in the
top left-hand corner.

current is centered around the oscillating center of mass of the
electrons. Thus, even though there are no real rotating surface
currents, the system behaves as if that was the case. In the rest
of this work, we will use the time-averaged current density to
evaluate the magnetic properties of the gold nanoparticles.

In Fig. 7, we have shown that the instantaneous current
density can be mapped onto rotating surface currents. But
that was only done in a given plane, defined by x = 0. In
Fig. 8, we represent the time-averaged current density over
the whole nanoparticle. We can recognize that the above

FIG. 8. Three-dimensional plot of the calculated time-averaged
current density vector field, shown in the planes defined by: x =
{0 ; ± 0.5rc ; ± 0.8rc}. The simulated system is the same as that
of Figs. 6 and 7.
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FIG. 9. Radial profile as a function of the distance from the x

axis [ρ = (y2 + z2)1/2] of the current density shown in Fig. 8, for
different y − z planes defined by x = 0 (black curve), x = 0.5 rc (red
curve), x = 0.8 rc (green curve), and x = rc (blue curve).

assertion remains valid for the whole nanoparticle. This pic-
ture is particularly relevant to understand the behavior of the
orbital magnetic moment shown in Fig. 5. If we change the
polarization of the light from circular-right to circular-left,
then the current will simply flow in the opposite direction and
the induced magnetic moment will change its sign.

Finally, in Fig. 9, we analyze the intensity of the current
density versus the radial distance from the x axis [ρ = (y2 +
z2)1/2 = (r2 − x2)1/2] in four different y − z planes defined
by x = {0}, {0.5 rc}, {0.8 rc}, and {rc}, respectively. The radial
profile is obtained by averaging the current density over the
cylindrical angle. The current density is peaked around the
surface of the nanoparticle, as expected. For instance, for x =
0.5 rc, the peak is observed at ρmax = (r2

c − x2)1/2 ≈ 0.87 rc.
We further note that the current density is maximal in the
plane x = 0 and decreases progressively when one moves
along the x axis. The value of the electric current density is of
the order of 1014 A/m2, which seems to be reasonable because
it corresponds approximatively to a single electron crossing
a surface of 1 nm2 each femtosecond. However, this value
depends mainly on the size of the nanoparticle and on the
intensity of the laser excitation. This issue will be discussed
in the next section.

V. NONLINEAR REGIME AND SIZE DEPENDENCE

All the results discussed in the previous sections were
obtained for gold nanoparticles with a radius of 1 nm and
for laser excitations with an intensity of 5.1 × 1010 W/cm2.
In this section, we study the influence of the nanoparticle size
and of the laser intensities on the magnetic properties of the
gold nanoparticles.

In Table II, jmax denotes the maximal value of the time-
averaged current density, obtained at the surface of the
nanoparticle for plane x = 0. We also provide the total mag-
netic moment M and the magnetic field B at the center of
the nanoparticles for four different sizes. The magnetic field
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TABLE II. Given are the maximal current density jmax, total
magnetic moment M , and magnetic field B calculated for different
nanoparticle sizes rc. The applied laser field has a circular-right
polarization and an intensity of 5.1 × 1010 W/cm2.

rc [nm] jmax [1014A/m2] M [μB] B (r = 0) [T]

1 1.85 10.4 0.019
1.5 3.41 65.2 0.030
2 4.93 228.1 0.053
2.5 6.45 599.9 0.071

is calculated with the Biot-Savart law,

B(r, t ) = μ0

4π

∫
j (r ′, t ′) × (

r − r ′)
|r − r ′|3 d r ′. (20)

The numerical integration of Eq. (20) gives a static magnetic
field B at the center of the nanoparticle, such that one can
use the time-averaged current density 〈 j (r )〉 instead of the
current density j (r, t ). We give the value of the magnetic
field only at the center of the nanoparticle because it reaches
its largest value at that particular position. The laser intensity
remains equal to 5.1 × 1010 W/cm2 so that we are in the linear
regime. The total magnetic moment and the magnetic field at
the center of the nanoparticle are along the x direction and
can be positive or negative depending on whether the surface
currents are rotating clockwise or counterclockwise.

In Fig. 10, we investigate the size dependence of the
different quantities given in Table II. We observe that both
the maximal current density and the magnetic moment per
atom increase linearly with the radius of the nanoparticle. A
similar trend is observed for the magnetic field at the center
of the nanoparticle. The behaviors of the magnetic field and
the magnetic moment can be understood from the behavior
of the maximal current density by considering the integral
over the surface of the nanoparticle in Eqs. (10) and (20).
Note that the total magnetic moment scales as r4

c because
the number of atoms in the nanoparticle scales as r3

c . This
explains the large increase of the total magnetic moment seen
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FIG. 10. (a): Calculated maximal current density (black stars)
and magnetic field (red crosses) as a function of the nanoparticle
radius. (b): Computed magnetic moment per atom as a function of
the nanoparticle radius.
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FIG. 11. (a) Maximal current density, (b), magnetic moment per
atom, and (c) the magnetic field at the center of the nanoparticle,
computed as a function of the laser intensity. The inset plot in (b) is
a linear fit of the smallest values of the magnetic moment per atom.
The system is a gold nanoparticle with a radius rc = 1 nm.

in Table II. Our model predicts an increase of the magnetic
moment and the magnetic field with an increase of the size of
the nanoparticle. However, this will not happen indefinitely.
The reason, which was already mentioned before, is that
for larger nanoparticles (rc > 30 − 40 nm) we have a strong
damping due to radiative losses, see Fig. 1. The latter may
considerably reduce the amplitude of the dipoles and hence
the amplitude of the magnetic moment and the magnetic field.

In Fig. 11, we study the influence of the laser intensity
on the maximal current density, the magnetic moment per
atom, and the magnetic field, respectively. The system is in the
linear regime for the smallest intensity (5.1 × 1010 W/cm2),
but not for the highest laser intensity (5.07 × 1012 W/cm2).
One observes that all quantities increase with the laser field,
simply because the electrons absorb more energy from the
laser, which increases the dipole motion and thus the maximal
current density. The total magnetic moment and the magnetic
field follow the same trend as the current density. For small
intensities, the magnetic moment increases linearly with the
laser intensity and hence with E2

0 , see Fig. 11(b). This again
demonstrates that the generation of an orbital magnetic mo-
ment in our system is an orbital inverse Faraday effect. Note
that the magnetic field created at the center of the nanoparticle
is static during the duration of the laser pulse and can reach
considerable values (0.1 − 0.8 T). In the nonlinear regime, the
increase of the induced magnetic quantities starts leveling off.
Simulations performed at higher laser intensities (not shown
here) reveal a saturation of all such quantities to a maximal
value.

The quantities shown in Fig. 11 are probably overestimated
for the largest laser intensity, especially when higher-order
multipolar plasmon modes (quadrupole, octupole) start to play
a significant role in the electron dynamics. The reason is
that our model is based on the assumption that the electron
density remains isotropic during all the dynamics. Although
this assumption can be justified in the linear regime, it is
not necessarily valid in the strongly nonlinear regime. We
expect that a more general description of the electron density,
taking into account higher-order multipolar modes, will be
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more accurate in the nonlinear regime. Indeed, the latter will
break the spherical symmetry of the electron density and thus
probably reduce the rotating surface currents. Moreover, other
nonlinear effects such as ionization or generation of solitons
[57], which cannot be described with our ansatz, may lead to
a different electron dynamics in the nonlinear regime.

VI. DISCUSSIONS AND CONCLUSIONS

We have used a QHD model to show that, under the action
of a circularly polarized laser field, gold nanoparticles can
build up a static magnetic moment. We have shown that the
induced magnetization per atom is proportional to the radius
of the nanoparticle. The corresponding physical mechanism
can be understood by analyzing the time-averaged electron
current density, which exhibits rotating surface currents. The
latter arise from collective effects described by the dipole and
the breathing dynamics of the electron cloud. We have shown
that this mechanism exhibits all the properties of a classical
inverse Faraday effect: (i) the induced magnetization is static
and reverses its sign when changing the light polarization
from circular right to circular left, (ii) there is no induced
magnetic moment for a linear polarization, and (iii) for small
laser intensities the induced magnetization scales as the square
of the electric field. We emphasize here the importance of
the finite size of the system, which constitutes an essential
ingredient for the generation of the magnetic moment. We
would like to stress that to create a magnetic moment in gold
nanoparticles, one has to excite the system at the resonant
LSP frequency. For excitations far off the LSP resonance, the
magnetic moment remains close to zero.

In our model, a magnetic moment is created in gold
nanoparticles by the collective motion of the electrons that
interact with a circularly polarized laser field. This is in
contrast with an earlier approach [26], where the authors an-
alyzed that the magnetic moment emerges from an ensemble
of independent solenoidlike motions for each electron. The
QHD model employed in the present work goes beyond the
independent and free-electron approximation by taking into
account the main quantum many-body effects, such as the
Hartree potential and the exchange and correlation effects.
Using the same laser intensity, we predict an electronic current
density four orders of magnitudes larger than in Ref. [26].
Although this difference is important, it is most probably due

the different approach used in the two models. Indeed, in
Ref. [26], the authors have assumed that the charge distribu-
tion in the nanoparticle stays uniform during the entire laser
pulse and, hence, they neglect any redistribution of the electric
field due to other nonlinear phenomena. On the contrary, in
our model, the electric current responsible for the creation of
an orbital magnetization is caused by the combination of the
dipole motions (surface plasmons) and the inhomogeneity of
the electron density at the surface of the nanoparticle (spill-
out).

Summarizing, we have shown that surface plasmons sup-
port the generation of an orbital angular momentum in gold
nanoparticles. This phenomenon corresponds to a transfer of
the spin angular momentum of the light to the electronic
orbital degree of freedom in the nanoparticle through the
plasmonic orbital inverse Faraday effect. As a result, a static
magnetic field is created inside the nanoparticle during the
laser pulse. In future studies, it would be interesting to study
other geometries such as nanorings, since a resonant inverse
Faraday effect was recently predicted in semiconductor nanor-
ings [27,57], leading to static magnetic fields between 10−6 −
10−3 Tesla. The computed induced magnetic moments in
the nanoparticle are quite large, of about 0.35 μB/atom for
a laser intensity of 45 × 1010 W/cm2. Our study focused on
gold nanoparticles but, in principle, other materials, such as
silver or aluminium, could be investigated as well within the
present theory. The decisive point for the magnetic moment
generation is that the material supports a strong plasmonic
response at the driving laser frequency. The thus-generated
magnetic field could be employed as a new approach to
achieve ultrafast plasmon-assisted all-optical switching in
suitable systems such as core/shell nanoparticles, supported
gold discs, or gold rings with a magnetic core inside.
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