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The modular (or entanglement) Hamiltonian correspondent to the half-space bipartition of a quantum state
uniquely characterizes its entanglement properties. However, in the context of lattice models, its explicit form
is analytically known only for the two spin chains and certain free theories in one dimension. In this work, we
provide a thorough investigation of entanglement Hamiltonians in lattice models obtained via the Bisognano-
Wichmann theorem, which provides an explicit functional form for the entanglement Hamiltonian itself in
quantum field theory. Our study encompasses a variety of one- and two-dimensional models, supporting diverse
quantum phases and critical points, and, most importantly, scanning several universality classes, including
Ising, Potts, and Luttinger liquids. We carry out extensive numerical simulations based on the density matrix
renormalization group method, exact diagonalization, and quantum Monte Carlo. In particular, we compare the
exact entanglement properties and correlation functions to those obtained applying the Bisognano-Wichmann
theorem on the lattice. We carry out this comparison on both the eigenvalues and eigenvectors of the
entanglement Hamiltonian, and expectation values of correlation functions and order parameters. Our results
evidence that as long as the low-energy description of the lattice model is well captured by a Lorentz-invariant
quantum field theory, the Bisognano-Wichmann theorem provides a qualitatively and quantitatively accurate
description of the lattice entanglement Hamiltonian. The resulting framework paves the way to direct studies of
entanglement properties utilizing well-established statistical mechanics methods and experiments.
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I. INTRODUCTION

Over the last two decades, entanglement has emerged as a
key tool to characterize quantum phases of matter in many-
body systems [1–5]. In particular, bipartite entanglement is
typically characterized by considering the reduced density
matrix ρA correspondent to a region A, that is obtained by
tracing a state � over the complement of A (which is denoted
as B in the following):

ρA = TrB |�〉〈�| = e−H̃A . (1)

This reduced density matrix is associated with a given entan-
glement (or modular) Hamiltonian (EH) [6], H̃A, which shares
its same eigenvectors |φα〉, and whose spectrum is bounded
from below [7]. The spectral properties of the EH uniquely
determine the entanglement properties of the partition A of
�: for instance, its spectrum—the entanglement spectrum
(ES)—determines the von Neumann entropy.

Direct knowledge of the functional form of H̃A is of
tremendous utility for two main reasons. From the experi-
mental side, it allows us to measure entanglement properties
of a given state via direct engineering of the EH [8], in
particular, in cases where direct access to the wave function
is not scalable (such as in experiments requiring full state
tomography) or not possible at all. Hence it provides a feasible
route for the measurements of, e.g., entanglement spectra,
which are experimentally challenging to access in a scalable
manner [9]. From the theoretical side, it immediately opens up
a new toolbox to investigate entanglement properties of lattice

models using conventional statistical mechanics techniques,
both numerical and analytical. However, in the context of
many-body lattice models, it has proven challenging to deter-
mine H̃A analytically even for free theories—the only results
being the EH of the Ising [10,11] and XYZ chain [12] away
from criticality, of some one-dimensional free fermion sys-
tems [13,14], and of few other less generic examples [10,15].

In this work, we provide a thorough investigation of the en-
tanglement Hamiltonian correspondent to the ground state of
lattice models based on the application of field-theoretical re-
sults to microscopic theories. In particular, following Ref. [8],
we recast on the lattice the Bisognano-Wichmann (BW) the-
orem [6,16–18] and its extensions [19–22] to conformal field
theory (CFT). We verify their predictive power by systemati-
cally comparing several properties of the corresponding EHs
to the original lattice model results. The main result of our
analysis is that this approach returns a closed-form expression
for the lattice EH which accurately reproduces not only the
entanglement spectrum, but also properties directly tied to the
eigenvectors of the reduced density matrix, such as correlation
functions and order parameters.

We carry out our analysis by combining a series of nu-
merical approaches, including exact diagonalization, density
matrix renormalization group (DMRG) [23,24], and quantum
Monte Carlo (QMC) simulations. At the methodological level,
applying these approaches directly at the level of the BW
entanglement field theory—that is, the field theory obtained
by applying the BW theorem to the lattice problem—is in
principle straightforward, apart from a few technical details
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due to the specific shape of the EH that we discuss in some
detail. We focus on interacting one- (1D) and two-dimensional
(2D) lattice models, spanning both quantum critical phases
and points, and ordered, disordered, and symmetry-protected
topological phases whose low-energy physics is captured by a
quantum field theory with emergent Lorentz invariance (in the
critical cases, with dynamical critical exponent z = 1). Over-
all, our results support the fact that the applicability of this
approach solely relies on universal properties, in particular, on
how accurately the low-energy properties of a lattice model
are captured by a Lorentz-invariant quantum field theory.
Along with reporting our results, we provide a comparison
with model-specific methods employed so far to grasp salient
features (and, in some cases, the exact form) of the EH
based on perturbation theory, exact solution of free fermionic
problems, and perturbed CFT techniques. We anticipate that
whenever a comparison can be drawn, previous results are in
quantitative agreement with the lattice BW approach.

The structure of the paper is as follows. In Sec. II, we
review the BW theorem original formulation, its extensions
in the context of conformal field theories, and present in
detail its adaption to lattice problems. We present a qualitative
discussion of the applicability regimes of this adaption, and
then discuss the specific diagnostics we employ to compare
the original EH result with the BW-EH on the lattice, and
our numerical approaches. In Sec. III, we discuss our results
in the context of 1D systems, starting with models endowed
with discrete symmetries (Ising, Potts), and then moving to
spin chains with continuous symmetries (XXZ and J1-J2

models). In Sec. IV, we focus on 2D systems, discussing in
detail the Heisenberg and XY models on both cylinder and
torus geometries. Finally, in Sec. V, we draw our conclusions,
compare with alternative approaches, and point out some
perspectives and questions motivated by our approach and
results.

II. ENTANGLEMENT HAMILTONIANS: FROM FIELD
THEORIES TO LATTICE MODELS

In this section, we provide some background material on
the BW theorem, and its adaption to lattice models. We
present a general discussion on the applicability regimes of
the latter approach, and describe the main criteria used for
numerical checks carried out in the subsequent sections.

A. The Bisognano-Wichmann theorem
and its conformal extensions

In an arbitrary relativistic quantum field theory [25], the
general structure of the reduced density matrix of the vac-
uum state can be obtained for the special case of a bipar-
tition between two half spaces of an infinite system [i.e.,
�x ≡ (x1, x2, . . . , xd ) ∈ Rd and A = {�x|x1 > 0}]. The specific
form of the modular Hamiltonian is given in a series of
papers by Bisognano and Wichmann, which can be recast in
a single, general result that we refer to as the Bisognano-
Wichmann theorem [16,17]. This theorem states that for a
given a Hamiltonian density H (�x) and for the half biparti-
tion above, the modular Hamiltonian of the vacuum (ground

state) is

H̃A = 2π

∫
�x∈A

d �x[x1H (�x)] + c′, (2)

where c′ is a constant to guarantee unit trace of the density
matrix, and the speed of light has been set to unity. A first key
feature of this result is that its applicability does not rely on
any knowledge of the ground state, and thus can be applied in
both gapped and gapless phases, and quantum critical points.
A second feature is that the results are applicable in any
dimensionality: this will become particularly important below,
as very little is known about entanglement Hamiltonians of
lattice models beyond one dimension. Moreover, Eq. (2) has
a clear-cut physical interpretation in terms of entanglement
temperature [26–28]: if we interpret ρA as thermal state, this
corresponds to a state of the original Hamiltonian H with
respect to a locally varying temperature, very large close to
the boundary of A, and decreasing as 1/x1 far from it.

In the presence of conformal invariance, it is possible to
further extend the BW results to other geometries [19–22,29].
In any dimension, it is possible to derive the modular Hamil-
tonian of a hypersphere of radius R [21]. Here, we will be
interested in three specific cases in one spatial dimension,
whose EHs were obtained in Ref. [22]. The first one concerns
a finite partition of size � embedded in the infinite line when
H̃A reads [21,22]

H̃
(CFT1)
A = 2π

∫ �

0
dx

[
x

(
� − x

�

)
H (x)

]
+ c′. (3)

This formula can be generalized to the case of a finite partition
of length � in a ring of circumference L [22]:

H̃
(CFT2)
A = 2L

∫ �

0
dx

[
sin

(
π (�−x)

L

)
sin

(
πx
L

)
sin(π�/L)

H (x)

]
+ c′. (4)

In addition, for a finite open system of length L and for a
finite partition of length L/2 at its edge (i.e., A = [0, L/2]
and B = [−L/2, 0]), we have [22]

H̃
(CFT3)
A = 2L

∫ L/2

0
dx sin

(
πx

L

)
H (x) + c′. (5)

We mention that in the vicinity of a conformal invariant
critical point, an alternative description of the EH with respect
to the original BW-EH has been suggested [30].

Before turning to lattice models, it is worth stressing three
properties of these results. The first one is that in its original
formulation, the BW theorem relies on the existence of a
cyclic vector in the field theory itself. In the case of a half
bipartition, this is not a problem on the lattice, but might
become so for other, unequally sized partitions—which we
do not treat in the following. The second is that, even if the
modular operator is defined only from the ground state wave
function, it contains information about the entire operator
spectrum of the theory. This suggests that universal properties
of the lattice models might be encoded in the deviations (in-
cluding finite-size ones) of the entanglement spectra evaluated
from the lattice Bisognano-Wichmann (LBW) entanglement
Hamiltonian (which we describe in the next subsection) from
the exact one. The third is that the BW result implies that
the EH is local, and contains only few-body terms which
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are already present in the original model. This fact has some
immediate consequences: (i) it makes a direct experimental
realization of the LBW-EH feasible in synthetic quantum
matter setups [8], and (ii) it makes its direct study amenable
to the same tools of statistical mechanics applicable to the
original problem, at least in principle.

B. Entanglement Hamiltonians for lattice models
via the Bisognano-Wichmann theorem

Differently from the field theory case, much less is known
about the entanglement Hamiltonian of ground states of
lattice models. In some specific cases, direct insights can
be gathered with the explicit structure of the ground state
wave function. Examples include the determination of the ES
and EH structure in strongly gapped phases [31–34], where
perturbative arguments are applicable, the EH obtained via
variational wave functions [35], or the Li and Haldane argu-
ment on the structure of the ES of topological phases [36,37],
which can also be understood using the BW theorem [38].
Similar arguments can be applied to wave functions with
very short correlation length ξ , as in those cases, the EH
becomes essentially a projector for distances beyond ξ . Other
fundamental insights could come from the related concepts of
entanglement contour [39–43], probability distribution of the
entanglement spectrum [44–46], and relative entropy [47–51].

Exact results without assuming any structure of the ground
state wave function have been derived only in few 1D free
theories [10,11,13,14] (for recent results in the presence of
pairing terms, see Ref. [52]) and for the massive regime of
the XYZ model [12]. As we discuss below, these results are
very suggestive about the correctness (and, at the same time,
indicate potential limitations) of the LBW-EH we will discuss
in the next subsections.

Our goal here is to provide a generic recipe to derive an
approximate but very accurate (in particular, able to capture
all universal features) EH of a lattice model without specific
knowledge of the ground state wave function. As the starting
point, following Ref. [8], we recast the BW theorem and
its conformal extension on the lattice, formulating simple
candidate EHs. Explicitly, let us consider a lattice model
in one or two dimensions with on-site and nearest-neighbor
couplings:

H = �
∑

x,y,δ=±1

[h(x,y),(x+δ,y) + h(x,y),(x,y+δ)] + �
∑
x,y

l(x,y),

(6)

where � is a homogeneous coupling (e.g., exchange term)
and � is an on-site term (e.g., transverse or longitudinal
field). The spatial coordinates are defined as x, y ∈ {−L/2 +
1, . . . , L/2}, where L is the linear size of the system, which
we fix to be even. For one-dimensional systems (read just
the x coordinate in the aforementioned expression) we study
systems with both open (OBCs) and periodic boundary condi-
tions (PBCs), while for two-dimensional systems we consider
finite cylinder and torus geometries; see Fig. 1.

Let us now split the system into two equal halves: the
corresponding lattice Bisognano-Wichmann EH (LBW-EH) is

1

n

n − 1/2

1 . . . n . . . L/2

B A

FIG. 1. Sketch of the lattice configuration for two-dimensional
systems: we consider systems with periodic boundary conditions
along the y (vertical) direction, and either open or periodic boundary
conditions along the x (horizontal) direction, of length L. The system
bipartitions we consider are defined by A = {(x, y )|x ∈ [1, L/2]}.
The distance from the boundary [Eq. (8)] corresponding to differ-
ent Hamiltonian terms (indicated by encircled pairs) is portrayed
schematically as the geometric distance of the center of the bond
from the boundary.

then given by

H̃A,BW = βEH

∑
x,y,δ=±1

(�xh(x,y),(x+δ,y) + �yh(x,y),(x,y+δ) )

+
∑
x,y

�x,y l(x,y), (7)

where the inhomogeneous couplings and on-site terms depend
on the distance from the boundary separating subsystems A

and B (see Fig. 1) according to the geometry of the original
system. In the case of a 1D with OBCs or for the cylinder
geometry in 2D, the BW theorem in Eq. (2) suggests

�x = x�, �y = (
x − 1

2

)
�, �(x,y) = (

x − 1
2

)
�. (8)

This putative EH is expected to provide extremely accurate
results being just the lattice discretization of Eq. (2), at least
in the limit L/2 � ξ when finite-size effects should be neg-
ligible. However, in the following, we will use this EH also
for some critical cases in order to check how this copes with
finite-volume effects: this is a fundamental exercise in view
of the application of our ideas to those systems that are not
known a priori to be critical.

Contrary to plane and cylinder geometries, for the torus
geometry we do not have any field-theoretical results to guide
our Ansatz. We just know that close to the two entangling
surfaces, the EH must be a linear function of the separation. A
possible smooth interpolation between the two linear regimes
is suggested by Eq. (3) which has a suitable generalization for
a sphere in arbitrary dimension [21]. Following this line of
thought, we propose the Ansatz

�x = x(L/2 − x)

L/2
�,

�y =
(
x − 1

2

)[
L
2 − (

x − 1
2

)]
L/2

�, (9)

�(x,y) =
(
x − 1

2

)[
L
2 − (

x − 1
2

)]
L/2

�.
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For the 1D critical case, exact EH profiles can be obtained
by discretizing Eqs. (4) and (5). For the half bipartition of
length L/2 of the ring one has

�x = L

2π
sin

(
2πx

L

)
�,

�x = L

2π
sin

[
2π

L

(
x − 1

2

)]
�, (10)

while for the open chain

�x = L

π
sin

(
πx

L

)
�,

�x = L

π
sin

[
π

L

(
x − 1

2

)]
�. (11)

Finally, the overall energy scale in (7), βEH, is related to
the “speed of light,” v, in the corresponding low-energy field
theory:

βEH = 2π

v
. (12)

The reason to use the name βEH is that as for the thermo-
dynamics “beta,” β = 1/T (T is the temperature), the BW
overall energy scale plays the role of an effective temperature,
as will be discussed in next section.

The velocity v may be fixed by matching the small-
momentum (p̂k) expansion of the lattice dispersion relation
E(k) with the relativistic one E(p) =

√
m2v4 + v2p2. Such

a velocity is generically different from the quasiparticle one
V (k) ≡ dE(k)/dpk . The two coincide only for gapless theo-
ries when v = V (0), i.e., the sound velocity.

C. Regimes of applicability of the approach

A natural question to ask is to what extent field theory
results on the functional form of the EH are applicable to
lattice models and in what sense. The LBW-EH is not gener-
ically an exact form, even in the thermodynamic limit. This
is, e.g., explicitly manifest in free fermion results [13,14]
showing that the exact EH of a Fermi sea not only has tiny
deviations compared to the field-theoretical BW-EH, but also
presents very small longer range terms completely absent in
(2) (and the same happens also for the interacting XXZ spin
chain [15]). Conversely, for the gapped regimes of the XYZ
and Ising chains, the LBW-EH is exact [11,12] independently
of the value of the correlation length—even when one would
expect lattice effects to become dominant.

Before discussing in the next subsection a series of quan-
titative criteria to determine the applicability regimes of the
LBW-EH using numerical simulations (whose results are
discussed in the next sections), we provide here a qualitative
discussion.

When transposing the field theory predictions above on
finite-lattice models, three ingredients will be considered: (i)
the loss of Lorentz invariance due to the lattice, even when it is
recovered as a low-energy symmetry; (ii) for massive theories,
the presence of a finite ξ/a ratio, leading to potentially
harmful UV effects at the lattice spacing level; (iii) finite-
volume effects (which can be partially taken into account in
1D CFTs).

In quantum field theory language and close to a quantum
phase transition, the loss of Lorentz invariance is typically
attributed to the fact that the lattice turns on several irrelevant
operators which directly affect the Hamiltonian spectrum. At
the level of the EH, to the best of our knowledge, this has
not been discussed so far. Since there is abundant evidence
that universal properties of lattice models (such as the en-
tanglement entropy of models described at low energies by
CFTs [5,53]) are in excellent agreement with field theory
expectations, it is natural to argue that the microscopic EH
is governed by the LBW-EH, plus terms that depend on
irrelevant operators. We note that in the specific case of spin
models, a set of recent Ansätze proposed in Ref. [33] falls
into this category. Under this assumption, it is possible to
argue that low-lying entanglement properties should be well
captured by the lattice BW-EH at least in the critical case.
Similar arguments are at the basis of the use of the ES in
topological models [38], in particular for quantum Hall wave
functions.

From a complementary viewpoint, it is possible to argue
that at least for the critical case, deviations are directly tied
to curvature effects in the lattice dispersion relation. This
sets an energy scale upon which excitations cease to be well
described by a Lorentz-invariant field theory. In the context
of correlated fermions, we thus expect that the accuracy of
the LBW-EH degrades when the speed of light–to–bandwidth
ratio becomes small—down to the flat band case, which is not
expected to be captured at all. This expectation is confirmed
by free fermions exact calculations [13].

The effects of a finite ξ/a ratio have already been qualita-
tively discussed in Ref. [8]: in brief, as long as the correlation
length is not of the same order as the lattice spacing (thus
making a field theory description not immediately applicable),
these deviations are negligible. We note that for what concerns
the ES, it has been observed that in the massive regime of the
Ising model [11], in the close vicinity of the Affleck-Kennedy-
Lieb-Tasaki point of bilinear-biquadratic spin-1 chains [8],
and in gapped XXZ spin-chains [8] the lattice BW-EH is
extremely accurate, so the validity of the approach even at
ξ 	 a cannot be ruled out a priori (while it has anyway to
be justified a posteriori).

Finally, we discuss finite-volume effects. Their estimate is
nontrivial [except for those encoded in (10) and (11) for 1D
CFTs]; for this reason, we present below a finite-size scaling
analysis of several quantities of interest. We anticipate that at
least for what concerns the low-lying entanglement spectrum,
we observe universal scaling.

D. Numerical checks of BW theorem on a lattice

The reduced density matrix of subsystem A is written in
terms of the BW-EH as

ρA → ρEH = e−H̃A,BW

Z
, (13)

where the constant Z = Tr(e−H̃A,BW ), written in analogy to
thermodynamics, ensures the normalization of ρEH. From now
on, we call the exact reduced density matrix ρA and the one
obtained with via the lattice BW ρEH. The comparison of the
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thermal density matrix ρEH and the exact one is addressed at
both the eigenvalue and eigenvector levels.

Entanglement spectrum. The first comparison between
ρA and ρEH is at the level of the eigenvalues εα of the
corresponding entanglement Hamiltonian. These eigenvalues
are however affected by the values of both the nonuniversal
constant c′ in (2) and of the entanglement temperature βEH

in (7). These nonuniversal constants must be fixed either by
an exact calculation or by an independent numerical study.
In some cases in the following we will perform this direct
analysis. There is however an even better way to perform such
a comparison which does not require an a priori knowledge of
these nonuniversal constants. Indeed, let us consider the ratios

κα;α0 = εα − ε0

εα0 − ε0
, (14)

where ε0 is the lowest entanglement energy on the system
(corresponding to the largest eigenvalue of ρA), and εα0 is a
reference state suitably chosen to accommodate degeneracies
of the lowest eigenvalue in the EH spectrum. It is clear that the
c′ dependence of the eigenvalues cancels out in the differences
taken in the numerator and in the denominator in (14). Taking
the ratio in (14) cancels also the dependence on βEH. For this
reason we call the quantities (14) universal ratios.

We use the density matrix renormalization group (DMRG)
to obtain these quantities for quantum spin chains of length
up to 100 sites. The entanglement spectrum of the original
system is computed keeping 100–150 states and using the
ground state as the target state in the proper symmetry sector.
The lowest part of the BW-EH spectrum instead is obtained
by targeting 5–10 states in all the symmetry sectors. The
magnitude of the discarded weight in the DMRG algorithm
depends on the boundary conditions and on the system be-
ing homogeneous (exact ES computation) or not (BW-EH
spectrum computation). When the homogeneous system has
OBCs/PBCs we were able to keep the truncation error always
below 10−12/10−8 for the largest system sizes considered.
This is achieved in a few DMRG sweeps, typically 2 or
3. All measurements were performed after a minimum of 5
sweeps to ensure convergence of the algorithm. Oppositely, in
the inhomogeneous case, more sweeps were required for the
DMRG to converge, and a minimum of 6 sweeps was always
performed before collecting the eigenvalues of the BW-EH.
However, since the BW system is open, we were always able
to keep the truncation error below 10−10 for all the chains
considered in what follows [54].

Entanglement eigenvectors. In order to understand the
accuracy of the BW-EH at the eigenvector level, we consider
the overlaps ∣∣〈ψEH

α

∣∣ψA
α′
〉∣∣ = Mα,α′ (15)

for different levels of the spectrum. These eigenvectors are
computed via exact diagonalization (ED) of both ρA and the
BW-EH.

Correlation functions. Operators (observables) defined ex-
clusively on subsystem A are directly related to ρA (ρEH):

〈OA〉 = Tr(OAρA) → Tr(e−H̃AOA)

Z
. (16)

Similarly the ground state properties of the subsystem A

are directly related to the thermal properties of the EH-BW.
Hence, as another check of the BW construction we use the
finite-temperature QMC method of stochastic series expan-
sion (SSE) and finite-temperature DMRG [55] to obtain local
and two-body correlation functions of the BW-EH system.
We then compare these quantities with the exact ground state
expectation values computed via DMRG and QMC [56,57].

The SSE method samples terms in a power series of e−H̃

in the partition function using local and loop (directed loop)
updates [57]. For the BW-EH system, as the local effec-
tive temperature decreases (Hamiltonian couplings increases)
away from the boundary, the use of loop updates is important
to prevent the slowing down of autocorrelation times. In fact,
as shown in the Appendix, the asymptotic autocorrelation
times of local observables obtained with the directed-loop
SSE algorithm are much smaller than the typical number of
QMC measurements that we use, Nmeas ≈ 108. Thus, at least
for the system sizes that we consider (L up to 100) the slowing
down of autocorrelation times is not an issue for the SSE
simulations of BW-EH.

Finite-temperature DMRG accuracy was checked by vary-
ing both the number of states kept during the imaginary time
evolution and the Trotter step employed. Since the imaginary
time evolution is applied on a state in which the system is
maximally entangled with an ancilla, if the Hamiltonian con-
serves some quantum number one can exploit it by preparing
the maximally entangled initial state within a given symmetry
sector of the Hilbert space and restricting the evolution to
that sector [55]. Using this technique we were able to reach
convergence of the results by keeping a maximum of 150
states per block. We used first-order Trotter decomposition,
which means one Trotter step per half sweep, with a Trotter
step of 10−3.

In the next two sections, we report our results on the three
criteria above for a set of lattice models in one and two
dimensions. It is worth stressing how the three diagnostics em-
ployed are sensitive to different features of the reduced density
matrix. Universal entanglement gap ratios are insensitive to
possible errors in the prefactors of the entanglement Hamilto-
nian (i.e., to βEH), and are not informative about eigenstates.
Oppositely, overlaps between entanglement eigenvectors are
not informative about the spectrum, but rather describe the
accuracy in having the same eigenvectors. Finally, correlation
functions are sensitive to all details of the EH—both spec-
tra, correct speed of sound, and eigenvectors. However, they
are also somewhat less direct as a diagnostic; for instance,
very close correspondence in correlation functions can be
obtained by considering density matrices with very different
eigenvectors.

III. ONE DIMENSION

One-dimensional quantum systems represent an ideal
framework to test the applicability of LBW-EH predictions.
The main advantage here is that wave-function-based methods
such as DMRG and ED can be pushed to considerably large
system sizes. In addition, the CFT results of Ref. [22] allow
us to employ formulas which do consider a finite size of the
subsystem [Eq. (3)] and of the system [Eqs. (4), (5)], which
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implies that finite-size effects can be controlled in a more
efficient manner.

A. Transverse field Ising model

The quantum Hamiltonian of this model reads [4]

H = −
∑

i

σ z
i σ z

i+1 − g
∑

i

σ x
i , (17)

where g > 0 and σ j are the Pauli matrices. The model can
be solved exactly and it is diagonalized in terms of spinless
fermions (with mode operators b

†
k, bk) as

H =
∑

k

E(k)

(
b
†
kbk − 1

2

)
, (18)

where E(k) =
√

(1 − g)2 + g(p̂k )2, with p̂k = 2 sin p/2 be-
ing the lattice momentum [58]. By matching this dispersion
relation with the relativistic one, we get the light velocity v =
2
√

g as a function of the lattice parameter g. The gap closes in
the thermodynamic (TD) limit when g = 1. A quantum phase
transition occurs at this point, separating a ferromagnetic
phase for g < 1 from a paramagnetic phase for g > 1. In the
former the Z2 symmetry of the model is broken by the ground
state of the system, which is degenerate in the TD limit. The
low-energy physics of the quantum critical point is described
by a c = 1/2 CFT.

For this model we expect the lattice discretization of Eq. (2)
[i.e., Eq. (8)] to work well for a chain with OBCs as long
as the correlation length in the system is large with respect
to the lattice spacing and small compared to the system size.
In fact, the EH for a half partition of an infinite chain can
be computed exactly in the coordinate basis away from the
critical point [11]. The result perfectly matches our lattice
version of the BW theorem, although it does not predict the
prefactor βEH. In the PBC case instead we expect conformal
BW theorem Eq. (4) to fail as soon as a gap opens in the
energy spectrum.

Figure 2 shows the universal ratios Eq. (14) computed from
the ES assuming both OBCs and PBCs (black solid line).
For the OBC case, we consider the EH in its original BW
form, which allows us to treat on the same footing gapped
and gapless regimes.

These ratios are compared to the ones computed from the
LBW-EH Eq. (8) in the former case and to the ones computed
from Eq. (10) in the latter case (red circles). At the critical
point the agreement is almost perfect in both cases: relative
errors of the ratios are always smaller than 2%. Instead, in the
ferromagnetic gapped phase, slight discrepancies are observed
when the system is subjected to PBCs: the ratios agree within
3% only as long as λα � 10−4.

Moving to the eigenvectors, the overlaps in Eq. (15), com-
puted via ED, are plotted in Fig. 3. Both in the OBC and PBC
cases the magnitude of the overlaps is 1 with 10−3 accuracy,
independently of the system being critical or gapped. Note
however that overlaps of order 10−1 are observed also away
from the diagonal at the critical point in the OBC case and
when the system is gapped in the PBC case. The latter fact
is expected since Eq. (4) should provide the EH of a gapless
system. We did also check the finite-size scaling of the matrix
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FIG. 2. Ratios κα for the transverse field Ising chain. The black
solid line and red circles stand for ratios computed from the exact
ES and the EH spectrum, respectively. The blue dashed line marks
ρA eigenvalues with the magnitude indicated in the legend. PBC data
slightly deviate from the field theory prediction in the ferromagnetic
gapped phase g = 0.6, the maximum relative error being larger that
3% after the 13th eigenvalue.

norm of the difference between ρA and ρEH, i.e., ||ρA − ρEH||,
where ||A|| =

√
Tr(AA†). The magnitude of the matrix norm

is of order 10−2 for the system sizes accessible with ED and it
decreases with system size in all the cases considered.

Expectation values of local observables are the only quan-
tities considered here which are sensitive to the entanglement
temperature. They thus probe more in depth this specific
aspect of the BW theorem, which states that βEH = 2π/v.
Thanks to the exact solution of the transverse field Ising model
(TFIM) we know that v = 2

√
g. The local observable we

FIG. 3. Overlaps as defined in Eq. (15) for the transverse field
Ising chain in the ferromagnetic phase g = 0.6 and at the critical
point g = 1.0. Deviations from unity on the diagonal are of order
10−3 in all the cases considered up to the first 13 eigenstates. The
few points close to the diagonal correspond to exact degeneracies in
the spectrum (not all degeneracies are offset).
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FIG. 4. (a), (b) Local correlation function as defined in Eq. (19)
for the transverse field Ising chain in the ferromagnetic phase g =
0.6 and at the critical point g = 1.0. The square (black) and circle
(red) points are results for the original and the half-bipartition EH-
BW systems, respectively. (c) Local transverse magnetization in the
paramagnetic phase.

consider for this model is

Czz(i) = 〈
σ z

i σ z
i+1

〉
. (19)

Note that since the two points are nearest neighbors, this
observable is expected to be the most sensitive to finite-lattice-
spacing effects. The result of the comparison is depicted in
Figs. 4(a) and 4(b) for the OBC case. The EH-BW results (red
circles) are obtained as thermal averages computed via finite-
temperature DMRG. Ground state averages (black squares)
are obtained using DMRG with the ground state of the system
as a target state. The agreement is excellent (below percent
level) in the gapped paramagnetic phase even close to the cut,
where the choice of the proper βEH almost completely cancels
boundary effects. Relative errors in the bulk [including the
open (right) boundary] are uniformly of order 10−6, while
they reach a magnitude of 10−3 close to the cut (see inset).
At the critical point instead we observe uniform deviations
of 0.5% over the whole half chain. These are caused by
finite-size effects. Figure 5 shows the difference between the
thermal LBW expectation value and the ground state one
for different system sizes. Discrepancies exhibit power-law
scaling to zero.

In addition, we have also considered the expectation value
of the transverse magnetization (i.e., along the x axis),

Cx (i) = 〈
σx

i

〉
. (20)

In Fig. 4(c), we show the corresponding spatial profile under
OBCs: the behavior is very similar to that of the Czz correlator,
with the maximum deviations of order 10−4 close to the
boundary, which has to be expected if one considers the
self-duality transformation of the TFIM.
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FIG. 5. Finite-size scaling of the difference between BW thermal
and ground state expectation values at the critical point of the Ising
model, with OBCs. In (a), deviations are plotted for all the sites in
the subsystem and they are largest close to the boundary away from
the cut. In (b), deviations are plotted for a site in the middle of the
subsystem and they clearly scale to zero as a power law.

B. Quantum three-state Potts model

The quantum Hamiltonian of the three-state Potts model is
given by [59,60]

H = −
∑

i

(σiσ
†
i+1 + σ

†
i σi+1) − g

∑
i

(τi + τ
†
i ), (21)

where g > 0. The σ and τ matrices are defined as

σ |γ 〉 = ωγ−1|γ 〉, τ |γ 〉 = |γ + 1〉, ω = ei2π/3, (22)

and γ = 0, 1, 2.
The phase diagram of this quantum chain is analogous

to the TFIM one. The symmetry of the model is Z3 which
is broken in the ferromagnetic phase with three degenerate
ground states. Another important difference with respect to
the TFIM is that the Hamiltonian Eq. (21) is nonintegrable
away from the critical point at g = 1. Here the spectrum
can be computed [61] in terms of massless excitations whose
dispersion relation reads

E(k) = 3
√

3

2
p̂k, (23)

which matches the massless relativistic one with a sound
velocity v = 3

√
3/2. This critical point is described by a CFT

with central charge c = 4/5 [62,63].
Lorentz invariance is expected for the continuum limit of

the lattice theory also away from the gapless conformally
invariant point and thus the discrete BW theorem Eq. (8) is
expected to hold also when g = 1.

Figure 6 shows the comparison between the universal ratios
Eq. (14) obtained from the ES and from the BW-EH for the
system at the critical point (g = 1) and in the paramagnetic
phase (g = 1.4). We see good agreement for both OBCs and
PBCs also away from the critical point. In particular relative
errors for the first 26 eigenvalues are smaller than 2% at the
critical point, in both the OBC and PBC cases. In the gapped
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FIG. 6. Ratios κα for the 3-state Potts chain. The black solid
line and red circles stand for ratios computed from the exact ES
and the EH spectrum, respectively. The blue dashed line marks ρA

eigenvalues with the magnitude indicated in the legend.

paramagnetic phase instead their maximum magnitude is
0.5% and 4% in the OBC and PBC cases, respectively.

For this model we performed also a direct comparison of
the spectra of ρA and ρEH at the critical point for which we
need the sound velocity in Eq. (23). For OBCs, Fig. 7 shows
the ES obtained by using both the infinite-system EH (8)
and the finite-size CFT (11). The discrepancies between the
ES of a finite system and the ES obtained from the infinite-
system EHs completely disappear when the CFT finite-system
EHs are used. For PBCs instead the lattice discretization of
the conformal EH BW in Eq. (10) is used which matches
the direct results perfectly. For the sake of comparison, we
have also computed the ES using Eq. (9); the results, while
approximately matching the density of states of the original
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FIG. 7. Spectra comparison for the 3-state Potts chain at the
critical point. The black solid line is the exact ES. Red and turquoise
circles are the ρEH eigenvalues computed via the infinite-system EH
[Eq. (2) for OBCs and Eq. (3) for PBCs] and via the CFT finite-
system EH [Eq. (5) for OBCs and Eq. (4) for PBCs], respectively. On
the left λα with α = 0, . . . , 25, and on the right with α = 70, . . . , 95.

FIG. 8. Overlaps as defined in Eq. (15) for the three-state Potts
chain at the critical point g = 1.0 and in the paramagnetic phase g =
1.4. Deviations from unity on the diagonal are smaller than 10−3. The
few points close to the diagonal correspond to exact degeneracies
in the spectrum. The largest nonvanishing overlaps away from the
diagonal are observed in the PBC case when the gap spoils conformal
invariance and thus the validity of Eq. (4).

model, are not able to reproduce the ES quantitatively. This
comparison boosts the predictive power of the correct CFT
EH, which, even on the lattice, almost completely suppressed
finite-size effects.

Overlaps, computed via ED, between ρA and LBW-EH
eigenvectors are shown in Fig. 8, where we can observe
the very same outcome as in the TFIM. Large (�1 to 10−3)
overlaps involve all the first states in the two spectra both in
the OBC and PBC cases. Nonvanishing overlaps away from
the diagonal are observed only in the gapped phase when
the CFT EH Eq. (4) is employed, as expected. In Fig. 9 we
report also the finite-size scaling of the lowest overlap M0,0,
which decreases/increases when the system is gapless/gapped.
The apparent decreasing behavior of the overlap at the critical
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FIG. 9. Finite-size scaling of the ground state overlaps M0,0 as
defined in Eq. (15) for the three-state Potts chain at the critical point
g = 1.0 and in the paramagnetic phase g = 1.4.
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FIG. 10. Nearest-neighbor correlation function Eq. (24) for the
three-state Potts chain at the critical point g = 1. The square (black)
and circle (red) points are results for the exact and the half-bipartition
LBW-EH systems, respectively. The inset magnifies the region close
to the boundary.

point might be an artifact of the small system sizes accessible
with ED for this model. A trustworthy extrapolation to the
thermodynamic (TD) limit is not possible; however, it is very
indicative that changes over a large window of L are at most
of order 10−4, strongly suggesting that the overlap will remain
finite in the TD limit—a remarkable fact given that we are
looking at eigenvector properties. We have obtained similar
results for all the 1D models discussed in this paper, but we
do not report them because they are qualitatively equivalent to
those in Fig. 9.

We finally consider the two-point function of the order
parameter at neighbor sites:

C(i) = 〈2 Re σiσ
†
i+1〉. (24)

We compute this correlation function only for g = 1 in the
OBC case because the sound velocity is known exactly only
at the critical point. In order to use an unbiased approach here,
which does not rely on the CFT know-how of finite-volume
effects embodied in Eq. (5), we have utilized the original BW
formulation.

We used finite-temperature DMRG for the BW thermal
average and ground state DMRG for the pure average over the
ground state of the system. The result is reported in Fig. 10. As
in the Ising case 0.5% discrepancies are observed uniformly
on the whole subsystem length. As they reduce considerably
when increasing system size, we attribute their origin to finite-
volume effects as in the TFIM case.

C. S = 1/2 XXZ model

The Hamiltonian of the XXZ spin-1/2 chain is [4]

H =
∑

i

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

)
. (25)

This model is exactly soluble via the Bethe Ansatz, and
its phase diagram supports three distinct phases. It is fer-
romagnetic for � < −1, gapless critical (Luttinger liquid)
for −1 < � � 1, and antiferromagnetic for � > 1. In the
ferromagnetic phase, the Z2 spin reversal symmetry is

spontaneously broken. The critical phase is described
by a c = 1 CFT with varying Luttinger parameter K =
π/2 arccos(−�). The antiferromagnetic phase exhibits
nonzero staggered magnetization; thus the spin reversal sym-
metry is broken by the 2-degenerate (quantum dressed) Néel
states which live in the S tot

z = 0 sector.
For � < −1 the low-lying excitations above the two mag-

netized ground states are translationally invariant combina-
tions of single-spin-flip states (magnons). Their exact disper-
sion relation reads

E(pk ) = 2

[
1 − cos

(
2πk

L

)
− (� + 1)

]
, (26)

which does not become relativistic in the continuum limit. At
� = −1 the gap closes but the magnon dispersion remains
quadratic. Thus there is no underlying Lorentz invariance for
� � −1.

In the critical phase instead CFT predictions are in perfect
agreement with lattice results for what concerns spectral [64]
as well as correlation function properties [60,65,66]. There-
fore, we expect the LBW theorem to be accurate in this phase.
The point � = 1 hosts a BKT phase transition which links
the AFM phase to the critical line. Close to this point the
fundamental excitations are usually called spinons and their
dispersion relation is

E(k) = π

2
sin

(
2πk

L

)
= π

2
p̂k, (27)

from which we read the sound velocity v = π/2 by compar-
ison with the massless relativistic dispersion relation. Indeed,
the sound velocity is exactly known in the entire critical
line [65]:

v = π
√

1 − �2

2 arccos �
. (28)

In the Néel phase the quasiparticles acquire a mass, but in the
scaling region close to � → 1+ they do not to spoil relativistic
invariance of the continuum theory. We point out that some
of the results discussed here for OBCs are connected with
Refs. [32,67,68], which investigate the comparison between
ES and the corner transfer matrix.

The comparison for the universal ratios (14) between ρA

and BW-EH spectra is reported in Fig. 11 for BKT point
� = 1 and close to it in the gapped AFM phase � = 1.2.
We note that analysis of these ratios for different parameter
regimes and the same model was presented in Ref. [8]. We
choose as a representative of the critical phase the transition
point, where (logarithmic) finite-size corrections are known to
be the largest [69,70]. As discussed in the previous sections
the largest deviations are observed in the PBC case when
the system is massive, where they reach 5% also within the
first 20 eigenvalues. In the massive OBC case instead they
are smaller than 4% for all the 30 eigenvalues considered.
Maximum relative errors for � = 1 are 2% for both OBCs.
We have verified that in the lowest part of the spectrum, the
difference of the universal ratios scales to 0 in the TD limit as
a power law (the corresponding exponent needs further studies
to be accurately determined).

As in Sec. III B, we report a direct comparison of the
spectra of ρA and ρEH at the BKT point � = 1, exploiting the
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FIG. 11. Ratios κα for the XXZ spin-1/2 chain. The black solid
line and red circles stand for ratios computed from the exact ES
and the EH spectrum, respectively. The blue dashed line marks ρA

eigenvalues with the magnitude indicated in the legend. PBC data
slightly deviate from the field theory prediction in the antiferromag-
netic gapped phase � = 1.2, where 5% discrepancies are observed
among the lowest 20 eigenvalues.

knowledge of the sound velocity (28). Again for OBCs we use
both the infinite-size formula (8) and the CFT finite-size one
(11) (see Fig. 12). The latter perfectly reproduces the exact
data. For PBCs we only employ the lattice discretization of
the CFT formula (10) finding a perfect match with the data
from ρA.

As a by-product of the BW theorem we can use the exact
ES and the EH spectrum to compute the sound velocity of the
model. Indeed the relation between the two sets of eigenvalues
reads λα = exp (−2π/v εα )/Z. We can take the ratio of two
λ s to eliminate the normalization constant and we can invert
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FIG. 12. Spectra comparison for the XXZ chain at the isotropic
critical point. The black solid line is the exact ES. Red circles are
the ρEH eigenvalues computed via the infinite-system EH [Eq. (2) for
OBCs] and turquoise circles are computed via the CFT finite-system
EH [Eq. (5) for OBCs and Eq. (4) for PBCs]. On the left λα with
α = 0, . . . , 25, and on the right with α = 70, . . . , 95.
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FIG. 13. Sound velocity extracted via Eq. (29) from the first
two eigenvalues in the exact ES of a finite chain and in the EH
spectrum, by using both the infinite-system EHs (red circles) [Eq. (2)
for OBCs] and the finite-system EHs (turquoise circles) [Eq. (5)
for OBCs and Eq. (4) for PBCs]. The result is plotted against the
exact expression Eq. (28) for the sound velocity as a function of the
anisotropy parameter �.

this relation to get

vα = 2π (εα − ε0)

ln λ0/λα

. (29)

The result should be independent of α and this is indeed the
case within negligible relative error. In Fig. 13 we plot the
sound velocity for α = 1 as a function of � against the exact
result (28). For OBCs, we also use the infinite-system EH (2)
finding deviations only of a few percent, as evident from the
figure.

Overlaps between ρA and ρEH eigenvectors are depicted in
Fig. 14 for � = 1 and � = 1.2. The two sets of eigenvectors
match almost perfectly both in the OBC and PBC cases, as
in the other models considered so far. This time we do not
observe off-diagonal nonvanishing overlaps even when the
CFT EH Eq. (4) is used in the gapped phase. We attribute that
to the fact that inverse correlation length, while being finite, is
still of the order of the system size studied.

The two-point function we analyze for this model is the
spin-spin correlation function

Cspin(i, r ) = 〈
Sz

i S
z
i+r

〉
, (30)

that we compute using QMC. In this section we want to probe
the thermodynamic values of this correlation. For this reason
we do not exploit the finite-size formulas for BW-EH, but
the infinite-size ones (2) and (3) which we apply to OBCs
and PBCs, respectively. The results for r = 1 are reported in
Figs. 15 and 16 for the two cases, respectively. The two points
of the phase diagram considered are the XX free fermions

134403-10



ENTANGLEMENT HAMILTONIANS OF LATTICE MODELS … PHYSICAL REVIEW B 98, 134403 (2018)

FIG. 14. Overlaps as defined in Eq. (15) for the XXZ spin-1/2
chain at the BKT point � = 1.0 and in the Néel phase � = 1.2. The
few points close to the diagonal correspond to exact degeneracies in
the spectrum.

point � = 0 and the BKT point � = 1. The velocity in the
entanglement temperature is provided by Eq. (28). In the
OBC case the agreement is perfect also close to the boundary
where the system has been cut. The BW-EH reproduces very
well also the amplitude and the frequency of the Friedel
oscillations caused by the free ends of the chain, with a
relative error always smaller than 1%.

In the PBC case the ground state average is homoge-
neous. In fact the parabolic inhomogeneous coupling in
Eq. (3) suppresses the boundary effects which affect the non-
translationally invariant BW-EH. This is strongly reminiscent
of sine-squared deformation Hamiltonians, which are actually
close in functional form to the LBW-EH in the PBC case [71].
The result from the thermal average of LBW-EH is indeed
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The square (black) and circle (red) points are respectively the exact
results and those from EH-BW. The Friedel oscillations are perfectly
described by the EH approach.
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FIG. 16. Same as Fig. 15 for chains with PBCs. The different
points are results from the EH-BW with different sizes L. The
horizontal lines are the exact results. The relative deviations of the
homogeneous result for Cspin(i, r = 1) are less than 0.1%.

almost homogeneous and deviations from the expected
ground state value are less than 0.1%.

Figure 17 shows the finite-size scaling of the LBW-EH
Cspin(i, 1) with OBCs, averaged over the whole chain, against
the exact TD limit value (dashed line) for three values of the
anisotropy parameter � = −0.5, 0.9, 1.0. The result strongly
indicates that the field theory prediction of BW theorem
Eq. (2) is exact when L → ∞. In Fig. 18 we analyze the
separation dependence of the 2-point function (30) at the
isotropic point � = 1. Small deviations (of order 1% on
average with respect to r) are observed when r becomes of the
order of the system size. These deviations, however, decrease
as one increases L; see inset of Fig. 18. It is important to
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FIG. 17. Extrapolation of the average, Cspin(r = 1) =
1/L

∑
i C(i, r = 1), to the thermodynamic limit, L → ∞, for

chains with OBCs and different values of �. The horizontal lines
represent the exact values of Cspin(r = 1) for L → ∞. In all the
cases the EH-BW results converge to the exact ones in the limit
L → ∞.
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FIG. 18. Decay of spin-spin correlations for the isotropic case,
� = 1. We compare the exact data (black squares) with the EH
results (red circles). The inset shows the scaling with system size
of correlations between different distances r∗ for both BW and exact
systems. The exact and BW results tend to the same value in the limit
L → ∞.

note that finite-size effects are stronger in the original system,
which is related to the fact that in the BW-EH, Eq. (3), the
finite partition of size L is embedded in an infinite chain.

D. S = 1 XXZ model

The isotropic S = 1 spin chain is the archetypical model of
a symmetry protected topological (SPT) phase [4,37,72]. This
new state of matter is characterized by a gap in the bulk, an
even-degenerate ES, zero modes living at the ends of an open
chain and carrying fractionalized quantum numbers [36,37].
Moreover, long-range order associated with a hidden Z2 ⊗ Z2

symmetry is captured by the nonlocal order parameter

Cα
str (i, r ) = −

〈
Sα

i

i+r−1∏
j=i+1

exp
(
iπSα

j

)
Sα

i+r

〉
, (31)

which is nonvanishing for r → ∞ for α = x, y, z (we focus
in the following on the z component and drop the index α).
In this work we considered two points in the phase diagram
of the XXZ spin-1 chain, whose Hamiltonian is the same as
Eq. (25), but with the Sα matrices being the spin-1 representa-
tion of the rotation group. The Haldane SPT phase extends in
the parameter region 0 < � � 1.17 and it is separated from a
gapless XY phase (on the left) by a BKT phase transition at
� = 0 and from a Néel phase (on the right) by a second-order
c = 1/2 phase transition at � 	 1.17 [73].

We computed the ratios Eq. (14) obtained from the ES
and from the LBW-EH for the two values of the anisotropy
parameter � = 0 and � = 1 (for additional results on the ES,
see Ref. [8]). In the former case, as already discussed in the
previous sections, Eqs. (2), (10), and (11) have to yield the
proper EH for OBC, PBC, gapped, and gapless systems. At
� = 1 instead the gap spoils conformal invariance and we do
not expect Eq. (10) to work accurately.

The results are plotted in Fig. 19. At the � = 0 BKT
transition point maximum relative errors are 2% for both the
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FIG. 19. Ratios κα for the XXZ spin-1 chain. The black solid
line and red circles stand for ratios computed from the exact ES
and the EH spectrum, respectively. The blue dashed line marks ρA

eigenvalues with the magnitude indicated in the legend. In the gapped
Haldane phase � = 1 the EH Eq. (3) does not give the proper ES and
relative discrepancies of the κα overcome 10% for modestly large ρA

eigenvalues.

OBC and PBC cases and for all the eigenvalues considered.
In the gapped topological phase instead the same is true only
when OBCs are imposed on the system. In the PBC case
relative discrepancies overcome 10% (still, degeneracies are
accurately reproduced). Note also that the typical ES even
degeneracy of the Haldane phase is perfectly captured by the
BW theorem in the OBC case.

Figure 20 shows the density map of the overlaps defined
in Eq. (15) for the � = 0 BKT critical point and for the
� = 1 isotropic point in the topological phase. Eigenvectors
of ρA and ρEH overlap with deviations from unity of order
10−3 both in the gapped topological phase and at the gapless
critical point. The reason why they are not properly ordered

FIG. 20. Same as in Fig. 3 for the s = 1 XXZ chain at the BKT
critical point � = 0 and in the Haldane phase � = 1. The several
points outside the main diagonal all correspond to (almost) exact
degeneracies in the spectrum.
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FIG. 21. Nonlocal order parameter as defined in Eq. (31) for the
s = 1 XXZ chain at � = 1.0. The square (black) and circle (red)
points are results for the original and the half-bipartition EH-BW
systems, respectively. Relative errors are uniform and of order 10−4.

is the even (topological) exact degeneracy of the ES. The
good agreement between the two sets of eigenvectors extends
also when CFT EH Eq. (10) is used in the massive phase.
This can be explained computing the correlation length of
the system ξ = v/m. The gap at the isotropic point is known
to be m 	 0.40 [23], while the light velocity is estimated in
the following to be v 	 2.5. Thus ξ is larger than 6 lattice
spacings, making the CFT predictions very accurate despite
the nonvanishing gap.

The observable we test in this model is the nonlocal order
parameter (31) along z in the Haldane phase at � = 1. In
this case the light velocity necessary to compute the entan-
glement temperature is not known. We thus compute it using
the relation between ρA and EH eigenvalues as discussed in
Sec. III C by using Eq. (29). The result we get is independent
of α within a few percent relative error, both in the OBC and
PBC cases and for all the lowest 30 eigenvalues computed.
We then tuned β in order to remove completely boundary
effects close to the cut. In this way we get a sound velocity
v = 2π/β = 2.475. The results for the string order parameter
are reported in Fig. 21. The data correspond to a string starting
in the middle of the right half subsystem (i = L/4) and ending
in the middle of the left half (i = −L/4). Relative deviations
of the ground state average from the thermal expectation value
are uniformly of order 10−4.

E. J1- J2 model

As a final test for the 1-dimensional case, we discuss
the J1-J2 quantum model, which includes next-to-nearest-
neighbor interactions. The Hamiltonian of this spin-1/2 quan-
tum chain reads

H = J1

∑
i

�Si · �Si+1 + J2

∑
i

�Si · �Si+2, (32)

where J1, J2 > 0 will be considered in what follows. When
J2 = 0 this model coincides with the XXZ chain at the BKT
critical point. When J2 is switched on, the model remains
critical for a finite interval in J2/J1 and it is described by
a c = 1 CFT with the same Luttinger parameter K = 1/2
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FIG. 22. Ratios κα for the J1-J2 chain with OBCs. The black
solid line and red circles stand for ratios computed from the exact ES
and the EH spectrum, respectively. The blue dashed line marks ρA

eigenvalues with the magnitude indicated in the legend. Agreement
with the BW theorem is good in the middle of the critical phase and
close to it (relative deviations smaller than 10%), while it gets worse
as J2/J1 is increased away from the critical line (relative deviations
larger than 20%).

throughout the whole interval [74]. When J2/J1 reaches the
approximate value J2/J1 	 0.2411 [75], a gap opens and the
system enters a dimerized phase characterized by a nonvan-
ishing dimer-order parameter

di = 〈�S2i−1 · �S2i〉 − 〈�S2i · �S2i+1〉. (33)

This phase contains an exactly solvable point for J2 = J1/2
[76], where the ground state factorizes into a product of spin-1
singlets on adjacent sites:

|ψ〉 =
L/2⊗
a=1

|↑↓〉 − |↓↑〉√
2

.

At this fine-tuned point the entanglement spectrum of the
system is trivial, with either one or two equal nonvanishing
eigenvalues (depending on the cut). The same is not true
for the BW-EH spectrum. Moreover the gap in the dimer-
ized phase is maximum when J2 	 0.6J1 [77] and it slowly
decreases with increasing J2. We thus expect the worst re-
sults to be observed after the Majumdar-Ghosh factorization
point with finite J2. Note that the same behavior is expected
close to any factorizable point, as discussed in the context
of the Affleck-Kennedy-Lieb-Tasaki spin-1 chain in Ref. [8].
When J2 → ∞ the system reduces to two independent critical
Heisenberg chains.

Figure 22 shows the universal ratios Eq. (14) comparison
between the entanglement spectrum and LBW-EH spectrum
for the OBC case where the system is in the middle of the crit-
ical phase (J2 = 0.1J1), at the critical point (J2 = 0.2411J1),
and in the dimerized phase (J2 = 0.3J1 and J2 = J1). In the
first two cases the largest relative deviations are 2% and 8%,
respectively. When J2 = 0.3J1 the gap is small and large
discrepancies affect only eigenvalues in the ES smaller than
10−3, where they reach 10% relative error. When J2 = J1 the
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FIG. 23. Finite-size scaling of the ground state overlap M0,0 as
defined in Eq. (15) for the J1-J2 chain for both OBCs and PBCs and
for the three distinct values of the coupling constant g = 0.1 (gapless
critical phase), g = 0.3 (gapped phase close to the critical point), and
g = 1.0 (gapped phase with large gap). In the OBC case the overlap
decreases with the systems size, while it increases towards unity in
the PBC case.

gap is much larger and the BW theorem does not reproduce
the correct ratios for eigenvalues of the ρA of magnitude 10−2

and their degeneracies. Relative deviations are larger than
20% also for the first 10 ratios.

In Fig. 23 we also show the finite-size scaling of the
overlaps Eq. (15) for the ground state. The overlap always
increases for large system sizes in the PBC case, while it is
decreasing in the OBC case for the lengths accessible via ED.
We interpret the nonmonotonic behavior at g = 1 as a signal
of the dimer order in the gapped phase.

IV. TWO DIMENSIONS

Differently from the one-dimensional case discussed so
far, direct studies of entanglement Hamiltonians in interacting
2D and 3D models are lacking apart from the few aforemen-
tioned cases discussed within perturbation theory. As such, the
potential of applying the BW theorem reliably to the lattice
model can be of even stronger impact than in 1D systems. A
closely related subject concerns the topological matter, where
Li and Haldane conjectured that the low-lying part of the ES
is capturing the edge mode energetics [36].

In this section, we check the applicability of the LBW-
EH for the two-dimensional XXZ model on a square lattice,
defined as

H = J
∑
〈i,j〉

(
Sx

i Sx
j + S

y

i S
y

j + �Sz
i S

z
j

)
, (34)

for both the cylinder and the torus geometries for which we
employ Eqs. (8) and (9), respectively.

We focus on two cases: (i) the isotropic, � = 1, and (ii)
the XX, � = 0 points. For these two values of �, the ground
state of the system spontaneously breaks the continuous
SU(2) and U(1) symmetries, respectively [78,79]. In the first
case, the low-lying field theory is a CP(1) model. In both
cases, the low-energy degrees of freedom of the system are
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FIG. 24. Nearest-neighbor spin correlation function as function
of bond index i for the 2D square lattice in the cylinder (BW)
geometry for (a) � = 1 and (b) � = 0. The different points are the
results of Cspin(�i, r = 1) in different paths of the 2D system: red
squares, blue triangles, and green diamonds are along (ix = i, iy =
1), (ix = L, iy = i ), and (ix = 1, iy = i ), respectively; see cartoon.
In addition, the black curves are the exact ground state results for the
system 20 × 10.

characterized by a linear dispersion relation, and Lorentz
invariance emerges as an effective low-energy symmetry.

Differently from the one-dimensional cases considered in
the last section, exact diagonalization approaches are of little
use here, as the LBW-EH approach cannot exploit lattice
symmetries, as it is limited to very small lattices where
universality is most probably spoiled by finite-volume effects.

As such, we do not attempt comparisons based on the en-
tanglement spectrum and eigenvectors of BW-EH, but rather
focus directly on the expectation values of the first-neighbor
correlation function

Cspin(�i, �r ) = 〈
Sz

�i S
z
�i+�r

〉
(35)

and the AFM order parameter. The sound velocities v =
1.657J (� = 1) and v = 1.134J (� = 0) obtained in
Refs. [80] and [79], respectively, are used to calculate βEH =
2π/v.

First, we discus the comparison of the BW-EH Cspin(�i, r =
1) in the cylinder geometry with exact results; see Fig. 24.
Even for the relatively small system considered (L = 10), the
agreement of Cspin(�i, r = 1) with the exact results is very
good. The LBW-EH qualitatively reproduces the behavior
of Cspin(�i, r = 1), and the relative errors are <1%. Larger
deviations are observed for correlations along the boundary
between the two subsystems, see green curve, and � = 1
(these deviations are much milder in the anisotropic case).

In the toroidal geometry, the exact formula of the modular
Hamiltonian is not known even in the continuum. Here,
we heuristically employ Eq. (9). In Fig. 25, we plot the
Cspin(�i, r = 1) for different system sizes in the torus geom-
etry. In this case, Cspin(�i, r = 1) is almost homogeneous, with
deviations smaller than <1%. Furthermore, as L increases
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FIG. 25. Cspin(�i, r = 1) as function of bond index �i = (ix =
i, iy = 1) for different system sizes, L, in the 2D torus (CFT1)
geometry. (a) � = 1 and (b) � = 0. The dashed horizontal line
for � = 1 is the exact result of Cspin(�i, r = 1) extrapolated to the
L → ∞ limit [78].

the BW-EH results approach the exact results obtained in the
thermodynamic limit L → ∞. This strongly suggests that the
employed Ansatz, while not necessarily exact, provides a very
accurate description of 2D EH on tori.

Finally, we discuss whether the BW-EH describes the
AFM long-range order in the � = 1 case. The AFM phase
is characterized by the order parameter

m2 =
〈

1

N2

∑
i,j

(−1)i+j SiSj

〉
, (36)

where i and j run through all the sites of the system and
N is the total number of spins. If AFM long-range order is
present, m2 is finite in the thermodynamic limit, since AFM
correlations remain nonzero at large distances. For a finite
system, 2L × L, split in two equal halves of sizes L × L, one
can write m2 = m2

A + m2
B + m2

A,B + m2
B,A, where m2

A and m2
B

are the contributions of subsystems A and B, respectively,
and m2

A,B and m2
B,A are contributions of crossing terms. In the

limit N → ∞, all these four terms are equal, and m2 = 4m2
A.

Figure 26 shows the finite-size scaling of m2 obtained with
the BW-EH. As already observed for the first-neighbor corre-
lation functions, m2 is in good agreement with the exact result.
We obtain m2(L → ∞) = 0.0925(4) and m2(L → ∞) =
0.0934(1) for the cylinder and the torus geometries, respec-
tively. The relative errors with QMC exact results, m2(L →
∞) = 0.0948 [80], are εm2 ≈ 2.4% and εm2 ≈ 1.5%.

V. DISCUSSION AND CONCLUSIONS

We have discussed an approach to systematically build ap-
proximate entanglement Hamiltonians of statistical mechan-
ics models by applying the Bisognano-Wichmann theorem
on the lattice. Starting from a recasting of the latter theorem
on discrete space, we have presented a series of diagnostics
based on the entanglement spectrum, the eigenvectors of the
reduced density matrix, and expectation values of correlation
functions. Based on these quantities, we have carried out
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FIG. 26. Finite-size scaling of m2 for the EH-BW system (L×L)
in both the cylinder (black square) and torus (red circle) geometries.
The horizontal line represent the exact QMC value of m2 obtained in
Ref. [80].

numerical simulations for both 1D and 2D models whose low-
energy physics is captured by a Lorentz-invariant quantum
field theory.

In critical cases, such as conformally invariant points and
phases in 1D and spontaneous-symmetry-breaking phases in
2D, our results strongly support that the lattice Bisognano-
Wichmann entanglement Hamiltonian captures very accu-
rately all properties of the original system. What is partic-
ularly striking is that even the eigenvectors of the reduced
density matrix have very large overlaps, which seem not to
vanish with increasing system size. This last fact is par-
ticularly surprising, as overlaps are quantities that typically
vanish in the TD limit, suggesting that there might be deeper
connections between the structure of the EH and the BW
theorem directly at the lattice level. Let us also remark that
our results show that the modified CFT formulas obtained by
Cardy and Tonni [22] cope extremely well with finite-lattice
spacing and, in fact, considerably reduce finite-size effects
when compared to the infinite-size BW-EH.

In gapped systems, we typically find good agreement
for both topologically trivial and nontrivial phases, with the
exception of the J1-J2 model; in this last case, the effects
of strong dimerization considerably spoil the applicability
of field theory results, as the phase itself does not support
a description in terms of smoothly varying fields. Some-
what surprisingly, degeneracies of the ES are well captured,
and even the overlap of the entanglement ground state is
anomalously large. In all cases investigated here, the CFT
EH obtained with PBCs seems to apply equally well to both
critical and off-critical cases. In analogy to the OBC case,
we attribute this behavior to the fact that, sufficiently away
from the boundary, the exact functional form of the EH is not
relevant as its ground state is locally the same as the original
system.

At the methodological level, our study shows that well-
established statistical mechanics tools such as DMRG and
quantum Monte Carlo can be applied without major effort
to the investigation of entanglement Hamiltonians. A first
potential application along this route is the potential to carry
out systematic entanglement spectroscopy with QMC, not re-
lying on reconstructing the ES from Rényi entropies [81], but
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rather on monitoring correlation functions in the entanglement
ground state, and extract the corresponding entanglement gaps
from the decay of correlation functions. A second application
concerns the possibility of further severely reducing finite-
size effects when measuring correlation functions by directly
accessing a finite bipartition of an infinite system [82]. A
third application is related to boosting procedures employed to
extract the entanglement Hamiltonians given a ground state of
interest, as discussed in two recent works [83,84]. Our general
analysis supports from the theoretical side the results obtained
for the models considered in these works. Furthermore, from
the experimental side, our results immediately extend the
regime of applicability of the approach proposed in Ref. [8]
to perform quantum simulation and spectroscopy of the EH,
especially in two-dimensional interacting models, including
connections to Unruh-type effects [85].

The discussion we have presented here only concerns sta-
tistical mechanics models whose Hilbert space can be written
in tensor product form. An open question is to extend this
approach to lattice gauge theories; in this context, a lattice
version of BW can be constructed using established methods
to properly build reduced density matrices that consider the
effect of the Gauss law at the boundary between two par-
titions [86,87]. Another important feature of our approach
is that for critical systems, it is limited to quantum field
theories with z = 1. While this encompasses a very broad
class of quantum critical points, it would be interesting to
extend the Bisognano-Wichmann theorem beyond its original
applicability regime, thus providing a direct link between the
dispersion relation of equilibrium systems and their ground
state entanglement properties. Extending this correspondence
could shed further light onto the origin of the area law (and
violations thereof) of entanglement in the ground state of
lattice models [3].
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APPENDIX: AUTOCORRELATION TIMES IN MONTE
CARLO SIMULATIONS OF THE LATTICE

BISOGNANO-WICHMANN ENTANGLEMENT
HAMILTONIAN

In this appendix we discuss the efficiency of the stochas-
tic series expansion (SSE) method [56,57] in simulat-
ing Bisognano-Whichmann entanglement Hamiltonians (BW-
EHs). The BW-EH can be interpreted as a Hamiltonian with
a local effective inverse temperature β that increases away
from the boundary. Thus, far away from the boundary, one
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FIG. 27. Integrated autocorrelation time τint of Cspin(i, r = 1) as
function of system size L for (a) OBC (BW) and (b) PBC (CFT1).
The different points circle (black curve), square (red curve), and
diamond (green curve) respectively represent positions i = 1, i =
L/2, and i = L − 1 in the chain. The inset in panel (a) shows A(t )
as a function of t for L = 50 and OBCs.

issue that can arise in the simulations is the slowing down
of autocorrelation times of local observables. Here we show
that the SSE (with directed-loop updates) simulations of the
BW-EH do not suffer from this problem.

The efficiency of the SSE scheme in generating indepen-
dent configurations is probed by the autocorrelation time.
For a quantity Q, the normalized autocorrelation function is
defined as [88,89]

A(t ) = 〈Q(i + t )Q(i)〉 − 〈Q(i)〉2

〈Q(i)2〉 − 〈Q(i)〉2
, (A1)

where 〈Q(i)〉 and 〈Q(i + t )Q(i)〉 are averaged values of Q

performed in two different MC steps separated by t . The
definition of the unit of MC step used here is the same
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FIG. 28. Same plot as Fig. 27 for a two-dimensional system.
The different points circle (black curve), square (red curve), and
diamond (green curve) respectively represent positions (i = 1, 1),
(i = L/2, 1), and (i = L − 1, 1) in the square lattice. The inset in
panel (a) shows A(t ) as a function of t for L = 30 and OBCs.
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employed in Ref. [57]. Asymptotically, the autocorrelation
function decays exponentially e−t/τ , where τ is the autocor-
relation time. Measurements of Q are independent when t

exceeds τ . Furthermore, the integrated autocorrelation time
is defined as

τint = 1

2
+

∞∑
t=1

A(t ). (A2)

Figure 27 shows the integrated autocorrelation time of
the first-neighbor correlation function, C(i, r = 1), of a one-
dimensional system for different positions. We consider both
the OBC and PBC entanglement Hamiltonians. Near the
boundary, τint ≈ 3, and it is almost independent of system
size. In contrast, for the farthest bonds from the boundary, the

increase of τint with L is stronger, and τint ≈ 20 for the largest
system considered here, which is related to the increase of the
effective local “beta” of the EH. It is important to mention,
however, that the typical number of MC measurements used
here is Nmeas � τint (Nmeas ≈ 108). Thus we can obtain very
precise estimators for Cspin(i, r = 1).

Similarly to the 1D case, the autocorrelation times of the
first-neighbor correlation in 2D is much smaller then the
typical number of MC measurements considered, Nmeas �
τint; see Fig. 28. In this case, τint is even smaller then the values
obtained for 1D systems. This difference between the 1D and
the 2D simulations is related to the the loop sizes built in the
directed-loop updates. In two dimensions the loops are much
larger [57], improving the efficiency of the simulation of the
BW-EH.
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