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Akhiezer mechanism limits coherent heat conduction in phononic crystals
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Heat in phononic crystals (PnCs) is carried by phonons, which can behave coherently (wave-like) or
incoherently (particle-like) depending on the modes, temperature, and length scales. By comparing the measured
thermal conductivity of PnCs with theories, recent works suggest that thermal conductivity of PnCs can be
explained by considering only surface and boundary scatterings, which not only backscatter phonons but
also break their coherence. The logic here is that since average phonon wavelength at room temperature is
only a few nanometers, the roughness at the surfaces and boundaries make the scattering diffusive (break the
phase coherence of phonons), and thus only very long wavelength (low frequency) phonons with negligible
contribution to total thermal conductivity remain coherent. Here, we theoretically show that in a thin film PnCs,
the low frequency coherent phonons could significantly contribute to thermal conductivity when assuming the
three-phonon scattering model for intrinsic scattering because of their extremely large density of states that result
from the low dimensional nature. Yet, further analysis shows the contribution of the low frequency coherent
phonons is still negligible within temperature range from 130 to 300 K due to the Akhiezer mechanism, which
properly answers the question why the thermal conductivity of PnCs can be explained by considering only
scattering of incoherent phonons at these temperatures.
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I. INTRODUCTION

Phononic crystals (PnCs) with specifically designed pe-
riodic structures are meant to manipulate propagation of
phonons using the coherent effect. In such a case, phonons
follow the dispersion relation of PnCs, whose branches are
folded and have band gaps, which reduce group velocity,
and hence result in reduction of thermal conductivity [1].
The benefit of manipulating thermal conductivity of PnCs
using the coherent effect is that it has smaller influence on
electrons. Therefore, they are regarded as attractive candidates
for enhancing the figure of merit of thermoelectric materials.

The promising prospect of controlling phonons by using
the coherent effect in periodic structures has triggered many
experimental measurements of the thermal conductivity of
PnCs. The most popular class of PnCs is silicon thin films
with periodic holes as they can be fabricated by conventional
microfabrication technique. However, the reduced thermal
conductivity in PnCs can be attributed to phonon coherent
effect only for temperatures below 10 K [2,3], and recent
theoretical works have confirmed that thermal conductivity of
PnCs seen at room temperature in some of the early works
can be explained by considering only scattering of incoher-
ent phonons (i.e., phonons that lose phase and follow the
dispersion relation of bulk crystals instead of the dispersion
relation of PnCs), that is to say that coherent phonons have
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negligible effect on the thermal conductivity of PnCs at room
temperature [4,5].

A possible theoretical explanation for the negligible con-
tribution of coherent phonons is that the coherent transport re-
quires atomically smooth boundary surfaces, and the absence
of impurities and defects [6–9], which can only be realized
in limited structures such as superlattices [10,11]. As a result,
in PnCs, coherence of thermal phonons, whose wavelengths
are only a few nanometers at room temperature, is lost when
scattered by nanoscale roughness and disorders. Therefore,
room temperature coherent transport only occurs for long-
wavelength or low frequency phonons (<200 GHz [3,8]) with
large relaxation time, but their small density of states makes
the contribution to thermal conductivity negligible. The logic
of the above explanation is true for bulk crystals but fails in
the case of the usual PnCs that take the form of films because
these low frequency coherent phonons have extremely large
density of states owing to the low dimensional nature of the
PnCs [12,13]. This leads to the result that even very low
frequency coherent phonons could significantly contribute to
thermal conductivity when only considering the three-phonon
scattering mechanism for evaluating intrinsic phonon relax-
ation time (here, intrinsic relaxation time is referred to as the
lifetime due to phonon-phonon interaction [14]), as will be
discussed later. That is to say thermal conductivity of PnC
cannot be explained by a boundary scattering of incoherent
phonons if only considering three-phonon scattering. There-
fore, the reason for the negligible contribution of coherent
phonons remains unclear.
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In fact, the large contribution of low frequency coherent
phonons suggests that more detailed discussion should be
given to their relaxation time. Indeed, for low frequency
phonons at room temperature, the consideration of only the
three-phonon scattering mechanism is not sufficient. Experi-
mental measurements and theoretical works have shown that
relaxation time of low frequency phonons (sound waves) is
dominated by Akhiezer damping rather than the three-phonon
scattering mechanism (Landau-Rumer theory) in a variety of
bulk materials [14–19]. The mechanism of Akhiezer damp-
ing is a coupling of the strain of sound waves and thermal
phonons: sound wave strain disturbs the local occupation of
thermal phonons whose frequencies depend on strain, and
the thermal phonons then collide with one another, returning
the system to local thermal equilibrium as energy is removed
from the sound waves [15]. Such a mechanism should also
affect the relaxation process of coherent phonons in PnCs,
which have frequencies within the subterahertz (sub-THz)
range, and are basically sound waves. Since the original
work of Akhiezer, the mechanism of Akhiezer was found to
be important for the absorption of sound waves, as well as
for energy dissipation in mechanical nanoresonators [20,21],
however, few studies have noticed its importance in the field
of heat conduction.

In this paper, we show that the Akhiezer mechanism plays
an important role in heat conduction for low dimensional ma-
terials like PnCs. We theoretically illustrate that the Akhiezer
mechanism significantly reduces contribution of coherent
phonons to thermal conductivity of PnCs at the temperature
regime from 130 to 300 K to the extent that it becomes
intrinsically small even when there is no roughness, thus,
properly answering the question why the thermal conductivity
of PnC can be explained by considering only scattering of
incoherent phonons.

II. THEORY FOR THERMAL CONDUCTIVITY OF
COHERENT AND INCOHERENT PHONONS

The total thermal conductivity κTotal of thin film and PnCs
includes the contributions of both coherent (κcoh) and incoher-
ent phonons (κinc), which is expressed as [22]

κTotal(ωs ) = κcoh(ωs ) + κinc(ωs ), (1)

where ωs is the upper frequency bound of the coherent regime,
in other words, the switching frequency between the coherent
and incoherent regimes.

We calculate the contribution from incoherent phonons
(κinc) of thin films and PnCs based on the kinetic theory, which
is expressed as

κinc(ωs ) =
∫ ∞

ωs

C(ω)Dbulk (ω)vbulk (ω)l(ω)dω, (2)

where ω is the frequency; C(ω), Dbulk (ω), vbulk (ω) denote the
frequency dependent heat capacity, the bulk density of states,
and group velocity, respectively. l(ω) is the effective mean
free path (MFP) of incoherent phonons obtained by Monte
Carlo ray-tracing method [23].

Similarly, contribution of coherent phonons to thermal
conductivity (κcoh) of thin films and PnCs is calculated by

κcoh(ωs ) =
∫ ωs

0
C(ω)D(ω)vg (ω)2τ (ω)dω, (3)

where D(ω), vg(ω) = ∂ω/∂q and τ (ω) denote the frequency
dependent density of states, group velocity, and relaxation
time for coherent phonons in thin films and PnC, respectively.

The parameters C(ω), D(ω), and vg(ω) in Eq. (3) can be
calculated from phonon dispersion of thin films and PnCs,
which is obtained by solving the continuum-based elastic
wave equation using the finite element method (FEM) [13]:

μ∇2u + (μ + λ)∇(∇ · u) = −ρω2u, (4)

where u is the displacement vector, ρ = 2329 kg m−3 is the
mass density of the silicon crystal, and λ = 69.3 GPa and μ =
81.3 GPa are the Láme parameters of the silicon crystal.

As discussed in Sec. I, relaxation of coherent phonons
is expected to take two forms: the three-phonon scattering
mechanism (Landau-Rumer theory) and Akhiezer damping.
The relaxation time due to the three-phonon scattering mech-
anism is approximated by the Klemens model, which has been
widely used and validated [24,25]

τ−1
K = BT ω2, (5)

where T is the temperature, and B is a constant often quanti-
fied empirically.

It should be noted that Landau-Rumer theory is also
based on the concept of three-phonon scattering, however, it
only includes sound-phonon-phonon interactions. Here, we
use the three-phonon scattering model instead as it also in-
cludes sound-sound-sound and sound-sound-phonon interac-
tions, which is a more accurate description. On the other hand,
the relaxation time of Akhiezer damping is modeled using the
expression derived by Maris [17]

τ−1
A = CvT

ρv2
· ω2τph(〈γ 2〉 − 〈γ 2〉)

1 + ω2τ 2
ph

, (6)

where Cv is the specific heat capacity per volume, γ is the
Grüneisen parameter, v is the phonon phase velocity, and τph

is the averaged relaxation time of thermal phonons.
Here, we include the mechanisms of both three-phonon

scattering and Akhiezer damping into phonon relaxation time
τ by using Matthiessen’s rule as [14,16]

τ−1 = τ−1
K + τ−1

A . (7)

Equation (6) shows that phonon relaxation time first yields
a quadratic frequency dependence for the lower frequencies,
with a factor almost three orders of magnitude smaller than
the three-phonon scattering, and in the high-frequency limit
of the Akhiezer model (around tens of GHz), the lifetime is
independent of frequency, and becomes constant [14]. This
and Eq. (7) indicate that the relaxation time of phonons
first follows the Akhiezer model and then transits to three-
phonon scattering when phonon frequency becomes higher.
The transition frequency between three-phonon scattering and
Akhiezer’s damping is expected to happen around several
hundred GHz, which was experimentally observed by Hasson
and Many [19]. The transition zone of the two scenarios was
observed by Maznev et al. at room temperature [14].
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FIG. 1. (a) Schematic of a two-dimensional silicon phononic
crystal (PnC). t = 150 nm, w = 100 nm, and d = 80 nm denote the
height, width, and hole diameter of the PnC, respectively. (b) Phonon
dispersion relation of PnC along G-X. (c) Frequency-dependent
phonon group velocity of PnCs and thin film.

III. COHERENT HEAT CONDUCTION

A. Structures, Dispersion Relation, and Group velocity

We considered a two-dimensional (2D) silicon thin film
with periodic cylindrical holes, which is the most frequently
studied representative PnC [3] [Fig. 1(a)]. The height t , width
w, and hole diameter d of the PnC are set to 150 nm, 100 nm,
and 80 nm, respectively. A folded dispersion relation in the
frequency range of 0–160 GHz [Fig. 1(b)] is obtained by
solving Eq. (4) with 2D periodic boundary conditions. It is
shown that the folded dispersion curves become flatter as fre-
quency increases, which indicates reduction in group velocity
[Fig. 1(c)]. Furthermore, although the frequency-dependent
profile of group velocity is scattered, when smoothed by
averaging the group velocities for each frequency, the profile
in the range between 80 and 160 GHz shows a clear power-law
frequency dependence. An exponent of −1.41 is obtained
by fitting a power law to the data in this frequency range.
The fitting curve was then extrapolated to obtain average
group velocity in higher frequency regimes. Note that the
extrapolation is needed because the computational load to
calculate full dispersion relations of higher frequency phonons

would become too large. The validity of the extrapolation
was confirmed by calculating tens of branches of dispersion
around given frequencies within 1THz, and the average group
velocities around given frequencies were confirmed to agree
with the fitting curve. With the same approach as for PnC,
we also obtained group velocity of a thin film with the same
thickness (150 nm), and only average group velocity is plotted
[Fig. 1(c)]. It is shown that the average group velocity of a thin
film is larger than that of the PnC because periodic structures
in PnC cause larger bandgaps, which reduce group velocity.

B. Temperature Dependent Phonon Relaxation Time

First, to show the validity of the calculation, we obtained
the phonon relaxation time of bulk silicon crystals from first-
principles-based lattice dynamic calculation, which agrees
with experimental data at a temperature range of 130–300 K
[Fig. 2(a)]. The maximum difference between our calcula-
tion and experimental data is 25%. It is clear that, for a
given temperature, phonon relaxation time deviates from the
three-phonon scattering scenario, and transits to the Akhiezer
damping scenario when phonon frequency becomes GHz. As
a result, the relaxation time of low frequency phonons is
reduced by 3 orders. It should be noted that the transition
between the two scenarios has been investigated only at room
temperature for Si and GaAs-AlAs superlattices [14]. Here, in
Fig. 2(a), by comparing experiment data with our calculation,
we observed that the transition takes place at ∼200 GHz for
200–300 K, and ∼100 GHz for 130 K.

Now that the calculation is validated, we obtained the
relaxation time of the acoustic branches (<12 GHz) for PnCs,
as plotted in Fig. 2(b), taking the case of 300 K as an example.
It is shown that the trend of the relaxation time for the
longitudinal mode of PnCs agrees with that of bulk crystals,
however, the magnitude is smaller due to the folding effect,
which yields phonon bandgaps and reduces phase velocity
v. Other acoustic branches show similar characteristics. For
optical phonons, instead of replacing phase velocity v in
Eq. (6) by group velocity vg, as in the work of Chavez-Angel
et al. [26], we approximated v by the average phase velocity
of all acoustic branches considering that optical branches
are folded acoustic ones. One can observe that phonon re-
laxation time transits to that of three-phonon scattering as
frequency increases, which indicates that three-phonon scat-
tering mechanism is the dominant phonon decay process for
high frequency phonons. Similar relaxation time transitions
also happens for the 2D thin film; the difference is that the
average relaxation time of the thin film is larger than that of
PnC due to a larger phase velocity v, which resulted from
smaller bandgaps in dispersion relations of thin films.

C. Influence of Akhiezer Damping on Thermal
Conductivity of Coherent Phonons

Next, we discuss how much the transition from three-
phonon scattering to Akhiezer damping can affect thermal
conductivity of both bulk crystals, thin films, and PnCs. We
first verified that such a transition has a negligible effect on the
total thermal conductivity of bulk crystals when temperature
is below 300 K. As for thin films and PnCs, we assume
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FIG. 2. (a) Frequency and temperature dependent phonon relaxation time for bulk silicon crystals. The dashed lines are calculated results
for longitudinal modes (LA) at different temperatures. Experimental data are measured results for LA modes and are taken from Refs. [15,27–
29] (b) Frequency-dependent relaxation time of thin film and PnCs at 300 K, and a comparison with bulk phonon relaxation time for LA modes
and modes in full Brillion zone (FB). The boundary of Akhiezer and three-phonon-scattering regimes at 300 K is around 200 GHz. Note that
“three-phonon scattering+Akhiezer” in Fig. 2 means the relaxation time calculated using Eq. (7).

the switching frequency ωs as 0.2 THz, i.e., the coherent
regime is 0–0.2 THz, and leave the discussion of frequency
dependence on the coherent regime for later, as it does not
affect the discussions here. It should be noted that the coherent
regime here (0–0.2 THz) is not taken randomly, but matches
with the case that the thin film and PnC have a 2-nm-surface
roughness [3,8], which is the average value of the most
frequently measured roughness in experiment (1–3 nm). The
method for determining the coherent regime by roughness is
discussed in the Appendix. The κinc is obtained by Monte
Carlo ray-tracing calculation, in which boundary scattering
of incoherent phonons is included. In the case of coherent
phonons behaving as waves, the boundary effect is included
as the folded dispersion of coherent phonons (Fig. 1), which
are formed when the phonons are reflected without dephasing
at the periodic boundaries.

A comparison of thermal conductivity of a thin film and
a PnC with two different relaxation time τ models (with and
without Akhiezer, as in Eq. (6) and Eq. (7), respectively) for
130 and 300 K is shown in Fig. 3. First, we discuss the results
when there is only three-phonon scattering. In this case, κcoh

of the thin film within 0–0.2 THz is 5 Wm−1 K−1 at 300 K and
17.8 Wm−1 K−1 at 130 K, which contributes about 7.4% and
15.2% of κTotal for 300 and 130 K, respectively [Fig. 3(a)]. The
proportion of κcoh in κTotal becomes even larger for PnCs due
to larger density of states, which will be shown later. At 300 K,
κcoh of PnC is 9.5 Wm−1 K−1, which contributes 53% of κTotal

for PnC. At lower temperature of 130 K, κcoh of PnC reaches
33.3 Wm−1 K−1, and contributes to 81.1% of κTotal for PnC. If
this is the case, the total thermal conductivity of PnCs cannot
be explained by scattering of incoherent phonons, which is not
the actual situation of previous theoretical and experimental
results [3–5]. As discussed in Secs. I and III B, for low
frequency phonons, only considering three-phonon scattering
is not enough, Akhiezer damping should be considered as a
key issue for the relaxation process of these phonons, and
it can be included in phonon relaxation time using Eqs. (5)
and (6). For the case where Akhiezer damping is considered,
κcoh of both thin film and PnC is smaller than 0.5 Wm−1 K−1

for 300 and 130 K, and the proportion of κcoh in κTotal

is less than 1%, which indicates that κcoh is negligible in
both thin film and PnC for 130–300 K [Fig. 3(b)], and that
κTotal is almost dominated by the incoherent part κinc. The
implication here is that, for low dimensional materials like
thin films and PnCs, it is important to take Akhiezer damping
into account to properly evaluate the relaxation time of low
frequency phonons, otherwise, their contributions to thermal
conductivity can be hugely overestimated by only considering
three-phonon scattering.

D. Phonon Density of States

From Sec. III C, we see that Akhiezer damping does not
influence the total thermal conductivity of bulk silicon crystals
but has a large influence on thermal conductivity of PnCs.
The reason lies in density of states, D(ω) (Fig. 4). In bulk
crystal, D(ω) is proportional to ω2, which indicates that
D(ω) of low frequency phonons is very small. Therefore,
even relaxation time of these phonons is overestimated by
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FIG. 3. A comparison of thermal conductivity of thin films and
PnCs with two different relaxation time τ models at 130 and 300 K
for a 2-nm roughness. (a) τ model: only three-phonon scattering;
(b) τ model: three-phonon scattering and Akhiezer damping. The
coherent regime is determined as 0–0.2 THz for 300 and 130 K when
there is a 2-nm roughness.
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FIG. 4. Frequency-dependent density of states D(ω) of thin films
and PnCs, and a comparison with density of states of bulk silicon
crystals.

only considering the ω−2-dependent three-phonon scattering;
their contributions to the total thermal conductivity of bulk
silicon crystal is still negligible, in other words, we do not
need to consider the Akhiezer damping effect on the thermal
conductivity of bulk crystal.

However, in PnCs, D(ω) transits from 3D to 2D to 1D as
frequency decreases due to coherent effect, and accordingly,
the frequency dependence of D(ω) changes from ω−2 to ω−1

to ω0. As a result, D(ω) of low frequency phonons in the thin
film and PnC is much larger than D(ω) in bulk crystals, which
leads to a significant overestimation of κcoh in thin films and
PnCs when only considering the ω−2-dependent three-phonon
scattering for intrinsic relaxation time. We also noticed that, in
the case without Ahkiezer damping, κcoh for PnC is larger than
κcoh of the thin film [Fig. 3(a)], even phonon group velocity is
larger for the thin film (Fig. 1). This is because the D(ω) of the
acoustic phonon (<12 GHz) in PnCs is four times larger than
the D(ω) of the acoustic phonon in thin films, which would
lead to severe overestimation κcoh for PnC.

The conclusion for Sec. III is that, although the existence
of a 2-nm-surface roughness makes the coherent regimes very
small (0–0.2 THz), the density of states of the low frequency
coherent phonons is much larger than that of bulk silicon
crystals, therefore, these phonons have a large potential to
contribute to thermal conductivity when only three-phonon
scattering is considered. However, when the Akhiezer mech-
anism is involved, relaxation time of these phonons is hugely
reduced, and as a result, the proportion of κcoh in κTotal for
both the thin film and PnC is negligible (<1%), which is
why the total thermal conductivity of the thin film and PnC,
κTotal can be explained by considering only the contributions
of incoherent phonons κinc.

The current result is consistent with the recent experi-
mental and theorertical works on thin film PnCs [3–5]. They
have successfully reproduced the experimental results with
Monte Carlo calculations by ignoring the contribution of the
sub-THz phonon to thermal conductivity. The fact that a
calculation could reproduce the experiments means that the
Akhiezer damping has suppressed the phonon relaxation time,
and that the results are consistent with our work. Although
the actual geometry of our PnC and these works are different,
the above discussion on the dimension and contribution of

sub-THz phonon contribution should be applicable to PnC
with thickness and holes on the order of 100 nm.

IV. SWITCHING-FREQUENCY-DEPENDENT COHERENT
AND INCOHERENT HEAT CONDUCTION

So far, our discussion has been based on the assumption
that the roughness of the thin film and PnC is 2 nm, and
the switching frequency ωs is ω0(= 0.2 THz). However, the
ωs can change when roughness on the surface is modified.
Therefore, in what follows, we consider ωs as a variable to
investigate contributions of coherent phonons to thermal con-
ductivity. Note that this also helps gain understanding of the
case with no roughness, which is the theoretical upper limit
of the contribution of coherent phonons. Nevertheless, we can
determine the maximum value of ωs using the criterion that
the MPF of bulk phonons should be at least larger than several
periods of periodic structures in PnCs (here, it is 100 nm).
The reason is that coherent length should be smaller than
MFP bulk phonons, and MFP are required to be sufficiently
long such that they can cross several periodicities, thereby
creating many secondary waves to achieve the interference
effect, which results in the folded dispersion relation of PnCs
[6]. The minimum number of periodicity is two (the phonon
passes though the PnC and then is reflected back), which gives
the upper bound of ωs.

If ωs < ω0, κcoh within 0−ωs can be directly calculated by
Eq. (3) with their full dispersion relations, whereas if ωs > ω0,
the contributions of coherent phonons from ω0 to ωs is esti-
mated by the averaging method due to a lack of information
in the full dispersion relation. In the averaging method, we
approximate the phonon group velocity and density of states
in Eq. (1) with the averaged group velocity obtained by the
fitting curve [Fig. 1(c)], and bulk phonon density of states
(Fig. 4), respectively. The latter approximation is based on the
observation that density of states of PnCs and bulk crystal are
roughly the same for frequencies above ω0 (Fig. 4). Then, the
switching-frequency dependent κcoh(ωs) of PnCs or thin films
can be expressed as

κcoh(ωs ) = κ0 +
∫ ωs

ω0

C(ω)Dbulk (ω)vav (ω)2τ (ω)dω, (8)

where κ0 is the contribution of coherent phonons with fre-
quencies between 0 and ω0, and the second term represents the
contribution of coherent phonons with frequencies between
ω0 and ωs, where vav(ω) is the averaged group velocity and
Dbulk (ω) is the bulk phonon density of states.

For a thin film and PnC at 300 K [Figs. 5(a) and 5(c)], the
maximum coherent regime is determined as 0–3.0 THz. We
found that κcoh of both the thin film and PnC are negligible
when compared to κinc, even when ωs reaches its maximum
(3 THz). The results indicate that κcoh contributes a very
small proportion of κTotal for both thin films and at 300 K,
even though there is no roughness effect. This is because of
two reasons: one is that the Akhiezer damping significantly
reduces the relaxation time of phonons in the Akhiezer regime
[<0.2 THz for 300 K, Fig. 3(b)], and the other is that the group
velocity of phonons in the three-phonon-scattering regime
[0.2–3.0 THz, Fig. 3(b)] is small due to phonon bandgaps that
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FIG. 5. Contributions of coherent and incoherent phonons to total thermal conductivity of thin films and PnCs as a function of switching
frequency at 300 and 130 K. The maximum coherent regime is determined as 0–3 THz at 300 K, and 0–4 THz at 130 K.

are caused by the folding effect. As a result, the contributions
of phonons within the whole coherent regime are limited.

As temperature decreased to 130 K [Figs. 5(b) and 5(d)],
the maximum value of ωs increased to 4 THz, and Akhiezer
damping is weakened due to a reduction in thermal phonon
population. Therefore, relaxation time of coherent phonons
increases (Fig. 2), however, Ahkiezer damping still has a
strong influence on the κcoh of the thin film and PnC. For
the PnC at 130 K, the maximum value of κcoh is only
0.1 Wm−1 K−1. In thin film, the value of κcoh is larger
when comparing with κcoh for PnC, and can contribute to
5.8 Wm−1 K−1 when ωs reaches its maximum (4 THz). This is
because group velocity of the three-phonon- scattering regime
(0.1–4 THz for 130 K) is larger than that of PnC (Fig. 1).
However, the proportion of κcoh in κTotal is still small (<8%).
We also noticed that for both thin film and PnC, sub-THz
phonons contribute to the most part of κcoh, and above THz
coherent phonons do not contribute much to κcoh due to their
small group velocity and relaxation time [Figs. 1(c) and 2].

Taking the most extreme case (no roughness) as an exam-
ple, a comparison of thermal conductivity of a thin film and
a PnC with two different relaxation time τ models at 130 and
300 K is shown in Fig. 6. The discussion here is similar to
Sec. III C. The coherent part, κcoh can contribute to a large
part of κTotal when not considering Akhiezer damping. In a
thin film, κcoh can contribute to about 11.2% and 28% of
κTotal for 300 and 130 K, respectively. For PnC, contributions
of κcoh can even reach to 56% at 300 K and 85% of κTotal.
However, Akhiezer damping can reduce the proportion to less
than 2% for PnC at both 300 and 130 K, and for the thin film,
the proportion is less than 2% at 300 K and around 8% at
130 K. The value of the proportions here is a little larger than
that in Sec. III C, however, it is still small. Therefore, we can
conclude that the contribution of coherent phonons κcoh to the

total thermal conductivity κTotal for both thin film and PnC is
very small, even if there is no roughness, or the κTotal for both
the thin film and PnC can be explained by the contributions of
incoherent phonons.

Finally, it should be noted that currently our calculation
cannot deal with the cases for temperatures below 130 K.
The reason is that the Ahkiezer mechanism, as originally
developed, is only valid at high temperatures, however, even
now the exact valid temperature regime is not known. We
can extend our calculation to 130 K because the experimental
measurements match with theoretical calculations (Fig. 2).
More experimental measurements are still needed below
130 K. On the other hand, the equation for Ahkiezer damping
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FIG. 6. A comparison of thermal conductivity of a thin film
and PnC with two different relaxation time τ models at 130 and
300 K for the most ideal case (no roughness). (a) τ model: only
three-phonon scattering; (b) τ model: three-phonon scattering and
Akhiezer damping. The coherent regime is, respectively, determined
as 0–3 THz and 0–4 THz for 300 and 130 K when there is no
roughness.
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[Eq. (6)] includes average phonon relation time of the bulk
silicon crystal (τph), which is often obtained by single phonon
relaxation time approximation. However, the single phonon
relaxation time approximation for the Boltzmann equation
may not be valid at lower temperatures. We hope that lower
temperature measurements and deeper theoretical analysis
of phonon relaxation time in both bulk and nanostructured
materials will soon become available.

V. CONCLUSIONS

In conclusion, we show that average group velocity of high
frequency coherent phonons in thin films and PnCs can be
approximated by the exponential function ω−β (β = 0.66 and
1.41 for our thin film and PnC samples, respectively), which
indicates that higher frequency phonons have smaller group
velocities, and thus contribute less to thermal conductivity.
Then, we show that low frequency coherent phonons in low
dimensional materials like PnCs have an extremely large den-
sity of states due to the low dimensional nature, which could
significantly contribute to thermal conductivity when only
considering three-phonon scattering. However, by comparing
experimental data with our calculation, we show that Akhiezer
damping is dominant and should be considered when dealing
with relation time of low frequency phonons (<200 GHz for
200–300 K, and <100 GHz for 130 K). Because of Akhiezer
damping, the contribution of coherent phonons is reduced to
the extent that their contribution to total thermal conductivity
of thin films and PnCs at 130–300 K becomes very small
(<8%), even if there is no surface roughness. That is why
the total thermal conductivity of thin films and PnCs can be
explained by considering only the incoherent phonons.

APPENDIX

In this Appendix, we evaluate switching frequency ωs as
a function of roughness according to the work of Wagner

FIG. 7. Switching frequency as a function of roughness size R

(surface roughness, hole wall roughness, lattice site displacement,
hole disorder, etc.) for selected specularity parameters P = 0.3.

et al. [8]:

ωs = 2πVs

R

√
−In(P )

16π3
, (A1)

where R is the roughness size (including surface roughness,
hole wall roughness, lattice site displacement, disorder etc.),
P is the specularity, here we use P = 0.3 to define the
boundary of coherent and incoherent regimes, i.e., the ωs, and
Vs is the longitudinal sound velocity as 8433 m/s [8].

The switching frequency as a function of roughness size R

is shown in Fig. 7, from which we can obtain 0.2 THz for ωs

when R = 2 nm. In the work of Wagner et al., P = 0.5, but
here we use 0.3 just for a more conservative estimation.
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