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We investigate the classical phase diagram of the stuffed honeycomb Heisenberg lattice, which consists of
a honeycomb lattice with a superimposed triangular lattice formed by sites at the center of each hexagon.
This lattice encompasses and interpolates between the honeycomb, triangular, and dice lattices, preserving
the hexagonal symmetry while expanding the phase space for potential spin liquids. We use a combination of
iterative minimization, classical Monte Carlo, and analytical techniques to determine the complete ground state
phase diagram. It is quite rich, with a variety of noncoplanar and noncollinear phases not found in the previously
studied limits. In particular, our analysis reveals the triangular lattice critical point to be a multicritical point with
two new phases vanishing via second order transitions at the critical point. We analyze these phases within linear
spin wave theory and discuss consequences for the S = 1/2 spin liquid.
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I. INTRODUCTION

Realizing spin liquids, highly correlated and topological
magnetic phases that host fractional excitations, is a key
goal in correlated materials research [1–3]. While there are
now several good spin liquid candidates, particularly on the
kagomé lattice [4–7], we are far from realizing the full spec-
trum of possible spin liquids. The search for new spin liquid
materials is often frustrated by the narrow range of parameter
space occupied by those spin liquid phases in realistic models.
As increasing magnetic frustration stabilizes spin liquids, one
possible way to find new or more stable spin liquids is to
couple together two different frustrated lattices. This paper
studies the classical phase diagram of one such lattice, the
stuffed honeycomb lattice, which couples a honeycomb lattice
to its dual triangular lattice.

Generically, coupled lattices have rich phase diagrams even
at the classical level; for example, the related windmill lattice
showcases intriguing Z6 order by disorder, with a critical
phase and Berezinskii-Kosterlitz-Thouless transitions at finite
temperatures [8–11]. Due to their non-Bravais nature, these
lattices can generically host noncoplanar phases with nontriv-
ial spin chirality; in the classical limit, this chirality can lead to
Berry phases and anomalous Hall effects in metallic magnets
[12] and in the quantum limit can lead to chiral spin liquids
[13,14], as found near the cuboc phase in the kagomé lattice
[15–20].

In this paper, we discuss the classical phase diagram
of the stuffed honeycomb lattice Heisenberg model, a two-
dimensional model that combines the honeycomb and tri-
angular lattices by adding a spin to the center of each
hexagon of a honeycomb lattice. We consider nearest- (J1)
and next-nearest- (J2H ) neighbor couplings on the honey-
comb lattice, and nearest-neighbor (JT ) couplings on the
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centered triangular lattice, as well as a nearest-neighbor cou-
pling of the two lattices, J ′, as shown in Fig. 1. For sim-
plicity, we define a single second neighbor coupling, J2 ≡
JT = J2H ; the related windmill lattice instead takes J2H =
0 [8]. This model then interpolates from the honeycomb
lattice at J ′ = 0 to the triangular lattice for J ′ = J1, both of
which potentially host narrow spin liquid regions, and out
to the dice lattice for J ′ = ∞, all the while maintaining the
hexagonal symmetry, in contrast to the usual anisotropic
triangular lattices [21–24]. As such, this model provides the
perfect playground to explore the potential existing spin liq-
uids on the honeycomb [25] and triangular lattice [26,27]
limits by enlarging their possible phase space into another
dimension.

In this paper, we focus on the classical phase diagram,
which includes several noncoplanar phases, and the transitions
between them. Perhaps the most interesting result is that the
weakly first order transition between 120◦ and collinear orders
as a function of J2/J1 on the triangular lattice is revealed to
be a multicritical point between four phases, with two new
second order lines joining at that point. Here, we see the origin
of the strong fluctuations that give rise to the spin liquid in the
S = 1/2 model.

The classical triangular lattice forms 120◦ order for
J2/J1 < 1/8, and collinear order for J2/J1 > 1/8, with a
weak first-order transition between the two. For S = 1/2, this
transition broadens into a spin-liquid region extending from
.06 < J2/J1 < .16 [26–28]. While the existence of this spin
liquid region is well established, the nature of the spin liquid
is not. The spin liquid may be gapless [29–31], and small
perturbations of many types seem to lead to different spin
liquids, from gapped [26,27,31,32] to nematic [27] to chiral
[31,33,34].

The classical honeycomb lattice is bipartite for J2 = 0,
forming a Néel phase that gives way to a planar spiral
phase for J2/J1 > 1/6. Quantum fluctuations enhance the
Néel phase, and it extends to J2/J1 = .2 for S = 1/2, while
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the spiral phase is destroyed in favor of a plaquette valence
bond solid phase (VBS) [25,35–38]. The region near J2/J1 =
.2 − .25 may form a spin liquid [25] or may be a deconfined
critical point between the Néel and VBS phases [2,35,37]. The
potential spin liquid has been proposed to be either a gapped
Z2 “sublattice-pairing state” [36,39] or a Z2 d + id Dirac spin
liquid [40].

This model was initially introduced to attempt to explain
the magnetic behavior of the cluster magnet LiZn2Mo3O8

[41–43]. This material consists of a triangular lattice of
Mo3O13 molecular clusters, each of which hosts a single,
isotropic S = 1/2. Above 100 K, all spins are visible in the
Curie-Weiss susceptibility, while below 100 K, two thirds of
the spins vanish. This disappearance led to the proposal of
a spontaneous breaking of the lattice symmetry such that a
VBS or spin liquid forms on an emergent honeycomb lattice,
with the leftover one third of the spins located in the centers
of the hexagons [44]. The remaining third of these spins do
not order down to the lowest temperatures. The original paper
proposed octahedral cluster rotations as the mechanism for
symmetry breaking, although ordering in the LiZn2 layer may
be a more likely mechanism [45]. An alternate theoretical
proposal of plaquette charge ordering on a 1/6th-filled breath-
ing kagomé lattice extended Hubbard model exists [46–48],
which also requires an enlargement of the unit cell. Neither
of these proposed enlargements has been seen [49], although
the breathing kagomé lattice structure is found in the related
Li2In1−xScxMo3O8 materials [50].

Another class of possible materials realizations are spin
chain materials like RbFeBr3, which form quasi-1D spin
chains arranged in the basal plane as a stuffed honey-
comb lattice [51]; these spins are XY-like, and are thought
to form a partially disordered antiferromagnetic phase,
with one third of the spin chains disordered in the basal
plane. This model has been studied for XY [52,53] and
Heisenberg [54–57] spins with nearest-neighbor J1 and J ′
exchange.

Engineering this lattice is another potential path, either by
intercalating extra spins into existing inorganic honeycomb
lattice materials like the oxalates [58–60] or more straight-
forwardly by forming a triangular trilayer with ABC stacking.
The C sublattice forms the center layer, with J2 couplings in
plane, and J ′ couplings to nearest neighbors in the A and
B layers above and below. The nearest neighbor couplings
between the outer A and B layers are J1. Here, the generically
somewhat artificial condition that JT = J2H ≡ J2 is natural, if
the three sublattices are otherwise identical. Some fine tuning
would be required to obtain J1 ∼ J ′, as generically J1 will be
the smallest coupling.

The organization of the paper is as follows. The model
is introduced in Sec. II, methods are discussed in Sec. III,
and the full classical phase diagram is shown in Sec. IV.
The various phases are discussed in Secs. V to VII. Given
the importance of the multicritical point around the triangular
limit, we introduce the two off-axis noncollinear phases in a
separate section, Sec. VIII, and discuss the effect of fluctua-
tions. Finally, we briefly summarize in Sec. IX and suggest
future directions.

FIG. 1. Stuffed honeycomb lattice model. This model contains
three sublattices, A (red) and B (blue) on the honeycomb sites, and
C (green) on the triangular sites. J1 (solid, black) is the nearest-
neighbor coupling between honeycomb sites, while J ′ (dashed,
purple) is the coupling between honeycomb and C sites. All three
sublattices have next-nearest-neighbor J2’s that we take to be identi-
cal (dotted, blue). The lattice vectors a1 and a2 as well as the basis
vectors δδδB and δδδC are shown.

II. MODEL

The stuffed honeycomb lattice is shown in Fig. 1. It is
a non-Bravais lattice with space group symmetry p6m. The
hexagonal lattice vectors are

a1 =
(

3

2
,

√
3

2

)
; a2 =

(
3

2
,−

√
3

2

)
, (1)

where we take the nearest-neighbor distance between sites to
be one. Two sites (A,B) are on the honeycomb lattice, while
the C sites sit in the center of the hexagons; the basis vectors
are

δδδA = (0, 0); δδδB =
(

1

2
√

3
,

1

2

)
; δδδC =

(
1√
3
, 0

)
. (2)

We consider Heisenberg spins with three different antifer-
romagnetic exchange interactions,

H = J1

∑
〈i,j〉


SA
i · 
SB

j + J ′ ∑
〈i, j〉

η=A, B


Sη

i · 
SC
j + J2

∑
〈〈i, j〉〉

η=A,B,C


Sη

i · 
Sη

j .

(3)

J1 and J ′ both correspond to nearest-neighbor (NN) interac-
tions. While J1 couples the A and B sublattices, J ′ couples
the C sublattice with both A and B sublattices. J2 is the next-
nearest-neighbor (NNN) interaction, which couples spins in
the same sublattice; we take J2 on the honeycomb (AA,BB)
and central spins (CC) to be identical for simplicity; although
this identity is not required by symmetry, it is present in the
triangular trilayer.

There are three limits of particular interest: J1 = J ′ gives
the J1 − J2 triangular lattice, J ′ = 0 yields a J1 − J2 honey-
comb lattice completely decoupled from a nearest-neighbor
(here, J2) triangular lattice, and finally J1 = 0 gives the J1 −
J2 dice lattice, perhaps best known as the dual to the kagomé
lattice.
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III. METHODS

While obtaining the ground state phase diagram for a Bra-
vais lattice may be done by assuming a single Q planar spiral
variational ansatz, and minimizing J (Q), non-Bravais lattices
are generically more complicated and require a combination
of numerical and analytical techniques. Our goal is to obtain
a variational ansatz for each phase and to then find phase
boundaries by comparing energies. As ansatz can be arbitrar-
ily complicated, we first use iterative minimization to find the
ground state configuration numerically at each point in the
phase diagram and then develop the corresponding variational
ansatz that matches or beats the iterative minimization ground
state energies.

Iterative minimization is a numerical technique that begins
with a random spin configuration on a finite size lattice with
periodic boundary conditions. At each step in the algorithm,
a spin is chosen randomly and aligned with the exchange
field due to its neighbors. This exchange field can be seen by
rewriting the Hamiltonian,

H =
∑

i

Hi, where Hi = 
Si ·
(

− 1

2

∑
j

Jij

Sj

)
. (4)

The spin 
Si will then be set to


Si →
∑

j Jij

Sj

|| ∑j Jij

Sj ||2

. (5)

The algorithm is run until the energy converges. In order to
avoid finite size effects, and also to check that we avoid local
minima, we ran the algorithm on lattices of all sizes from 4 ×
4 to 30 × 30 unit cells, taking the minimum energy of these.

We then used a variety of variational ansatz, each of which
treats the classical spins as unit vectors, setting S = 1. Most
of the phases fit into two classes of ansatz: a 3Q ansatz we de-
scribe here and a double conical ansatz described in Sec. VII.
When these two classes of ansatz failed, we developed new
variational ansatze by examining the spin configurations given
by iterative minimization. If our variational ansatz correctly
describes the ground state, its energy is less than or equal
to the minimum iterative minimization energy. In principle,
this process could miss states with unit cells larger than
30 × 30; here, we would expect the iterative minimization
spin configurations to locally resemble the correct ground
state, with topological defects or lock in to nearby commen-
surate wave vectors. We have visually spot checked that the
iterative minimization spin configurations locally match the
configurations obtained from the variational ansatz.

The 3Q ansatz allows each of the three sublattices to be
treated independently. We define the sublattice spin, 
Sη(Ri ),
where Ri denotes a Bravais lattice site and η labels the
sublattice. The most general form of this vector describes a
conical spiral,


Sη(Ri ) = [cos θ cos(Q · Ri ), cos θ sin(Q · Ri ), sin θ ], (6)

with the conical axis along the ẑ direction and conical angle
θ . The perpendicular spin components are determined by a
planar spiral with ordering wave vector Q. Both θ and Q are
variational parameters. We then require two sets of Euler an-
gles to relate the three sublattices. The A sublattice is chosen

to be oriented as above, with the B axes rotated by Euler
angles (α, β, γ ) and the C sublattice rotated by (α′, β ′, γ ′).
Typically, most of these parameters are not needed to describe
a phase; most phases are planar, with θη = 0 and α = α′ = 0,
β = β ′ = 0. Once the relevant parameters are determined,
and the classical energy minimized with respect to these
parameters, the nature of the phases, and location and nature
of the phase transitions, can be determined. In particular,
we can determine the first or second order nature of a
phase transition by examining the derivatives of the energies
at the phase boundaries. More complicated variational ansatz,
like the double conical spiral and twelve-sublattice ansatze are
described in the sections for each phase.

IV. CLASSICAL PHASE DIAGRAM

In this paper, we solve the classical, S → ∞ limit of this
lattice for all values of J ′/J1 and 0 < J2/J1 < 1.2; no new
phases appear beyond this upper limit. We show the phase
diagram in two different figures in order to capture the relevant
limits. In Fig. 2, we plot the phase diagram as J2/J1 versus
J ′/J1 in order to capture the interpolation from honeycomb
to triangular lattice and beyond. In Fig. 3, we instead plot the
phase diagram as a function of J2/J

′ versus J1/J
′ in order to

capture the evolution from the triangular to the dice limit.
First and second order transitions are indicated by dashed

and solid lines, respectively. There are several multicritical
points. We note that these naively seem to disobey the Gibbs
phase rule, wherein we expect only three unrelated phases
to meet at any given multicritical point in a two-dimensional
phase diagram. However, this constraint can be avoided when
two or more of the phases are really different limits of the
same ansatz. For example, the collinear phase is a special
case of noncollinear I and II, as well as double conical I and II,
the Néel* phase is a special case of the spiral* phase, and the
ferrimagnetic phase is a special case of both the interpolating
and spiral phases. These phases do, however, break different
symmetries and are truly distinct.

V. PHASES NEAR THE HONEYCOMB AXIS

The classical ground state phase diagram of the honeycomb
lattice itself is well known, with a Néel phase for J2/J1 < 1/6
and a spiral phase for J2/J1 > 1/6. For J ′ = 0, the central
spins form 120◦ order on the C sublattice linked by J2.
The small J2/J1 phases are unaffected by J ′, but at larger
J2/J1, the spiral is highly unstable. With a small J ′/J1, the
spiral phase distorts into one of three noncoplanar phases: the
triple conical and triangle of triangles phases discussed below,
which require many sublattices to describe, and a double
conical phase DC II discussed in Sec. VII B. This complexity
suggests the fundamental instability of the spiral phase of the
honeycomb lattice, and indeed that phase does not survive to
S = 1/2, replaced by a VBS [35,36].

A. Néel* phase

For 0 < J2/J1 < 1
6 , the honeycomb spins (AB) order in the

conventional Néel configuration while the C sublattice forms
120◦ order, as shown in Fig. 4. In the classical, T = 0 limit,
the C spins are completely decoupled from the AB spins, even
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FIG. 2. Classical ground state phase diagram as a function of J2/J1 versus J ′/J1. This phase diagram interpolates between the honeycomb
limit (far left) to the triangular limit (middle) and beyond. Thick dotted lines separating the phases indicate a first order phase transition while
solid lines imply a continuous transition. Details of each phase are given in the following sections: Néel*, spiral*, triple conical (TC), and
“triangle of triangles” (TT) are described in Sec. V; the double conical phases, DC I and DC II are described in Sec. VII; the spiral, collinear,
interpolating, and ferrimagnetic phases are described in Sec. VI; the noncollinear phases I and II are discussed in Sec. VIII.

for finite J ′; we use the * suffix to indicate that the AB and C
spins are decoupled, with the AB spins in their honeycomb
limit phase, and the C spins forming 120◦ order. Thermal
and quantum fluctuations will drive this phase into a coplanar
order where one of the three C spin axes aligns with one of
the AB spin axes. This sixfold degeneracy leads to a Z6 order

FIG. 3. Classical ground state phase diagram as a function of
J2/J

′ and J1/J
′; this phase diagram interpolates between the tri-

angular (far left) and dice limits (far right). Dotted lines indicate
a first order phase transition, while solid lines imply a continuous
transition. Details of each phase are given in the following sections:
the double conical phase DC I is described in Sec. VII, the spiral,
collinear, interpolating, and ferrimagnetic phases are described in
Sec. VI, and noncollinear phase I is discussed in Sec. VIII.

driven by order by disorder [8,9]. The classical energy for this
phase is

ENéel[J2] = −3 + 9/2J2, (7)

where for simplicity we set J1 = 1 here and in much of the
rest of the paper. The spins are parametrized as


SA = [0, 0, 1]; 
SB = [0, 0,−1]


SC (Ri ) = [cos(Qtri · Ri ), 0, sin(Qtri · Ri )], (8)

where Qtri = ( 2π
3 , 2π

3
√

3
) is the 120◦ ordering vector.

FIG. 4. Néel* phase. The A (red) and B (blue) spins are Néel
ordered while the decoupled C (green) spins form 120◦ order. This
particular arrangement is one of the six favored by thermal and
quantum fluctuations.
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FIG. 5. Spiral* phase: (a) There is an incommensurate coplanar
spiral ordering on the A and B sublattices with Qsp being a function
of J2 only. The decoupled C spins have a 120◦ order. (b) Qx (Qy )
plotted as a function of J2. For J2/J1 � 1/6, Qsp limits to a constant
value, and the Néel* phase is a special case of the spiral phase. Note
that all parameters of this phase are independent of J ′.

B. Spiral* phase

For 1
6 < J2 � 0.225 and small J ′, the honeycomb spins

(AB) are driven into an incommensurate coplanar spiral order
as shown in Fig. 5(a). The C sublattice remains decoupled and
120◦ ordered even for finite J ′, due to the cancellation of the
overall exchange field at the C sites. In order to distinguish
this phase from the planar spiral on all three sublattices, we
call this phase spiral*, where * again indicates that the AB
and C spins are decoupled. Quantum and thermal fluctuations
again force the sublattices to be coplanar [61–63]. The spin
configuration is given by the variational ansatz,


SA(Ri ) = [cos(Qsp · Ri ), 0, sin(Qsp · Ri )]


SB (Ri ) = [cos(Qsp · Ri + γ ), 0, sin(Qsp · Ri + γ )]


SC (Ri ) = [cos(Qtri · Ri ), 0, sin(Qtri · Ri )]. (9)

Here, the variational parameters are the spiral ordering wave
vector Qsp and the angle between the A and B spins in the
same unit cell γ . The variational energy of this phase is

Espiral[Qsp, γ, J2]

= J2

2
[−3 + 4 cos{Qsp · (a1 − a2)} + 4 cos(Qsp · a2)

+ 4 cos(Qsp · a2)] + 1

2
[2(1 + cos{Qsp · (a1 − a2)}

+ cos{Qsp · a1}) cos(γ ) − 2(sin{Qsp · (a1 − a2)}
+ sin{Qsp · a1}) sin(γ )]. (10)

Only the first term −3J2/2 comes from the C spins. Mini-
mization of this function shows that Qsp and γ are indepen-
dent of J ′, as indeed is the entire energy of this phase. We are
also only finding one of a classically degenerate manifold of
Qsp, which cause this phase to be strongly affected by quan-
tum fluctuations [64]. The J2 dependence of Qsp is shown in
Fig. 5(b); note that for J2/J1 = 1/6, Qsp → (0, 0), and thus
the Néel* phase is a special case of the spiral* phase, and the
transition between the two is second order. For J2/J1 > 1/2,
the spiral* phase is again the lowest energy phase; it persists
out to J2/J1 = ∞, where Qsp limits to Qtri.

FIG. 6. Spin configurations in the triple conical phase plotted
using a common origin plot, with A, B, C spins shown in red, blue,
green, respectively. Three representative configurations are plotted
for J2/J1 = .3, with increasing J ′/J1. While the configuration in
(a) is very close to the spiral* phase, the AB spirals wave out of
the plane with increasing J ′, and the C spins distort into cones
around the original 120◦ axes. (a) J ′/J1 = 0.05, (b) J ′/J1 = 0.075,
(c) J ′/J1 = 0.1.

C. Triple conical phase

For J2/J1 � 0.225 and J ′/J1 > 0, the spiral* phase dis-
torts into a “triple conical” phase. While for J2/J1 < .22, the
AB spirals are flat and decoupled from the C spins, with larger
J2 these spirals begin to wave out of the plane in order to
couple to the C spins and take advantage of the J ′ exchange
coupling. The C spins are only slightly distorted from their
120◦ order and now align such that their ordering plane is per-
pendicular to the initial AB ordering plane. The case for small
J ′/J1 is shown in Fig. 6(a), where we plot all of the spins
obtained in iterative minimization with a common origin. As
J ′/J1 increases, the AB spirals wave more and more out of
the plane, and the C spins form three cones around the original
120◦ axes, as shown for Figs. 6(b) and 6(c). Note that one of
these conical axes is in the AB plane, and that cone flattens out
with larger J ′ to better align with the AB spins. This phase is
quite complicated, and we were unfortunately unable to find a
variational parametrization for it. The phase boundaries were
determined by comparing iterative minimization energies to
the analytical energies of the surrounding phases, and the spin
configuration of each phase point was checked to ensure that
no additional phases were present. While the transition from
the spiral to the triple conical phase appears to be smooth, it
may instead be weakly first order; our data could not resolve
this difference. Due to its noncoplanar nature, this phase
is unlikely to survive substantial quantum fluctuations. For
sufficiently large J ′, this phase undergoes a first order phase
transition to the DC II double conical phase.

D. Triangle of triangles phase

Right in the middle of the triple conical phase, there is
a wedge of another unusual noncoplanar phase that almost
touches the J ′ = 0 axis at J2/J1 ∼ 0.29. This phase is best
described as consisting of “triangles of triangles” on the A
and B sublattices, as shown in Fig. 7(a); it cannot be simply
described using ordering wave vectors. Here, on some subset
of the hexagons, all three A (B) spins will be ferromag-
netically aligned with each other, with a relative angle γ

between the coplanar A and B spins. These hexagons are
then arranged as if they were single spins forming 120◦ order.
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FIG. 7. The triangle of triangles phase exists in a wedge near the
honeycomb axis. The unit cell is shown in (a) with A, B, C spins in
red, blue, and green, respectively. The triangle of triangles feature is
particularly emphasized by the solid blue and red triangles on the
three distinct types of ferromagnetic hexagons. (b) While the AB
spins lie in a plane, the C spins are oriented out of the plane; their
orientations are shown via a common origin plot. These plots are for
J2/J1 = 0.275 and J ′/J1 = 0.15.

There are five types of C spin sites: three sites located within
the different types of ferromagnetic hexagons, C

(1,2,3)
3 , and

two sites located in the two different types of intermediate
hexagons, C1 and C2. C1, C2, and the average of C

(1,2,3)
3

form 120◦ order in a plane perpendicular to the AB spins.
The C3 spins have a conical structure. The actual variational
parametrization is slightly more complicated,


S�1
A = [1, 0, 0]


S�2
A = [−1/2, 0,

√
3/2]


S�3
A = [−1/2, 0,−

√
3/2]


S�1
B = [cos(γ ), 0, sin(γ )]


S�2
B = [cos(γ + 2π/3), 0, sin(γ + 2π/3)]


S�3
B = [cos(γ + 4π/3), 0, sin(γ + 4π/3)]


SC1 = [cos(η), sin(η), 0]


SC2 = [cos(η + λ), sin(η + λ), 0]


SC1
3

= [cos(η + θ + λ + ν), sin(η + θ + λ + ν), 0]


SC2
3

=
[

1

4
(3 cos(η − θ + λ + ν) + cos(η + θ + λ + ν)),

× 1

4
(3 sin(η − θ + λ + ν) + sin(η + θ + λ + ν)),

+
√

3

2
sin(θ )

]


SC3
3

=
[

1

4
(3 cos(η − θ + λ + ν) + cos(η + θ + λ + ν)),

× 1

4
(3 sin(η − θ + λ + ν) + sin(η + θ + λ + ν)),

−
√

3

2
sin(θ )

]
, (11)

where S�i
A,B describes the A,B spins on the three types of

ferromagnetic hexagons, as shown in Fig. 7(a). There are five
variational parameters: γ is the angle between the A and B
spins on a given ferromagnetic hexagon, θ is the conical angle
for the C3 spins, λ is the angle between C1 and C2, ν is the
angle between C2 and the axis of the C3 cone, and η is the
angle by which C1 is rotated with respect to the projection of
S�1

A onto the C1, C2, C3 plane. The variational energy is

ET T [J2, J
′, θ, λ, η, ν, γ ]

= 1

2

{
3 cos γ + 2J2 cos λ + 4J2 cos θ cos

λ

2
cos

(
λ

2
+ ν

)

− sin γ [
√

3 + J ′ sin θ (1 + sin[η + λ + ν])]

}
. (12)

This phase is sandwiched in the middle of the triple conical
phase, separated by what we believe must be first order
transitions. While in Fig. 2, it appears to touch the J ′ = 0 axis,
the spiral* phase does extend for a small but finite J ′.

VI. PHASES ON THE TRIANGULAR AND J2 = 0 AXES

Next, we turn to the phases on the triangular axis (J ′ = J1)
and discuss their evolution off axis; we will additionally dis-
cuss the J2 = 0 axis phases, as these have substantial overlap
with the triangular axis phases. On the triangular axis, there
are only two phases for J2/J1 < 1, the 120◦ phase for J2/J1 <

1/8, which evolves smoothly off axis, and the collinear phase
for 1 > J2/J1 > 1/8, which remains unchanged off axis.
Beyond J2/J1 = 1, there is a planar spiral phase that evolves
smoothly to three independent triangular lattices for J1 = 0
and extends out to the dice lattice limit.

On the J2 = 0 line, a single phase interpolates from the
Néel order of the honeycomb limit (
SA = −
SB) to the 120◦
order of the triangular limit and out to a ferrimagnetic limit at
J ′ = 2J1 (
SA = 
SB = −
SC). Beyond J ′ = 2J1, this ferrimag-
netic phase does not evolve further and is the ground state out
to the dice limit.

A. Interpolating phase

The interpolating phase extends along the J2 = 0 axis,
interpolating between Néel order on the honeycomb lattice
(J ′ = 0) to 120◦ order on the triangular lattice (J ′ = J1) to
ferrimagnetic order (J ′ = 2J1). It can be captured by a sim-
ple variational ansatz where each sublattice is ferromagnetic
within itself, and the interpolating is captured by the angles γ

and γ ′ between the AB and AC sublattices, as shown in Fig. 8.
These angles are

γ = 2 cos−1 J ′

2
; γ ′ = γ /2 + π. (13)

For J ′ = 0, γ = π captures the Néel order on the honeycomb
lattice. In contrast to the Néel* phase, where the C spins
form 120◦ order, they are ferromagnetic here. For J ′ = 0,
the relative angle is free, but we choose γ ′ = 3π/2, for
consistency with the finite J ′ results; see Fig. 8(b). Note that
this phase generically has a net moment, except at the 120◦
point, as shown in Fig. 9. As J ′ increases, γ smoothly trends
towards zero and γ ′ trends towards π , reaching that point at
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FIG. 8. The interpolating phase occupies the entire J2 = 0 axis
out to J2/J1 = 2 and is described by a single spin orientation on
each sublattice. (a) depicts the angle between the sublattice spins,
while (b)–(d) highlight the three key limits for (b) J ′ = 0 (Néel order
on the honeycomb), (c) J ′ = J1 (120◦ order), and (d) J ′ > 2J1 (the
ferrimagnetic order of the dice lattice). (a),(b) Néel, (c) 120◦, (d)
Ferri.

J ′/J1 = 2. The classical energy has a simple analytic form
and is given by:

Eint[J2, J
′] = [

9J2 − 3
2 (2 + J ′2)

]
. (14)

B. Ferrimagnetic phase

At J ′/J1 = 2, the interpolating phase becomes fully fer-
rimagnetic and maximizes the gain from J ′ bonds, with the

FIG. 9. Magnetization of the interpolating phase as a function of
J ′/J1. We plot the magnitude of the net moment per unit cell in units
of S. The moment is maximal for J ′ = 0, and again for J ′ = 2J1,
only vanishing on the triangular lattice for J ′ = J1.

FIG. 10. The collinear phase consists of ferromagnetic stripes
along one triangular axis (here, the x̂ axis) and antiferromagnetic
stripes along the other two axes. This particular arrangement is
selected via order by disorder. More generally, it is a four sublattice
phase labeled by the sites ABCD in the figure, with 
SA + 
SB + 
SC +

SD = 0 the only ground state condition.

AB sublattices ferromagnetically aligned, and the C spins
antialigned to both, as shown in Fig. 8(d). The moment per
spin is S/3. This phase extends out to the dice lattice limit,
and has the classical energy,

Eferri[J2, J
′] = 3 + 9J2 − 6J ′. (15)

The ferrimagnetic phase is a limit of the interpolating phase,
much as the Néel* phase is a limit of the spiral* phase;
being collinear it has a higher symmetry than the interpolating
phase, and is a distinct phase.

C. Collinear phase

The bulk of the phase diagram is occupied by the collinear
phase, and many of its neighboring phases borrow some of its
features. Figure 10 shows the typical collinear arrangement
that gives this phase its name, where all of the spins align
ferromagnetically along one of the three triangular axes and
alternate antiferromagnetically along the other two; this phase
therefore breaks the sixfold rotational symmetry and allows
a Z3 nematic order parameter, as we discuss further in the re-
lated noncollinear phases. However, this phase is only one of a
set of classical ground states, which may be more generically
described by a four-sublattice arrangement around a rhombus,
where the sum of spins, 
SA + 
SB + 
SC + 
SD = 0. This four-
sublattice arrangement can be taken on the triangular lattice,
as shown in Fig. 10, or may be taken on each of our three
sublattices individually, where the same four spins must be
taken for each of the A,B,C sublattices. The Hamiltonian (3)
can be rewritten as

H = J1 + 2J ′ + 3J2

4
[(
SA + 
SB + 
SC + 
SD )2 − 4S2],

(16)

with the overall classical energy,

Ecoll[J2, J
′] = −1 − 3J2 − 2J ′. (17)

There is thus a continuous manifold of classical ground states,
including noncoplanar phases like those where the four spins
point along the vertices of a tetrahedra. One particular such
state has a nonzero uniform scalar chirality, κ = 
Si · (
Sj × 
Sk )
around each triangle [65,66]. However, quantum and thermal
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FIG. 11. In the spiral phase, all three sublattices spiral with a
generically incommensurate wave vector Qsp that is a function of
both J2/J

′ and J1/J
′. (a) shows the real space ordering for J2/J

′ =
0.3 and J1/J

′ = 0.1. (b) shows (Qx,Qy ) as a function of J2 for
J1 = 0.1; the plateau in Qx begins at the transition to the collinear
phase, while Qy becomes nonzero when the spiral phase is reentered.

fluctuations select the collinear states via order by disorder
[67]. This particular state can also be captured by a single Q,
here given for each of our three sublattices, Qcoll = (2π/3, 0),
with


S(Ri ) = [cos(Qcoll · Ri ), 0, sin(Qcoll · Ri )]. (18)

D. Spiral phase

In the triangular limit, at J2 > J1, the collinear state gives
way to a planar spiral phase that encompasses most of the
large J2 region; it extends for J ′ < J1 down to meet the
honeycomb spiral* phase, where only the AB spins spiral,
and out to the dice lattice limit. Here, each of the three
sublattices forms a planar spiral, with the same ordering
wave vector QA = QB = QC , and relative angles γ and γ ′
between AB and AC sublattices, as before. This wave vec-
tor is Qcoll at the boundary with the collinear phase and
Q = (0, 0) at the boundary with the ferrimagnetic phase; it
asymptotes smoothly to Qtri for large J2. Indeed the phase can
be described by three variational parameters: ξ , the fraction
Q = ξQtri of the triangular lattice ordering vector, γ , and γ ′.
All three parameters depend on both J2/J

′ and J1/J
′. This

planar spiral connects smoothly with the planar spiral on the
triangular lattice axis for J2/J1 > 1, however the honeycomb
spiral* is distinct until Qsp → Qtri, as the C spins always have
Qtri. As the ferrimagnetic and collinear phases are special
cases of the spiral, the transition between them and the spiral
is second order, as seen in Fig. 11(b).

VII. DOUBLE CONICAL PHASES

At intermediate J ′, there are two distinct “double conical”
phases, where one or more sublattices can be described varia-
tionally by a double conical structure. Here, one wave vector
Q1 controls the in-plane ordering perpendicular to the conical
axis, while another Q2 controls the out-of-plane ordering. The
spins on a single sublattice are parameterized by the unit
vector,


S(θ, Q1, Q2, Ri )

= [sin θ cos Q1 · Ri , sin θ sin Q1 · Ri , cos θ cos Q2 · Ri],

(19)

FIG. 12. Double conical I for J ′ < J1. (a) This phase consists of
double conical spirals on each of the A, B, and C sublattices, with
conical angles θA, θB = π − θA, and θC � θA. The AB and C spins
are shown in common origin plots on the left and right, respectively.
The ordering wave vectors are generally incommensurate in the
plane, Q1, although here we plot the special commensurate case
where Q1 = ξQcoll with ξ = 2/5. The corresponding J2/J1 and
J ′/J1 values are 0.198 and 0.29575, respectively. There is a small
angle, η between the A,B spins, as well as a small angle ηC between
the A and C spins (not shown). Note: as θC is very small, we plot a
conical angle of 10θC for clarity. (b) DC I parameters as functions
of J2/J1 and J ′/J1. The variation of the conical angles θAB (yellow)
and θC (blue) is shown from the boundary of DC I shared with the
noncollinear II phase to the critical J2 beyond which it becomes
collinear.

where θ is the conical angle, and the conical axis is Ŝz. See
Fig. 12(a) for an example. As 
S must be a unit vector, cos Q2 ·
Ri = ±1, which limits the possible values of Q2 to different
collinear configurations; we always find Qcoll = (2π/3, 0).
Q1 is not so limited and can be incommensurate. Different
sublattices may have nontrivial relative cone orientations,
in which case the relative angles will also be variational
parameters.

A. Double conical phase I

The first double conical phase DC I occurs twice in the
phase diagram: in a wedge between the spiral*, triple conical,
triangle of triangles, and the collinear phases, shown in Fig. 2,

134419-8



CLASSICAL PHASE DIAGRAM OF THE STUFFED … PHYSICAL REVIEW B 98, 134419 (2018)

FIG. 13. The dice lattice version of DC I. (a) The AB and C spins
are shown in common origin plots on the left and right, respectively.
Each sublattice forms a double conical spiral with conical angles θA,
θB = π − θA, and θC respectively. Here, Q1 takes the special com-
mensurate value, ξQcoll with ξ = 2/5, which occurs for J1/J

′ = .4
and J2/J

′ = .24. (b) The variation of the double conical I parameters
as a function of J2 for two values of J1/J

′ values is shown. The
conical angles, θAB (yellow) and θC (blue), are plotted from the
boundary of DC I and noncollinear II out to the critical J2 beyond
which it becomes collinear.

and in a wedge for J ′ > J1 between the spiral, noncollinear I,
and collinear phases, shown in Fig. 3. All three sublattices
form double cones, with θB = π − θA and θC distinct; all
three sublattices share the same Q’s. The out-of-plane com-
ponents form a collinear structure, Q2 = Qcoll, while the in-
plane Q1 = (Q1x, 0) = ξQcoll is generally incommensurate.
The classical energy is

EDCI [ξ, θA, θC, γ, γ ′, J2, J
′]

= − cos2 θA + [2 cos γ + cos(γ − πξ )] sin2 θA

+ J2[−2 cos2 θA − cos2 θC

+ (1 + 2 cos πξ )(2 sin2 θA + sin2 θC )]

+ J ′[−2 cos θA cos θC + {2 cos(γ − γ ′) + cos γ ′

+ 2 cos(γ ′ − πξ ) + cos(γ − γ ′ + πξ )} sin θA sin θC].

(20)

FIG. 14. Double conical II: The A and B sublattices are each
in a collinear configuration, while the C sublattice forms a double
conical structure, with the conical axis oriented along the A/B spins.
(a) shows the real space lattice configuration. (b) shows the double
conical structure of the C spins in a common-origin plot, where
Q1 = Qtri and Q2 = Qcoll. The conical angle θC is a function of both
J2 and J ′.

1. J ′ < J1 occurrence

Here we discuss its first appearance; the DC I phase occurs
for larger J ′ beyond J2/J1 = 1/6, above the spiral phase;
an example is shown in Fig. 12(a). The conical angles vary
strongly with both parameters, as is shown in Fig. 12(b), with
θC � θA. As the border to the collinear phase is approached,
θA, θC → 0, indicating that the collinear phase is a special
case of DC I; as such, the transition is second order. The
transitions to other neighboring phases are all first order.

2. J ′ > J1 occurrence

The second appearance is near the dice lattice limit, be-
tween the spiral and collinear phases. As J1/J

′ increases, the
planar spiral phase continuously tilts out of the plane to form
a recurrence of the double conical DC I phase. In contrast
to the small J ′ version, here the conical angles θA and θC

have similar orders of magnitude, as shown in Fig. 13(b).
Otherwise, the two phases are quite similar. Again, the in-
plane Q1 is generically incommensurate and is smoothly
connected to Qsp across the second order phase boundary
separating the planar spiral and DCI phases. Note that we have
a multicritical point with three second order lines where DC
I, spiral, and ferrimagnetic phases all join along with a first
order line between DC I and the noncollinear I phase.

B. Double conical phase II

Sandwiched between the triple conical, spiral*, spiral, and
collinear phases is a second double conical phase, double con-
ical II. The A and B spins remain in a collinear structure, with
Qcoll = (2π/3, 0), while the C spins form a double conical
spiral, as shown in Fig. 14, with the conical axis collinear
with the AB spins. This double conical spiral has a single free
parameter, the conical angle θC , while Q1 = Qtri = ( 2π

3 , 2π√
3

)
and Q2 = Qcoll are all fixed. The classical energy for this
phase is

EDCII [J2, J
′, θC] = −1 + 13J2

4
− 2J ′ cos θC − J2

4
cos 2θC.

(21)
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FIG. 15. The sublattice configuration of the noncollinear phases.
Each noncollinear phase has a 12 sublattice structure, wherein each
of the A, B, and C sublattices has four different spin configurations,
arranged as shown in the figure, where the AB and C sublattices are
labeled with numbers and greek letters, respectively.

This phase smoothly evolves into the collinear phase, as θC →
0, but all other phase boundaries are first order. While the
wedge of DC II appears to touch the honeycomb axis, as with
the triangle of triangles phase, it merely approaches closely.

VIII. NONCOLLINEAR PHASES

Just off of the triangular lattice axis near the triangular
lattice critical point, we find two interesting phases whose
width vanishes as the critical point is approached, as seen
in Fig. 2. These are each separated from the collinear phase
by second order transition lines and share a number of com-
mon characteristics. As the fluctuations of these phases may
strongly influence the spin liquid found on the triangular axis,
we study these phases and their fluctuations in more detail.
In particular, both phases have a Z3 nematic order parameter
and a free classical angle that allows them to be noncoplanar
in principle, although order by disorder naturally selects the
coplanar configuration.

Both noncollinear phases are most generally described in a
twelve-sublattice basis, where each of the three A, B, and C
sublattices has four sublattices; these four sublattices are the
same ABCD sublattices from the collinear phase, although the
collinear condition is of course not satisfied. These are shown
in Fig. 15, where the AB spins are labeled with (1,2,3,4) and
the C spins with (α, β, γ, δ). Generically these A,B,C spins
all sit on different cones forming pairs of spins, as shown in
Figs. 16 and 18.

A. Noncollinear phase I

For J ′ > J1, the four A and B spin configurations overlap
and exist on a cone with fixed angle θA = θB , while the C
spins are on an inverted cone with angle θC = θA; these spin
configurations are shown on a common origin plot in Fig. 16.
This phase generically has a net moment along the common
conical axis, which is zero on the triangular axis and increases
smoothly with increasing J ′, as shown in Fig. 17(b). The
AB spin components perpendicular to the conical axis form
opposing pairs, (
S1, 
S3) and (
S2, 
S4), with a free angle η

between the two pairs. Similarly, the perpendicular C spin
components form pairs, (
Sα , 
Sγ ) and (
Sβ , 
Sδ), separated by

FIG. 16. Noncollinear phase I consists of spins on two cones:
one for the AB spins (up, with conical angle θA) and one for the C
spins (inverted, with θC). The spin components perpendicular to the
conical axis form opposing pairs, (1,3) and (2,4); (α, γ ) and (β, δ).

the same free classical angle. The AB spins are


S1 = [sin θA, 0, cos θA]


S2 = [sin θA cos η, sin θA sin η, cos θA]


S3 = [− sin θA, 0, cos θA]


S4 = [− sin θA cos η,− sin θA sin η, cos θA], (22)

while the C spins are


Sα = [sin θC, 0,− cos θC]


Sβ = [sin θC cos η, sin θC sin η,− cos θC]


Sγ = [− sin θC, 0,− cos θC]


Sδ = [− sin θC cos η,− sin θC sin η,− cos θC]. (23)

These spins are arranged as shown in Fig. 15. The resulting
classical energy is given by

Enc1[J2, J
′] = (1 + 2J2)(1 + 2 cos 2θA)

+ J2(1 + 2 cos 2θC )

− 2J ′(sin θA sin θC + 3 cos θA cos θC ), (24)

where θA and θC are variational parameters, and the energy is
independent of η. The variation of the conical angles for both
noncollinear phases along a particular parametric path J2(J ′)
is shown in Fig. 17(a).

In Sec. VIII C, we shall show that order by disorder selects
η = 0, favoring the coplanar spin configuration, as expected.
Nevertheless, the relatively low energy competing states may
affect the nature of the spin liquid. In particular, the noncopla-
nar configurations will generically have nonzero scalar spin
chirality, defined on a triangle of spins (1,2,3),

κ� = 
S1 · 
S2 × 
S3. (25)

In Fig. 19(a), we show the pattern of striped spin chirality
for the nearest-neighbor triangles, with η = 0. There are four
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FIG. 17. (a) Variation of conical angles for the noncollinear
phases along a path J ′ = α, J2 = 3

20 (α − 1)θ (α − 1) + 1
8 (shown in

inset). The C spins are planar for α < 1, with θC = π/2; θC then
decreases with increasing α as the spins tilt down into an increasingly
narrowing cone. The AB spins are similarly planar exactly at α = 1,
with decreasing conical angles away from the triangular axis in both
phases. (b) Ferromagnetic moment in the noncollinear phases. The
inset at the left corner shows the path with the same parametrization
as before, along which the variation of the moment is plotted. The
path and the x axis are also color matched to further elucidate this
fact. (a) Conical angles, (b) magnetic moment.

chiralities ±κ1,2, given by

κ1 = sin η sin θA sin(θA − θC )

κ2 = sin η sin 2θA sin θC, (26)

which lead to two types of hexagons, with positive and nega-
tive chiralities arranged in a striped pattern. Note that there is
no uniform chirality.

In addition, we also see that this magnetic order breaks
the threefold lattice rotational symmetry by developing a Z3

nematic bond order parameter,

N = 1

N

∑
i

〈
Si · 
Si+a1〉 + 〈
Si · 
Si+a2〉e
2πi

3

+〈
Si · 
Si+a2−a1〉e
4πi

3 , (27)

where i sums over all spins, in all sublattices and N is the total
number of sites. As this Z3 order parameter breaks a discrete
symmetry, it can and will develop at finite temperatures before

FIG. 18. Noncollinear II is similar to noncollinear I, but here,
the A and B cones are inverted with respect to one another and the C
spins lie in the plane. This phase has the same classical free angle η

between pairs of spins.

the magnetic ordering sets in. This finite temperature phase
transition also occurs in the neighboring collinear phase and
is not fundamentally different here. Essentially, in the ground
state, spins along one of the three lattice directions are ferro-
magnetically aligned: For η = 0, this is the x̂ direction which
connects 
S1 to 
S2 and 
S3 to 
S4. The particular direction of such
correlations is selected at this nematic transition, even though
the spins themselves do not order until T = 0; this is a Z3

bond order.

B. Noncollinear phase II

For J ′ < J1, the B sublattice cone flips with θB = π − θA

and consequentially, the C spins become planar, as shown in
Fig. 18, with θC = π/2. There is no longer any net moment.
Otherwise, the structure of this phase is identical, with the
same pairs of spins on each sublattice with a free classical
angle η between them. The classical energy is

Enc2[J2, J
′] = J2(1+4 cos 2θA)−2 cos2 θA−2J ′ sin θA−1

where θA = sin−1

[
J ′

8J2 − 2

]
. (28)

There is still a striped pattern of chirality for nonzero η, as
shown in Fig. 19(b); here, the form of the chiralities given in
Eq. (26) is identical, with θC = π/2 and some sign changes
due to the inversion of the B cone, as indicated in the figure.
Again, there is no uniform chirality, and this phase also
possesses an identical Z3 nematic order.

C. Spin wave calculations and order by disorder

In this section, we consider the effect of both quantum and
thermal fluctuations on the two noncollinear phases. These
two phases behave quite similarly, and so we mostly focus
on noncollinear I. First, we develop the linear spin-wave
theory for the noncollinear phases with η = 0. We also run
classical Monte Carlo to show that thermal fluctuations select
the coplanar state. While there is no magnetic order at finite
temperatures, there is a nematic phase transition where the
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FIG. 19. (a) For η = 0, noncollinear I has a striped pattern of
chirality, as shown by the four values of chirality (±κ1,2) on nearest-
neighbor triangles, indicated with four colors. Each hexagon has a
distinct sign of chirality, which is arranged in a collinear pattern. (b)
Noncollinear II similarly has a striped pattern of chirality, with κ1

corresponding to θC = π/2 in Eq. (26) while the zero chirality comes
from the antiparallel orientation of spins A1 and B3 and also A2 and
B4 as shown in Fig. 18. The flipping of the signs of κ1 is also due
to the opposite orientation of the A and B cones. (a) Chirality for
noncollinear I, (b) chirality for noncollinear II.

stripes of ferromagnetic spins choose to run along one of the
three lattice directions.

1. Spin wave theory

In this section, we give the details of our linear spin-wave
calculation for η = 0. In this simplified case, two sets of
spins are equivalent: 
S1 = 
S2, 
S3 = 
S4, 
Sα = 
Sβ , and 
Sγ = 
Sδ ,
and so we can use six sublattices, instead of twelve. As we
have six sublattices, we require six Holstein-Primakoff (HP)
bosons. We define a local triad of orthonormal vectors for each
sublattice; these triads are related by rotations in the conical
space defined by the angles θA(θC ) (Figs. 16 and 18) for these
noncollinear phases. A given spin operator can be expressed
as


Sm =
∑

i

S̃m,iti,m, (29)

where the ‘tilde’ on the spin components emphasizes the fact
that these are defined in the local basis t and m is a sublattice
index. The local bases are defined as

ti,m = R(θm)ei , (30)

with e = (ex, ey, ez) and R the appropriate rotation matrix;
for example, for 
S1, we have

R =
⎛
⎝ cos θm 0 sin θm

0 1 0
− sin θm 0 cos θm

⎞
⎠. (31)

The spin components are then Fourier transformed via

S̃m,i (r) = 1√
N

∑
q

S̃m,i (q)eiq·r. (32)

The Hamiltonian in Fourier space then becomes

H = J1

∑
i, m, n,

δδδAB, q, q′

S̃A
m,i (q)S̃B

n,i (q
′)ti,mti,nei(q+q′ ).reiq′.δδδAB

+ J2

∑
i, m, n, η

δδδ2, q, q′

S̃
η

m,i (q)S̃η

n,i (q
′)ti,mti,nei(q+q′ ).reiq′.δδδ2

+ J ′ ∑
i, m, n, η′
δδδC, q, q′

S̃
η′
m,i (q)S̃C

n,i (q
′)ti,mti,nei(q+q′ ).reiq′.δδδC , (33)

where i = (x, y, z); m, n run over the sublattice indices: {1, 2}
for AB and {α, β} for C; δδδAB , δδδ2, and δδδC represent the nearest
neighbors of type J1, the second nearest neighbors, and the
nearest neighbors of type J ′, respectively. Finally, η labels the
original sublattice indices: A, B, and C, while η′ only includes
A and B.

We then use a HP representation in real space

S̃+
m (r) =

√
2S − b

†
m(r)bm(r)bm(r)

S̃−
m (r) = b†m(r)

√
2S − b

†
m(r)bm(r)

S̃z
m(r) = S − b†m(r)bm(r), (34)

expand for S � 1 and Fourier transform,

S̃x
m[q] =

√
S

2
(b†m[−q] + bm[q]) + O

(
1

S2

)

S̃y
m[q] = i

√
S

2
(b†m[−q] − bm[q]) + O

(
1

S2

)

S̃z
m[q] =

∑
k

−b†m[k − q]bm[q]/
√

N +
√

NSδq,0, (35)

where N is the number of sites. This representation is then
substituted into the above Hamiltonian, and the O(S) terms
extracted. The resulting quadratic Hamiltonian is then diago-
nalized via a Bogoliubov transformation. This transformation
is most straightforwardly done by doubling the size of the
matrix using the basis,

X[q] = (b1[q], b2[q], . . . , b6[q], b†1[−q], . . . , b†6[−q]).

(36)
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The form of the Hamiltonian in the Fourier space is

H =
∑

q

X†[q]H (q )X[q], (37)

where H (q ) =
(

F [q] G[q]
G∗[−q] F ∗[−q]

)
.

F [q] defines the coefficients of terms of the form b
†
m[q]bn[q],

while G[q] collects coefficients of terms like b
†
m[q]b†n[−q].

Due to the large size of the magnetic unit cell, we do this
extraction with the aid of a noncommutative algebra package
in Mathematica [68]. The Bogoliubov transformation is then
done by diagonalizing gH instead of H, where g is the
12 × 12 matrix,

g =
(
16 0
0 −16

)
. (38)

The eigenvalues of gH (q ) give us six bands with dispersion
±ωqλ, λ = 1, . . . 6. In order to calculate the critical spin, we
also need the transformation matrix to convert between the
original bosons and the emergent spin waves. These satisfy

T gT † = g

T −1gHT = gD, (39)

where the first condition ensures bosonic commutation rela-
tions are always satisfied, and the second condition ensures
that T diagonalizes gH to obtain the diagonal matrix gD of
ωqλ. If there are degenerate eigenvalues, one must be more
careful [69], but these transformation matrices can still be
obtained.

A representative spin wave dispersion for noncollinear I
is shown in Fig. 20, plotted in the new rectangular Brillouin
zone from � to M = (π/

√
3a, π/a) to X = (0, π/a). There

are six distinct bands, with four zero modes: one linear and
one quadratic mode at the � point and two linear modes
at the corner of the Brillouin zone, M . The three linear
modes are Goldstone modes associated with the complete
breaking of the SO(3) continuous symmetry by noncollinear
order. The quadratic mode is a zero mode associated with the
classical degeneracy in η; as this degeneracy is lifted with
1/S corrections, this is an “accidental” classical degeneracy.
Such a mode is also found in the collinear phase [67] and is
an artifact of the O(S) expansion; further 1/S corrections are
expected to gap it out.

2. Critical spin

We can examine the reduction of the ordered moment due
to quantum and thermal fluctuations for η = 0. This reduction
is given by

δS = 1

6N

∑
r,m

〈b†m(r)bm(r)〉

= 1

6N

∑
q,m

〈b†m[q]bm[q]〉. (40)

FIG. 20. Spin wave dispersion for noncollinear phase I for η = 0,
which is selected via order by disorder. (a) shows both the original
hexagonal Brillouin zone with the three sublattices and the new
rectangular Brillouin zone for this six site unit cell. As this six site
unit cell derives from the collinear phase, there are linear modes
at each of the M points of the original Brillouin zone: one at the
reciprocal lattice vectors of the new Brillouin zone (Qcoll, indicated
by red circles) and two at the corners (indicated by red squares). (b)
shows the spin wave dispersion. In total, there are three Goldstone
modes, as expected for noncollinear orders. There is also a quadratic
mode at � associated with the accidental classical degeneracy in η

that will be gapped out by 1/S corrections [67]. (a) New and old
Brillouin zones, (b) spin wave dispersion.

As these are the original bosons b, we use the transformation
matrices T to rewrite,

δS = 1

2

(
1

6N

∑
q

∑
n

[T †T ]nn − 1

)
. (41)

When δS � S, the ordered moment 〈S〉 is completely sup-
pressed, and we define the critical spin, Sc = δS that sepa-
rates magnetic order for S > Sc from an unknown quantum
disordered phase. In Fig. 21, we plot the critical spin along
a path that traverses both noncollinear phases. There is a
sizable region near the triangular limit where Sc > 1/2, and
a quantum disordered phase is expected, at least in linear
spin wave theory. Thus we expect the spin liquid found
surrounding the triangular lattice critical point to extend into
a substantial region away from the triangular limit.
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FIG. 21. Critical spin for the noncollinear phases, along the
parametric path defined in Fig. 17(b) and shown in the inset. There is
a substantial region around the triangular lattice critical point where
Sc > 1/2, and we naively expect a quantum disordered state in this
region, as is found on the triangular lattice line.

3. Finite temperatures: Order by disorder and nematicity

We next turn to a classical Monte Carlo analysis at finite
temperature, where we see that thermal fluctuations select the
coplanar value, η = 0 of the free angle, and also see that a
nematic order parameter develops at a finite temperature. In
order to evaluate η straightforwardly, we consider only the
nematic order parameter for the AB sublattices,

Nab = 3

2N

∑
i∈AB

〈
Si · 
Si+a1〉 + 〈
Si · 
Si+a2〉e
2πi

3

+〈
Si · 
Si+a2−a1〉e
4πi

3 , (42)

where i now sums over only the AB spins, and N is the total
number of sites. Here, 〈· · · 〉 is the usual thermal average.

We focus on a single point in the middle of the noncollinear
I phase, (J2/J1 = 0.28, J ′/J1 = 1.6), but expect the results
to be generic to both phases. We use a lattice of 10 × 10 unit
cells at a temperature Tmin = 10−2. To avoid problems with
equilibration, we use parallel tempering with 3200 replicas
with a temperature schedule such that replica i has tempera-
ture Tmin(1.01)i . As the data will contain snapshots with all
three values of the nematic order parameter, we calculate the
Monte Carlo average of its modulus squared, 〈|Nab|2〉. In the
thermodynamic limit, this quantity is zero above the nematic
transition and at T = 0 becomes

〈|Nab|2〉(T = 0) = 1
2 (5 + 3 cos 2η) sin4 θA. (43)

For this point, θA = 1.144 rad, and for η = 0, 〈|Nab|2〉 →
2.747 as T approaches zero. 〈|Nab|2〉 is shown as a function
of temperature in Fig. 22, where it turns on at TN = J1/4 and
clearly limits to 2.747 as T → 0.

As expected, thermal fluctuations force both noncollinear
phases to be coplanar. In addition, while thermal fluctuations

FIG. 22. 〈|Nab|2〉 as a function of temperature for a lattice
of 10 × 10 unit cells at J2/J1 = 0.28, J ′/J1 = 1.6. The nematic
phase transition is seen at TN = J1/4, with some broadening due to
the finite system size. As T → 0, the 〈|Nab|2〉 approaches the line
4 sin4 θA = 2.747, indicating that the coplanar η = 0 classical angle
is selected.

immediately melt the continuous magnetic order parameter,
the nematic order parameter survives. One might expect such
a nematic order to also survive when quantum fluctuations
melt these phases into a quantum spin liquid, and some
signatures of such a nematic spin liquid have been seen on
the triangular lattice limit [26,27].

IX. CONCLUSION

We have established the complete ground state classical
phase diagram of the stuffed honeycomb lattice, which inter-
polates between the known honeycomb, triangular, and dice
lattice limits. We find a wide variety of noncollinear and even
noncoplanar phases and reveal the transition between 120◦
and collinear order on the triangular lattice to be a multicritical
point where four phases intersect. We have examined the
structure and fluctuations of the two additional phases and
propose that the triangular lattice spin liquid extends into a
substantial region in the stuffed honeycomb phase diagram.
Future work will address the possible existence and nature of
this spin liquid region.
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