
PHYSICAL REVIEW B 98, 134415 (2018)

Observation of collinear antiferromagnetic domains making use of the circular dichroic
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The circular dichroic charge-magnetic interference effect in resonant x-ray diffraction (RXD) is reported for
antiferromagnetic (AFM) materials. The polarization dependence of the scattering cross-section was formulated,
and the conditions that the interference gives rise to circular dichroic RXD signals for AFM materials were
clarified. By using the interference effect, a pair of AFM domains can be distinguished in certain conditions. We
applied this effect to observe collinear chirality AFM domains in a high-temperature magnetoelectric hexaferrite,
Ba1.3Sr0.7CoZnFe11AlO22. Despite its collinear spin arrangement and absence of macroscopic magnetization, the
domains are clearly visualized by a circularly polarized x-ray beam. The present result shows that various types
of AFM domains including collinear ones can be examined by utilizing the charge-magnetic interference effect,
together with the well-established circular dichroism on RXD emerged from pure magnetic scattering.
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I. INTRODUCTION

Antiferromagnetism is defined as ordered magnetism in
which the macroscopic magnetization is cancelled out due
to the microscopic spin motifs. Recent scientific and tech-
nological developments on magnetism enhance the signifi-
cance of antiferromagnetic (AFM) materials in several top-
ics such as exchange bias [1] and magnetoelectric effect
[2]. As in ferromagnetic materials, which possess macro-
scopic magnetization and are widely used in technologi-
cal applications, the understanding and the manipulation of
magnetic domains in AFM materials are crucial for the
above-mentioned functionalities. As illustrated in Fig. 1, four
types of AFM domains are known to emerge by symmetry
breakings in AFM ordering: (i) configuration domains by
translational symmetry breaking [Fig. 1(a)], (ii) orientation
domains by rotation symmetry breaking [Fig. 1(b)], (iii) 180°
domains by time-reversal symmetry breaking [Fig. 1(c)], and
(iv) chirality domains by space-inversion symmetry breaking
[Fig. 1(d)] [3–5].

Due to the absence of macroscopic magnetization in AFM
materials, most of conventional techniques for the observation
of ferromagnetic domains cannot be applied to that of AFM
ones. However, several experimental techniques for the ob-
servation of AFM domains have been developed to date. For
example, the configuration domains have been successfully
visualized by photoemission microscope using x-ray magnetic
linear dichroism [6,7] and neutron diffraction topography [8].
The orientation domains have been observed by photoemis-
sion microscopy using x-ray magnetic linear dichroism [9].
In comparison to the observation of these AFM domains,
which give rise to separate magnetic reflections and/or trivial

*ueda@crystal.mp.es.osaka-u.ac.jp

linear-polarization-dependent signals between a pair of do-
mains, other techniques are needed for the observation of 180°
domains and chirality domains. A few experimental tech-
niques have been elaborately developed for the observation of
these domains so far. The 180° domains have been visualized
by polarized neutron diffraction topography [10,11] and opti-
cal second harmonic generation [12]. The chirality domains
have been also observed by polarized neutron diffraction
topography [13], optical second harmonic generation [14],
and resonant x-ray microdiffraction [15–17].

Among these techniques, resonant x-ray microdiffraction
technique has advantageous merits in terms of (i) high spatial
resolution by using light-focusing setup, (ii) element speci-
ficity by tuning the energy of photons at the resonance of the
focused element, and (iii) selective observation of multiple
types of AFM domains with different diffraction conditions.
When circularly polarized x-rays are utilized as primary
beams, circular dichroic signals in resonant x-ray diffraction
(RXD) arise through pure magnetic scattering process in some
magnetic materials. The dichroic part in diffracted intensity
depends on the sign of spin helicity in their magnetic structure.
Thus chirality domains in noncollinear helimagnetic materials
have been observed by the RXD technique through pure mag-
netic scattering [15–17]. However, it is not evident whether
a pair of collinear AFM domains between which the local
magnetic moments are antiparallel (e.g., 180° domains in a
simple ↑↓↑↓ spin arrangement) can be distinguished or not
through RXD.

In this paper, we show that “a charge-magnetic interference
effect” in RXD is responsible for circular dichroic cross-
section of AFM materials. In comparison with the circular
dichroism due to the pure magnetic scattering, that due to
the interference effect in RXD has been much less dis-
cussed so far. Here, we reveal that the interference effect
causes the circular dichroic RXD signals even in collinear
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FIG. 1. Schematics of four different antiferromagnetic (AFM)
domains: (a) configuration, (b) orientation, (c) 180°, and (d) chirality
domains. Here, k is the AFM wave vector in each domain. Green cir-
cles and gray arrows denote magnetic atoms and magnetic moments,
respectively.

AFM materials. Furthermore, we propose to adopt this effect
to the visualization of AFM domain structures in collinear
antiferromagnets such as collinear chirality domains in a
Y-type hexaferrite, Ba1.3Sr0.7CoZnFe11AlO22, showing a
high-temperature magnetoelectric effect [18–21].

II. SAMPLE AND EXPERIMENTS

A. Structure and magnetic property of
Ba1.3Sr0.7CoZnFe11AlO22

Y-type hexaferrites, (Ba, Sr)2Me2Fe12O22 (Me =
divalent transition metal), are nowadays well-known in
the field of multiferroics because they often exhibit
high-temperature magnetoelectric effects ascribed to their
complex spiral magnetic structures stabilized even at room
temperature [22]. The crystal structure of Y-type hexaferrite
belongs to the space group R3̄m (a ≈ 5.86 Å and c ≈ 43.4 Å
in the hexagonal setting). Complex magnetic structures in
Y-type hexaferrites are generally described by separating the
crystal structure into large (L) and small (S) spin blocks,
which are alternately stacked along the c axis [Fig. 2(a)].
Most of former studies on the hexaferrites assume that
magnetic moments within each block are collinearly aligned
[22]. In Ba1.3Sr0.7CoZnFe11AlO22 with the Y-type structure,
a sharp peak anomaly showing the presence of a magnetic
phase transition was seen at T ∗ ≈ 366 K in the temperature
dependence of magnetization [23], and two types of magnetic
satellite peaks, incommensurate (0 0 3 ± δ) [δ ≈ 0.9]
and commensurate (0 0 3 + 1.5), were observed in the
diffraction profiles at room temperature [18,20]. Based on
the approximation of the magnetic structure using the blocks
and the presence of two distinct magnetic propagation vectors
k1 = (0, 0, δ) and k2 = (0, 0, 1.5), the room-temperature
magnetic structure of Ba1.3Sr0.7CoZnFe11AlO22 has been
discussed in the framework of the so-called alternating
longitudinal conical (ALC) structure [Fig. 2(b)]. This
magnetic structure is composed of both the in-plane
incommensurate helical component shown in Fig. 2(c)

FIG. 2. (a) Crystal structure of Ba1.3Sr0.7CoZnFe11AlO22, which is composed of alternating stacks of large (L) and small (S) spin blocks.
Here, Me = Fe, Al, Co, and Zn. (b) Revised model of the alternating longitudinal conical (ALC) structure of Ba1.3Sr0.7CoZnFe11AlO22.
The ALC structure can be divided into two types of the antiferromagnetic (AFM) components illustrated in (c) and (e). The respective AFM
components form pairs of helical domain [(c) L and (d) R] and up-up-down-down collinear AFM domain [(e) − P and (f) + P ]. In the
formerly proposed model of the ALC structure [18], the length of blue arrows representing the c-axis component of each magnetic S block in
(e) and (f) are zero, and the collinear component gives rise a pair of time-reversed 180° domains [±l]. Red circles and gray thick arrows in (e)
represent expected shifts of pseudo-atomic positions and resulting lattice modulations with the propagation vector k2.
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FIG. 3. (a) A rocking curve of the diffracted intensity of the
(0 0 57) Bragg reflection measured by using Cu Kα radiation. The
red curve is the Gaussian fitting. (b) A schematic view of the
experimental setup for the diffraction measurements. The Cartesian
coordination is used to describe the magnetic form factor. The
z-x plane is a scattering plane, and the z axis is parallel to the
scattering vector q̂ − q̂ ′. Here θ denotes the Bragg angle, σ (σ ′) and
π (π ′) components are perpendicular and parallel to the scattering
plane, respectively. RCP and LCP represent right- and left-handed
circularly polarized states, respectively.

[or 2(d)] and the out-of-plane commensurate collinear AFM
component. The detail of the later component is controversial,
and two different model structures have been proposed. In
the first model, called as formerly proposed model in this
paper, there is no net moment in the S block [see Fig. 2(e)
or 2(f) without the blue arrows, which represent the c-axis
component of the magnetic moment of the S block] [24,25].
The collinear AFM component is simple ↑↓↑↓ arrangement.
On the other hand, in the second model, the S block has finite
c-axis component as shown in Fig. 2(e) [or 2(f)] [21]. The
collinear AFM component is ↑↑↓↓ arrangement. We call
this model as revised model hereafter. In this paper, observed
magnetic domain structures are discussed with these models.

B. Sample preparation

Single crystals of Ba1.3Sr0.7CoZnFe11AlO22 were grown
by a flux method using Na2O-Fe2O3 flux. The chemical
composition of the obtained crystals was determined by the
inductively coupled plasma atomic emission spectroscopy.
One of the crystals was cleaved along the ab plane at an
ambient condition and was used in RXD measurements. The
specimen used in this study is the same as that used in
Ref. [18] (thickness ≈0.5 mm) and has a fairly clean and flat
face normal to the c axis. Despite the presence of some steps
and cracks on the face, the flat region (≈0.2 × 0.25 mm2)
was utilized for the domain maps shown in this paper. The
full width at half maximum of the rocking curve for the
(0 0 57) Bragg reflection measured by using Cu Kα radiation
was ∼0.03◦ as shown in Fig. 3(a).

C. Resonant x-ray diffraction (RXD) measurements

The RXD measurements were performed by utilizing an
ultrahigh-vacuum diffractometer at beamline 17SU, SPring-8,
Japan [26]. The photon energy of incident x rays was tuned in
the vicinity of Fe L3 edge (=710 eV) by a grating apparatus.
The helicity of the circularly polarized x rays was switched by
electromagnets of an undulator and is described by the sign

of the so-called Stokes parameter P2. The polarization state
with P2 = +1(−1) corresponds to right- (left-) handed circu-
larly polarized x ray [27]. The incident beams were focused
into ∼30 μm (∼15 μm) in a horizontal (vertical) direction
by using Kirkpatrick-Baez configuration mirrors. For taking
domain maps, the sample position was moved by an XYZ

translation stage with 20 μm (25 μm) step in a horizontal
(vertical) direction. The cleaved specimen was mounted on
the diffractometer so that the c axis was in the scattering
plane. The diffraction geometry is illustrated in Fig. 3(b). The
experimental setup is the same with that in Ref. [17], which
describes more details.

The long c-axis length (=43.44 Å) of
Ba1.3Sr0.7CoZnFe11AlO22 is suitable for RXD study using
soft x-ray with long wavelength (λ = 17.45 Å at the Fe L3

edge) because it allows us to access the (0 0 3) Bragg
reflection providing the information about the quality of the
specimen within the range of the surface where the soft x-rays
can penetrate. As reported in Ref. [18], the homogeneous
two-dimensional intensity map of the (0 0 3) Bragg reflection
confirms uniform crystallographic quality and surface state of
the specimen used in this study. The penetration depth ξ of the
incident beam into the specimen was estimated from the full
width at half maximum �Q of the (0 0 3) Bragg reflection.
By using the relation ξ = 2π/�Q, where the unit of �Q

is the reciprocal nanometer, the obtained penetration depth
at the Fe L3 edge is ξ ≈ 60 nm. The �Q of the magnetic
satellite peaks, (0 0 3 + δ) and (0 0 3 + 1.5), is comparable
with that of the (0 0 3) Bragg reflection. This shows that the
coherence lengths of the magnetic structure are larger than ξ .

III. GENERAL RESONANT CROSS-SECTION WITH
CIRCULARLY POLARIZED X RAYS

The cross-section of RXD for magnetic materials including
antiferromagnets with the incident polarized x-ray beams
is generalized from that for ferromagnets [28]. Details of
its derivation are given in Appendix A. We begin with the
resonant dipole-transition scattering length for a single atom:

fatom = −(ε′ · ε)

[
f0 +

(
3

4πq

)(
F 1

−1 + F 1
+1

)]

−
(

3

4πq

)
i(ε′ × ε) · m

(
F 1

−1 − F 1
+1

)
−

(
3

4πq

)
(ε′ · m)(ε · m)

(
2F 1

0 − F 1
−1 − F 1

+1

)
+ ε′ · T · ε, (1)

where ε and ε′ are the polarization unit vectors of the incident
and scattered x rays, respectively, and f0 denotes the Thomson
charge scattering. F 1

ν , m, and q are the atomic properties of
the dipole transition, the unit vector directing parallel to the
magnetic moment, and the wave number of the incident x rays,
respectively. T in the fourth term is a tensor representing site-
symmetry dependent anisotropic scattering length, i.e., the
anisotropy tensor susceptibility (ATS) scattering length. We
here neglect this term for simplification because polarization
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dependence of ATS scattering depends on the respective case
of a crystal: the space group and the index of the reflection
[29,30]. The third term which is quadratic of m basically
produces second-harmonic magnetic satellites. Therefore we
can neglect this term as long as first-harmonic magnetic
satellites are discussed except for specific conditions imposed
in a magnetic structure [31]. Such particular situations are
detailed in Appendix B.

The first term in Eq. (1) represents the non-magnetic charge
and resonant scatterings, while the second term denotes the
resonant magnetic scattering. The sum of fatom with its phase
for each atom located at Rj in a crystal gives the total resonant
scattering length f . At the scattering vector τ (=q − q ′,
where q and q ′ are the wave vectors of incident and scattered
beams, respectively), f is written as

f = a(ε′ · ε) + bFm · (ε′ × ε), (2)

where a{=−�j [f0+3/(4πq )(F 1−1+F 1+1)] exp(iτ · Rj )} is
a crystal structure factor and b[= − 3/(4πq )i(F 1−1 − F 1+1)]
is a coefficient. Fm[=�j mj exp(iτ · Rj )] is defined as a mag-
netic form factor [28]. Note that Fm has complex components
in general because we consider arbitrary magnetic structures.
By calculating the formulated polarization-dependent cross-
section (See Appendix A), the circular dichroic terms in the
resonant cross-section are obtained as

dσ

d� circ
= −P2Im(a∗bFm) · (q̂ + q̂ ′ cos 2θ )

+P2|b|2Im{[Fm · (q̂ ′ × q̂ )](Fm
∗ · q̂ ′)}. (3)

Here, q̂ and q̂ ′ are the unit vectors directing parallel to
the incident and scattered beams, respectively, as shown in
Fig. 3(b), and θ is the Bragg angle. The first term in Eq. (3)
represents the circular dichroic charge-magnetic interference
term, while the second term denotes the circular dichroic pure
magnetic scattering intensity. Details of the derivation includ-
ing the cases with different polarization states are described in
Appendix A.

The first term in Eq. (3), i.e., the circular dichroic charge-
magnetic interference term, is quite unique because it is
proportional to both a and Fm, which is in contrast with the
second term, i.e., the magnetic scattering term with a quadratic
of Fm. Therefore the interference term is sensitive for the rel-
ative sign reversal of a and Fm. This means that a pair of mag-
netic domains with the opposite sign of Fm is distinguishable
when a magnetic form factor (Fm) superimposes at the same
reflection point with a finite crystal structure factor (a), such
as on a crystallographic Bragg reflection, and the sign of a

remains unchanged under the time-reversal operation. One of
such pairs of domains is ferromagnetic domains [32,33], but
this effect is also applicable for time-reversed 180° AFM ones
[the simplest case is ↑↓↑↓ (+l state) and ↓↑↓↑ (−l state)
collinear spin arrangements]. Therefore the interference effect
can be responsible for circular dichroic RXD signals even in
collinear antiferromagnets.

IV. APPLICATION TO MAGNETIC STRUCTURE
OF Ba1.3Sr0.7CoZnFe11AlO22

A. Circular dichroic RXD and observed magnetic domain
structures in Ba1.3Sr0.7CoZnFe11AlO22

We apply the discussion above to the observation of AFM
domain structures in a magnetoelectric Y-type hexaferrite,
Ba1.3Sr0.7CoZnFe11AlO22 [18–21]. In the previous study of
resonant x-ray microdiffraction on Ba1.3Sr0.7CoZnFe11AlO22,
circular dichroic RXD signals have been observed at both the
incommensurate (0 0 3 + δ) and commensurate (0 0 3 + 1.5)
reflections, which allow us to obtain spatial distributions of
two pairs of AFM domains, selectively [18].

Typical domain structures obtained by the respective re-
flections at the same sample area are displayed in Fig. 4.
Figures 4(a) and 4(b) display the two-dimensional maps of
RXD intensities I+ and I−, respectively, at the incommen-
surate reflection. Here the subscript denotes the sign of P2

in the primary beams. In Figs. 4(d) and 4(e), those at the
commensurate reflection are shown. In Figs. 4(c) and 4(f),
the two-dimensional maps of the flipping ratio (FR) defined
as a normalized difference between RXD intensities, (I+ −
I−)/(I+ + I−), are plotted for (0 0 3 + δ) and (0 0 3 + 1.5),
respectively. Comparing Figs. 4(c) and 4(f), we find that these

FIG. 4. Two-dimensional intensity profiles of [(a) and (b)]
the incommensurate (0 0 3 + δ) and [(d) and (e)] commensurate
(0 0 3 + 1.5) reflections taken at 300 K and 0 T. These measurements
were carried out with x rays at 710.2 eV for (0 0 3 + δ) and 709.7 eV
for (0 0 3 + 1.5) where large asymmetries in diffracted intensities
between right- and left-handed incident circularly polarized beams
were observed. The spatially modulated profiles in the incommen-
surate and commensurate reflections represent the presence of (c)
helical and (f) up-up-down-down AFM domains, respectively, which
are visualized by plotting the flipping ratio (FR, see text). The
profiles of (a) and (d) [(b) and (e)] were obtained by right- [left-]
handed circularly polarized x rays. Red and blue regions correspond
to the areas where high (+) and low (−) diffracted intensity (FR)
were detected.
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FIG. 5. Energy profiles of the integrated intensity of the in-
commensurate (0 0 3 + δ) (top) and commensurate (0 0 3 + 1.5)
(middle) reflections measured around the Fe L3 edge at 300 K. After
subtracting fluorescence backgrounds of 2θ/θ scans measured at dif-
ferent photon energies, integrated intensities were obtained and plot-
ted as functions of photon energy. The data of the incommensurate
reflections are vertically shifted by 2 a.u. to enhance the visibility.
Red (I+) and blue (I−) solid circles denote the data obtained by
using right- and left-handed circularly polarized x rays, respectively.
A black thick line (bottom) represents the x-ray absorption spectrum
(XAS). Black thin lines and a double-headed arrow are guides to see
the detailed structure of each spectrum.

two types of domain structures are obviously uncorrelated.
This experimental result is consistent with that reported in
Ref. [18]. The domains obtained by mapping of the circular
dichroic incommensurate reflections were assigned to the
helical domains (L and R) [Figs. 2(c) and 2(d)] classified into
the chirality domains as in other hexaferrites [17,34]. In later
sections, our discussion focuses on the origin of the magnetic
domains observed by using the commensurate reflection.

The energy profile of the commensurate reflection is sim-
ilar to that of the x-ray absorption spectrum (XAS) with
a minor difference in the peak energies, while that of the
incommensurate reflection is quite different from that of the
XAS (see Fig. 5). This indicates that the energy dependent
factor of the commensurate reflection is similar to that of
the XAS but different from the incommensurate reflection.
XAS is dominated by the attenuation coefficient which is
proportional to the imaginary part of scattering length f ′′ =
Im(F 1

−1 + F 1
+1) in antiferromagnets [28]. On the other hand,

the circular dichroic term in the cross-section at the incom-
mensurate (0 0 3 + δ) reflection, which is ascribed to the
well-established pure magnetic scattering [the second term in
Eq. (3)], is described by

dσ

d�

+(−)

IC
∝ +(−)P2 cos θ sin 2θ

(
F 1

−1 − F 1
+1

)2
(4)

for R (+) and L (−) helical domains as shown in Ref. [17].
The energy dependence is dominated by the factor of
(F 1

−1 − F 1
+1)2, and shows a dip-like structure at the low energy

from the main peak in the XAS as reported in Ref. [34]. The
energy dependence of RXD owing to the charge-magnetic
interference effect is described by the factor of (F 1

−1 +

F 1
+1) (F 1

−1 − F 1
+1) (∝ a∗b) from Eq. (3). Here we neglect

nonresonant charge scatterings. The similarity of the profile
of the commensurate reflection with the XAS is reasonably
explained by the same energy dependent factor (F 1

−1 + F 1
+1)

with the condition that the circular dichroic RXD signal on the
commensurate reflection is ascribed to the charge-magnetic
interference effect. Note that lattice modulations characterized
by the wave vectors k1 = (0, 0, δ) and k2 = (0, 0, 1.5) are
present, which was revealed by an electron diffraction mea-
surement [18]. Therefore the crystal structure factor a is finite
at (0 0 3 + 1.5), and the interference can give rise to a circular
dichroic RXD signal. The lattice modulation makes nonres-
onant charge scatterings nonzero at (0 0 3 + 1.5). However,
since the lattice modulations are very small, the contribution
of the nonresonant charge scatterings to the reflection is far
weaker than that of the resonant ones. Thus a main contri-
bution of the (0 0 3 + 1.5) reflection studied here is resonant
scatterings.

B. Calculation of circular dichroic signals with formerly
proposed magnetic structure

Here we calculate the formulated resonant cross-section
obtained as Eq. (3) with the formerly proposed model of the
ALC structure, and discuss the origin of the magnetic domains
observed by mapping of the commensurate reflection. The
structure consists of the in-plane helical component and the
out-of-plane collinear AFM component lying only in the L
blocks. The former component gives rise to a pair of helical
domains [Figs. 2(c) and 2(d)], and the circular dichroic signal
is ascribed to the pure magnetic scattering intensity [the
second term in Eq. (3)]. The later component gives rise to a
pair of time-reversed 180° AFM domains (±l). [The lengths
of each blue arrow showing the c-axis component of the S
block in Figs. 2(e) and 2(f) are zero as remarked in Sec. IIA].
The formerly proposed model was adopted in the previous
study [18], and the observed domains were assigned to be the
time-reversed 180° AFM domains.

To calculate the circular dichroic RXD signal at
(0 0 3 + 1.5), we at first construct a magnetic structure factor
Fm with the scattering vector τ = (0, 0, 3 + 1.5). Since the
incommensurate helical component shown in Fig. 2(c) [or
2(d)] does not contribute to the commensurate reflection, we
consider only the commensurate component. Assuming that
a net magnetic moment along the c axis in each block is
placed at the center of each block (z = 0, c/6, c/3, c/2) as
tabulated in Table I, one finds

Fm =
∑

j

mj eiτ ·Rj = 2(0, 0, ∓iμL).

Here, μL is defined by the collinear component in the L block
(see the caption of Table I for explanation), and upper and
lower signs correspond to a pair of the time-reversed 180°
domains shown in Figs. 2(e) and 2(f) (note that net moment
is zero on each S block).

The second term in Eq. (3), namely, the pure magnetic
contribution, becomes zero at (0 0 3 + 1.5) because of the
orthogonal relation between Fm and q̂ ′ × q̂. By contrast, it
is possible that the charge-magnetic interference term [the
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TABLE I. The magnetic moments corresponding to the commensurate components in the respective blocks of the formerly proposed and
revised alternating longitudinal conical structures. The positions of the moments in the unit cell along the c axis are also shown. Here the
number at each block denotes the order from the bottom side in the crystal structure shown in Fig. 2(a), and μL(S ) is the sum of the unit
vectors along the c axis of each magnetic moment in an L (S) block. The upper and lower signs correspond to the magnetic structures shown
in Figs. 2(e) and 2(f), respectively.

Magnetic moments in the formerly proposed Magnetic moments in the revised Positions
model of ALC structure model of ALC structure

S1 block (0, 0, 0) (0, 0, μS ) 0
L1 block (0, 0, ±μL) (0, 0, ±μL) c/6
S2 block (0, 0, 0) (0, 0, −μS ) c/3
L2 block (0, 0, ∓μL) (0, 0, ∓μL) c/2

first term in Eq. (3)] contributes to the circular-polarization
dependence of the RXD signal at (0 0 3 + 1.5) as discussed
in the previous section because of the presence of a lattice
modulation [18]. Such a lattice modulation makes the crystal
structure factor a nonzero at (0 0 3 + 1.5), which is necessary
for the charge-magnetic interference effect to be finite. Al-
though the strict value of a at (0 0 3 + 1.5) is unknown so far
due to the small magnitude of the distortion, we schematically
illustrate one of the simplest lattice distortions with the wave
vector k2 in Fig. 2(e). It is reasonably considered that the signs
of a are opposite to each other for the pair of the domains
shown in Figs. 2(e) and 2(f). This is because the time-reversal
operation is identical with the c/3 translation operation which
switches the directions of the local lattice distortion. Applying
these conditions to Eq. (3), we obtain the circular dichroic
term in Eq. (3):

dσ

d� circ
= −P2Im[2(±a∗)b(∓iμL)] ẑ · (q̂ + q̂ ′ cos 2θ )

= 2P2μLRe(a∗b) ẑ · (q̂ + q̂ ′ cos 2θ ), (5)

where ẑ is the unit vector along the c axis. Equation (5)
shows that a circular dichroic signal in RXD may arise
from the formerly proposed model of the ALC structure at
(0 0 3 + 1.5), but it should be homogeneous in the whole
sample region because the signs of a and μL are coupled. Thus
it is impossible to observe the time-reversed 180° domains in
the ALC structure through the charge-magnetic interference
effect. From the other point of view, because the time-reversal
operation is identical with the c/3 translation operation, the
difference between the time-reversed domains is in the origin
choice of the unit cell. However, it is apparent that such an
artificial choice does not affect the intensity calculation, and
therefore we fail to identify the observed domains as the
time-reversed 180° domains.

C. Calculation of circular dichroic signals with revised
magnetic structure

Here, we show that the circular dichroic signals and asso-
ciated magnetic domains are fully explained with the revised
model of the ALC structure, which is recently proposed [21].
The revised model is characterized by the collinear c-axis
components in both of the S and L blocks. Namely, the ALC
structure consists of the in-plane helical component [Figs. 2(c)
and 2(d)] and the out-of-plane collinear up-up-down-down

(↑↑↓↓) AFM component [Figs. 2(e) and 2(f)]. The latter
component alone breaks the space-inversion symmetry in
the Y-type structure (R3̄m) and induces electric polarization
along c as recently reported in Ref. [21]. This means that
the ↑↑↓↓ AFM domains are simultaneously ferroelectric
domains. Note that a pair of the ferroelectric ↑↑↓↓ domains
are not time-reversed 180° domains, but are transformed into
each other by the space-inversion operation. Namely, the
↑↑↓↓ AFM domains should be assigned as collinear chirality
domains. Through the exchange striction mechanism [35], the
↑↑↓↓ AFM domains can have the oppositely directed finite
polarization (±P ) along c. As a result, four possible magnetic
domains, [R, +P ], [L, +P ], [R, −P ], and [L, −P ], will
be present in the revised ALC structure.

Similar to the calculation for the formerly proposed model
of the ALC structure, we here calculate the circular dichroic
RXD signal for the revised model. From the net magnetic mo-
ments at the respective blocks tabulated in Table I, the mag-
netic form factor at the scattering vector τ = (0, 0, 3 + 1.5)
is assigned as

Fm =
∑

j

mj eiτ ·Rj = 2(0, 0, μS ∓ iμL).

Here, μS is defined in the same way with μL. The upper
and lower signs, which are defined as the relative sign reversal
of the magnetic moments in the L blocks against those in the
S blocks, correspond to a pair of the ↑↑↓↓ AFM domains
illustrated in Figs. 2(e) and 2(f), respectively. It is reasonably
considered that the sign of a is opposite between the pair of the
domains. This is because they are transformed into each other
by the space-inversion operation which switches the direction
of the local lattice distortion. By putting Fm into Eq. (3), the
circular dichroic RXD signal is obtained as

dσ

d� circ
= −P2Im[2(±a∗)b(μS ∓ iμL)] ẑ · (q̂ + q̂ ′ cos 2θ )

= 2P2[∓μSIm(a∗b)+μLRe(a∗b)] ẑ · (q̂ + q̂ ′ cos 2θ ).

(6)

Here, the upper and lower signs correspond to the do-
mains shown in Figs. 2(e) and 2(f), respectively. Note that
q̂ + q̂ ′cos2θ is not perpendicular to ẑ at the (0 0 3 + 1.5)
reflection, where θ ≈ 65◦ in the Y-type hexaferrite. Equa-
tion (6) clearly indicates that the diffracted intensity at
(0 0 3 + 1.5) depends on the ↑↑↓↓ AFM domains due to the
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charge-magnetic interference term, which allows us to visu-
alize the domain structure with the circularly polarized x-ray
beams.

One may find that a circular dichroic signal also arises
from the second term in the square brackets in Eq. (6)
[= μLRe(a∗b)] although this term is independent of ↑↑↓↓
AFM domains. If the contribution of this term is dominant in
Eq. (6), the map of FR shown in Fig. 4(f) little reflects the
↑↑↓↓ AFM domain structure. However, the maximum and
the minimum values of FR in Fig. 4(f) are +23% and −26%,
respectively, and are well distinguished. This indicates that the
contribution from the second term in the square brackets in
Eq. (6) is much smaller than that from the first term. Thus
we conclude that the FR map of the (0 0 3 + 1.5) reflection
[Fig. 4(f)] is almost a direct image of the ↑↑↓↓ collinear AFM
domains.

V. CONCLUSIONS

In summary, we have investigated the circular dichroic
charge-magnetic interference effect in resonant x-ray diffrac-
tion from antiferromagnetic materials. The resonant magnetic
scattering is interfered with not only the resonant charge
scattering but also the scattering by ATS, as implied in Eq. (1)
[36]. Such an interference effect also gives circular dichroic
signals and can be utilized for the observation of magnetic
domains, such as the time-reversed all-in-all-out magnetic
domains of the pyrochlore lattice [37]. It is also possible
to utilize a space-group-allowed charge scattering instead
of ATS scattering. Therefore the interference effect between
charge and magnetic scatterings in resonant conditions pro-
vides an opportunity for magnetic domain observation in vari-
ous magnetic systems. Besides, by utilizing the ferromagnetic
scattering with the propagation vector k = 0, the sign reversal
in a crystal structure factor, namely crystallographic antiphase
domains as well as ferroelectric domains, is also detected
through the interference effect in principle. This is similar to
the ferroelectric domain observation by using an interference
effect between the real and the imaginary parts in a crystal
structure factor with resonant conditions [38].

Our finding shows that various types of AFM domains
including collinear ones can be examined by utilizing
the charge-magnetic interference effect, together with well-
established circular dichroism on RXD emerged from the
pure magnetic scattering. X-ray microscopy using dichroic
resonant diffraction, combined with a light-focusing setup,
can approach in an element-specific way a resolution at the
scale of several tens of nanometer. It opens up a unique
and innovative way for nondestructive and selective investi-
gation of fine domain structures and their dynamics in various
magnetic materials.
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APPENDIX A: X-RAY BRAGG DIFFRACTION IN
MAGNETIC MATERIALS WITH ATOMIC RESONANCE

Here, we formulate the cross-section for the resonant x-
ray diffraction (RXD) from magnetic materials (including
antiferromagnets) by extending the derivation of the formula
for RXD from ferromagnets [28]. First, we introduce the gen-
eral resonant dipole-transition scattering length for a single
atom fatom, where the polarization unit vector of the incident
(scattered) x-ray beam is ε (ε′),

fatom = −(ε′ · ε)

[
f0 +

(
3

4πq

)(
F 1

−1 + F 1
+1

)]
−

(
3

4πq

)
i(ε′ × ε) · m

(
F 1

−1 − F 1
+1

)
−

(
3

4πq

)
(ε′ · m)(ε · m)

(
2F 1

0 − F 1
−1 − F 1

+1

)
+ ε′ · T · ε. (A1)

Here, f0 denotes the Thomson charge scattering length.
F 1

ν , m, and q are the resonant strengths of the dipole transition
with a change in magnetic quantum number ν, the unit vector
being directed parallel to the magnetic moment, and the wave
number of a photon, respectively. T is a tensor and represents
site-symmetry dependent scattering length. Namely, the last
term in Eq. (A1) is the anisotropy tensor susceptibility (ATS)
scattering. However, we here neglect this term for simplifica-
tion. The third term, which is quadratic in m, is analogous to
magnetic linear dichroism and basically produces the second-
harmonic magnetic satellites. We here neglect this term for
simplification, but show the calculated results with this term
in Appendix B. Only in specific conditions, the quadratic term
can contribute to the first-harmonic magnetic satellites [31].

The first term of Eq. (A1) represents the nonmagnetic non-
resonant and resonant charge scatterings, and the second term
shows the resonant magnetic scattering, which is responsible
for magnetic circular dichroism in ferromagnets. The total
resonant scattering factor for a crystal at the scattering vector
τ is given by

f = −
∑

j

eiτ ·Rj (ε′ · ε)

[
f0j +

(
3

4πq

)(
F 1

−1 + F 1
+1

)]

−
(

3

4πq

)
i
∑

j

eiτ ·Rj (ε′ × ε) · mj

(
F 1

−1 − F 1
+1

)
= −(ε′ · ε)(Fc + F ′

c + iF ′′
c )

−
(

3

4πq

)
i(ε′ × ε) · Fm

(
F 1

−1 − F 1
+1

)
. (A2)

Here, Fc[=�j exp(iτ ·Rj )f0j ] and (F ′
c+iF ′′

c ) [=(3/4πq )
�j exp(iτ · Rj )(F 1

−1 + F 1
+1) are nonresonant and resonant

components in a crystal structure factor, respectively.
Fm[=�j exp(iτ · Rj )mj ] is defined as a magnetic form fac-
tor [28]. Rj and mj represent the position and the unit
vector along the local magnetic moment of the atom at site
j , respectively. Note that Fm has complex components in
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general because we consider arbitrary magnetic structures.
The photon polarization dependence is given by

ε′ · ε =
(

σ ′ · σ σ ′ · π

π ′ · σ π ′ · π

)
=

(
1 0

0 q̂ ′ · q̂(= cos 2θ )

)
and

(A3)

ε′ × ε =
(

σ ′ × σ σ ′ × π

π ′ × σ π ′ × π

)
=

(
0 q̂

−q̂ ′ q̂ ′ × q̂

)
, (A4)

whose bases are perpendicular (σ and σ ′) and parallel (π and
π ′) to the scattering plane, where orthogonal conditions σ ×
π = q̂ and σ ′ × π ′ = q̂ ′ hold. Here θ is the Bragg angle,

and q̂ (q̂ ′) is the unit vector representing the direction of the
incident (scattered) beam. The scattering plane is spanned by
the vectors q̂ and q̂ ′. The diffraction geometry is shown in
Fig. 3(b).

Following the derivation given in Ref. [28], we simplify
Eq. (A2) as f = a(ε′ · ε) + bFm · (ε′ × ε) [a = −(Fc +
F ′

c + iF ′′
c ) and b = −3/(4πq )i(F 1

−1 − F 1
+1)]. Then f is writ-

ten as

f =
(

a bFm · q̂
−bFm · q̂ ′ a cos 2θ + bFm · (q̂ ′ × q̂ )

)
, (A5)

by using Eqs. (A3) and (A4). It is convenient to represent the
scattering process given in Eq. (A5), by employing the unit
(I) and Pauli (σ ) matrices,

f = Iβ + α · σ =
(

β + α3 α1 − iα2

α1 + iα2 β − α3

)
, (A6)

where α[=(α1, α2, α3)] and β are complex number coeffi-
cients. Here, f is called the scattering amplitude operator. The

expectation value of f †f gives the formulated polarization-
dependent cross-section dσ

d�
by taking the trace of μf †f with

the same bases in Eq. (A5). Namely,

dσ

d�
= α† · α + β∗β + β∗( P · α)

+ ( P · α†)β + i P · (α† × α). (A7)

Here, μ is the density operator of the polarization state
defined as

μ = 1
2 (I + P · σ ),

where P[=(P1, P2, P3)] is a vector possessing three real
number parameters, the so-called Stokes parameters [28]. The
polarization states with P1 = ±1 correspond to +45◦ (P1 =
+1) and −45◦ (P1 = −1) linearly polarized states, those with
P2 = ±1 correspond to right- (P2 = +1) and left- (P2 = −1)
handed circularly polarized states, and those with P3 = ±1
correspond to vertical (P3 = +1; σ ) and horizontal (P3 =
−1; π ) linearly polarized states. The first and second terms
in Eq. (A7) are independent of the polarization state described
by P , while the others depend on the polarization state.
Comparing Eqs. (A5) and (A6), some simple algebra gives
the following relations:

2β = a(1 + cos 2θ ) + bFm · (q̂′ × q̂ ),

2α1 = bFm · (q̂ − q̂ ′),

2α2 = ibFm · (q̂ + q̂ ′), and

2α3 = a(1 − cos 2θ ) − bFm · (q̂′ × q̂ ).

Using these relations, one derives the respective terms in
Eq. (A7). The polarization-independent terms are

α† · α = |α1|2 + |α2|2 + |α3|2 = 1
4 [2|b|2(|Fm · q̂|2 + |Fm · q̂ ′|2) + |a|2(1 − cos 2θ )2

− (a∗bFm + ab∗ Fm
∗) · (q̂ ′ × q̂ )(1 − cos 2θ ) + |b|2|Fm · (q̂ ′ × q̂ )|2] and (A8)

β∗β = 1
4 [|a|2(1 + cos 2θ )2 + (a∗bFm + ab∗ Fm

∗) · (q̂ ′ × q̂ )(1 + cos 2θ ) + |b|2|Fm · (q̂ ′ × q̂ )|2]. (A9)

Then the polarization-independent terms of the resonant cross-section are

dσ

d� 0
= |a|2

2
(1 + cos22θ ) + 1

2
(a∗bFm + ab∗ Fm

∗) · (q̂ ′ × q̂ ) cos 2θ + |b|2
2

(|Fm · q̂|2 + |Fm · (q̂ ′ × q̂ )|2 + |Fm · q̂ ′|2)

= |a|2
2

(1 + cos22θ ) + cos 2θRe(a∗bFm) · (q̂ ′ × q̂ ) + |b|2
2

(|Fm · q̂|2 + |Fm · (q̂ ′ × q̂ )|2 + |Fm · q̂ ′|2). (A10)

The first term is the pure charge scattering intensity including both resonant and nonresonant charge scatterings, the second term
is the charge-magnetic interference term, and the last term is the pure magnetic scattering intensity.

Next, the polarization-dependent terms of the resonant cross-section are discussed with three polarization states: P =
(P1, 0, 0), (0, P2, 0), and (0, 0, P3).

The case of P = (P1, 0, 0). The polarization-dependent terms in Eq. (A7) for the polarization state P = (P1, 0, 0) are

β∗( P · α) = 1
4P1{(1 + cos 2θ )a∗bFm · (q̂ − q̂ ′) + |b|2[Fm

∗ · (q̂′ × q̂ )][Fm · (q̂ − q̂ ′)]}, (A11)

( P · α†)β = 1
4P1{(1 + cos 2θ )ab∗ Fm

∗ · (q̂ − q̂ ′) + |b|2[Fm · (q̂ ′ × q̂ )][Fm
∗ · (q̂ − q̂ ′)]}, and (A12)
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i P · (α† × α) = 1
4P1((1 − cos 2θ )(a∗bFm + ab∗ Fm

∗) · (q̂ + q̂ ′) − |b|2{[Fm
∗ · (q̂ ′ × q̂ )][Fm · (q̂ + q̂ ′)] + [Fm · (q̂′ × q̂ )]

+ [Fm
∗ · (q̂ + q̂ ′)]}), (A13)

respectively. Summing up Eqs. (A11)–(A13), one obtains the linear dichroic (for the ±45◦ polarization states) terms in the
resonant cross-section:

dσ

d�P1

= 1

2
P1(a∗bFm + ab∗ Fm

∗) · (q̂ − q̂ ′ cos 2θ ) − |b|2
2

P1{[Fm · (q̂ ′ × q̂ )](Fm
∗ · q̂ ′) + [Fm

∗ · (q̂ ′ × q̂ )](Fm · q̂ ′)}

= P1Re(a∗bFm) · (q̂ − q̂ ′ cos 2θ ) − P1|b|2Re{[Fm · (q̂ ′ × q̂ )](Fm
∗ · q̂ ′)}. (A14)

The first term shows the linear dichroic charge-magnetic interference term, while the second term is the linear dichroic pure
magnetic scattering intensity.

The case of P = (0, P2, 0). The polarization-dependent terms in Eq. (A7) for the polarization state P = (0, P2, 0) are

β∗(P · α) = 1
4P2{(1 + cos 2θ )a∗bFm · (q̂ + q̂ ′) + |b|2[Fm

∗ · (q̂ ′ × q̂ )][Fm · (q̂ + q̂ ′)]}, (A15)

( P · α†)β = 1
4P2{(1 + cos 2θ )ab∗ Fm

∗ · (q̂ + q̂ ′) + |b|2[Fm · (q̂ ′ × q̂ )][Fm
∗ · (q̂ + q̂ ′)]}, and (A16)

i P · (α† × α) = 1
4P2((1 − cos 2θ )(a∗bFm − ab∗ Fm

∗) · (q̂ − q̂ ′) − |b|2{[Fm
∗ · (q̂ ′ × q̂ )][Fm · (q̂ − q̂ ′)]

+ [Fm · (q̂ ′ × q̂ )][Fm
∗ · (q̂ − q̂ ′)]}), (A17)

respectively. Summing up Eqs. (A15)–(A17), one obtains the circular dichroic terms in resonant cross-section:

dσ

d� circ
= i

2
P2(a∗bFm − ab∗ Fm

∗) · (q̂ + q̂ ′ cos 2θ ) + i|b|2
2

P2{−[Fm · (q̂ ′ × q̂ )](Fm
∗ · q̂ ′) + [Fm

∗ · (q̂′ × q̂ )](Fm · q̂ ′)}

= −P2Im(a∗bFm) · (q̂ + q̂ ′ cos 2θ ) + P2|b|2Im{[Fm · (q̂ ′ × q̂ )](Fm
∗ · q̂ ′)}. (A18)

The first term is the circular dichroic charge-magnetic interference term, while the second term is the circular dichroic pure
magnetic scattering intensity. The second term provides the polarization-dependent scattering in spiral magnets [15–17]. It is
notable that the circular dichroic charge-magnetic interference term is proportional to both of the first order of a and Fm, not to
their quadratics, unlike in the pure magnetic scattering intensity with the quadratic of Fm. Therefore the first term is sensitive for
the relative sign reversal of a and Fm. This means that pairs of magnetic domains with opposite sign of Fm can be distinguished
if the interference term is finite and the sign of a is unchanged.

The case of P = (0, 0, P3). The polarization-dependent terms in Eq. (A7) for the polarization state with P = (0, 0, P3) are

β∗( P · α) = 1

4
P3{|a|2sin22θ − (a∗bFm − ab∗ Fm

∗) · (q̂′ × q̂ ) − cos 2θ (a∗bFm + ab∗ Fm
∗)

·(q̂′ × q̂ ) − |b|2|Fm · (q̂ ′ × q̂ )|2}, (A19)

( P · α†)β = 1

4
P3{|a|2sin22θ + (a∗bFm − ab∗ Fm

∗) · (q̂ ′ × q̂ ) − cos 2θ (a∗bFm + ab∗ Fm
∗)

·(q̂ ′ × q̂ ) − |b|2|Fm · (q̂ ′ × q̂ )|2}, and (A20)

i P · (α† × α) = −|b|2
4

P3{[Fm
∗ · (q̂ − q̂ ′)][Fm · (q̂ + q̂ ′)] + [Fm · (q̂ − q̂ ′)][Fm

∗ · (q̂ + q̂ ′)]}, (A21)

respectively. Summing up Eqs. (A19)–(A21), one obtains the linear dichroic terms for the σ and π polarization states in the
resonant cross-section:

dσ

d�P3

= P3
|a|2

2
sin22θ − 1

2
P3 cos 2θ (a∗bFm + ab∗ Fm

∗) · (q̂ ′ × q̂ )

−P3
|b|2
4

{[Fm
∗ · (q̂ − q̂ ′)][Fm · (q̂ + q̂ ′)] + 2|Fm · (q̂ ′ × q̂ )|2 + [Fm · (q̂ − q̂ ′)][Fm

∗ · (q̂ + q̂ ′)]}

= P3
|a|2

2
sin22θ − P3 cos 2θRe(a∗bFm) · (q̂ ′ × q̂ ) − P3

|b|2
2

(|Fm · q̂|2 + |Fm · (q̂′ × q̂ )|2 − |Fm · q̂ ′|2). (A22)

The first term shows the linear dichroic pure charge scattering intensity by both resonant and nonresonant scatterings. The
second term represents the linear dichroic charge-magnetic interference term, while the last term is the linear dichroic pure
magnetic scattering intensity.
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APPENDIX B: CALCULATION OF RESONANT CROSS-SECTION WITH A QUADRATIC
TERM OF MAGNETIC MOMENT

Here we show the calculated results of resonant cross-section taking into account the quadratic term of m (f (2)
atom ) in the general

resonant dipole-transition scattering length for a single atom. The polarization dependence of the term is described as

f
(2)

atom = −
(

3

4πq

)
(ε′ · m)(ε · m)

(
2F 1

0 − F 1
−1 − F 1

+1

) = −
(

3

4πq

)(
2F 1

0 − F 1
−1 − F+11

)
×

(
m2

y −my (mx sin θ − mz cos θ )

my (mx sin θ + mz cos θ ) −m2
xsin2θ − m2

zcos2θ

)
, (A23)

where mx , my , and mz denote the components of m along the axes shown in Fig. 3(b) [31]. The sum of the term with its phase for
each atom located at Rj in a crystal gives the contribution of the term to the total resonant scattering length f (2) at the scattering
vector τ :

f (2) = −
(

3

4πq

)(
2F 1

0 − F 1
−1 − F 1

+1

)
×

∑
j

(
m2

yj eiτ ·Rj −mxjmyj eiτ ·Rj sin θ + myjmzj eiτ ·Rj cos θ

mxjmyj eiτ ·Rj sin θ + myjmzj eiτ ·Rj cos θ −m2
xj eiτ ·Rj sin2θ − m2

zj eiτ ·Rj cos2θ

)
.

By representing each summation that appears in the above formula as �jmsjmtj exp(iτ · Rj ) = Mst , where s, t = x, y, z and
c = −(3/4πq )(2F 1

0 − F 1
−1 − F 1

+1), f (2) is simplified as

f (2) = c

(
Myy −Mxy sin θ + Myz cos θ

Mxy sin θ + Myz cos θ −Mxxsin2θ − Mzzcos2θ

)
. (A24)

By adding the charge scattering term and the magnetic scattering term, which is linear in m, the total resonant scattering
length is obtained as

f =
(

a + cMyy bFm · q̂ + c(−Mxy sin θ + Myz cos θ )

−bFm · q̂ ′ + c(Mxy sin θ + Myz cos θ ) a cos 2θ + bFm · (q̂ ′ × q̂ ) − c(Mxxsin2θ + Mzzcos2θ )

)
. (A25)

The same calculation procedure with Appendix A provides the resonant cross-section, as follows. The polarization-
independent terms are

dσ

d� 0
= |a|2

2
(1 + cos22θ ) + cos 2θRe(a∗bFm) · (q̂′ × q̂ ) + |b|2

2
(|Fm · q̂|2 + |Fm · (q̂ ′ × q̂ )|2 + |Fm · q̂ ′|2)

+ |c|2
2

[|Myy |2 + |Mxxsin2θ + Mzzcos2θ |2 + 2(|Mxy |2sin2θ + |Myz|2cos2θ )]

+ Re{a∗c[Myy − (|Mxx |2sin2θ + |Mzz|2cos2θ ) cos 2θ]}
+ Re{b∗c[Fm

∗ · (q̂ − q̂ ′)Myz cos θ − Fm
∗ · (q̂ + q̂ ′)Mxy sin θ − Fm

∗ · (q̂ ′ × q̂ )(Mxxsin2θ + Mzzcos2θ )]}. (A26)

The linear dichroic (for the ±45◦ polarization states) terms are

dσ

d�P1

= P1Re(a∗bFm) · (q̂ − q̂ ′ cos 2θ ) − P1|b|2Re{[Fm · (q̂ ′ × q̂ )](Fm
∗ · q̂ ′)}

+P1|c|2Re[Myy
∗(Myz cos θ − Mxy sin θ ) − (Mxx

∗sin2θ + Mzz
∗cos2θ )(Myz cos θ + Mxy sin θ )]

+ 2P1Re[a∗c(Myzcos3θ − Mxysin3θ )]

+P1Re{b∗c[Fm
∗ · (q̂′ × q̂ )(Myz cos θ + Mxy sin θ ) + Fm

∗ · q̂Myy + Fm
∗ · q̂ ′(Mxxsin2θ + Mzzcos2θ )]} . (A27)

The circular dichroic terms are

dσ

d� circ
= −P2Im(a∗bFm) · (q̂ + q̂ ′ cos 2θ ) + P2|b|2Im{[Fm · (q̂ ′ × q̂ )](Fm

∗ · q̂ ′)}

−P2|c|2Im[Myy
∗(Mxy sin θ + Myz cos θ ) − (Mxx

∗sin2θ + Mzz
∗cos2θ )(Mxy sin θ − Myz cos θ )]

+P2 sin 2θ Im[a∗c(Mxy cos θ − Myz sin θ )]

+P2Im{b∗c[Fm
∗ · (q̂′ × q̂ )(Myz sin θ + Myz cos θ ) + Fm

∗ · q̂Myy − Fm
∗ · q̂ ′(Mxxsin2θ + Mzzcos2θ )]}. (A28)
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The linear dichroic terms for the σ and π polarization states:

dσ

d�P3

= P3
|a|2

2
sin22θ − P3 cos 2θRe(a∗bFm) · (q̂′ × q̂ ) − P3

|b|2
2

(|Fm · q̂|2 + |Fm · (q̂ ′ × q̂ )|2 − |Fm · q̂ ′|2)

+P3
|c|2
2

[|Myy |2 − |Mxxsin2θ + Mzzcos2θ |2 + 2 sin 2θRe(MxyMyz
∗)]

+P3Re{a∗c[Myy + (Mxxsin2θ + Mzzcos2θ ) cos 2θ ]}
+P3Re{b∗c[Fm

∗ · (q̂′ × q̂ )(Mxx
∗sin2θ + Mzz

∗cos2θ ) + Fm
∗ · (q̂ − q̂ ′)Mxy sin θ − Fm

∗ · (q̂ + q̂ ′)Myz cos θ]}.
(A29)

In Eqs. (A26)–(A29), the terms that are proportional to
|a|2, |b|2, and |c|2 represent pure charge scattering, pure
magnetic scattering from the linear term of m, and that from
the quadratic term of m, respectively. The cross coupling
terms which are proportional to a∗b, a∗c, and b∗c show inter-
ference terms between charge and magnetic (linear term of m)
scatterings, charge and magnetic (quadratic of m) scatterings,
and magnetic (linear to m) and magnetic (quadratic of m)
scatterings, respectively.

Let us consider the contribution of the magnetic scattering
term with a quadratic m. In a magnetic material with a single
modulation vector k, the magnetic moment at the site j , mj ,
can be described by using exp(ik · Rj ) and exp(−ik · Rj ).
Then, each component that appears in Eq. (A23) is written
with the phase factors of exp(2ik · Rj ), exp(−2ik · Rj ), and
exp[i(k − k) · Rj ] (= 1). The former two factors produce
second-harmonic magnetic satellites, while the last one con-
tributes to the fundamental reflection. Thus, as long as first-
order magnetic satellites are considered in magnetic structures
described by a single modulation vector, the magnetic scatter-

ing term that is proportional to square of m can be neglected
even in terms of dichroism in RXD.

However, depending on magnetic structures, the term can
contribute to the first-order magnetic satellites and provide
dichroic signals on the reflections. Such a magnetic structure
has a ferromagnetic component (k = 0) in addition to a
modulated structure (k �= 0) such as a spiral structure. One
of such specific magnetic structures is the so-called normal
longitudinal conical structure reported in rare-earth metals
[39,40] and several types of hexaferrites [22]. When the
modulation vector with nonzero component k in the normal
longitudinal conical structure is parallel to the scattering
vector τ , mx and my are spatially modulated along k with
the phase factors of exp(ik · Rj ) and exp(−ik · Rj ). On
the other hand, mz is represented by a zero wave vector
and has nonzero constant. In this case, the linear compo-
nent of mz in Eq. (A23), Myz[=�jmyjmzj exp(iτ · Rj )], is
finite at the first-order magnetic satellites. This component
appears in all of the formulated cross-sections obtained as
Eqs. (A26)–(A29).
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