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The theoretical finding on chiral phonons at Brillouin-zone corners (valleys) of two-dimensional honeycomb
lattices and its experimental verification in monolayer tungsten diselenide [H. Zhu, J. Yi, M. Li, J. Xiao, L. Zhang,
C. Yang, R. A. Kaindl, L. Li, Y. Wang, and X. Zhang, Science 359, 579 (2018)], have attracted wide attention
in the study of phonon chirality very recently. In this paper, to make chiral phonons more measurable, the
valley phonons were folded to Brillouin-zone center in

√
3 × √

3 honeycomb superlattices, and near the center
topological chiral phonons can be observed. The chiral phonons which are not the superposition of linear modes
are nondegenerate and can be optically excited in helicity-resolved Raman scattering. Moreover, by adjusting
the doping mass, the topological chiral phonons can be engineered in specific branches. Finally, in deformed√

3 × √
3 honeycomb superlattices, topological chiral phonons can also be found near the Brillouin-zone center.

We believe that the findings of nondegenerate topological chiral phonons in the Brillouin-zone center help to
enrich our understanding of chiral phonons and promote future applications in phononics.

DOI: 10.1103/PhysRevB.98.134304

I. INTRODUCTION

The Einstein-de Haas effect [1,2] has provided an effective
method for measuring the gyromagnetic ratio in various ma-
terials [3–5] where the phonon angular momentum was taken
to be zero. However, nonzero phonon angular momentum has
been theoretically predicted in magnetic crystals with spin-
phonon coupling [6], and the gyromagnetic ratio obtained
through the Einstein-de Haas effect needs to be corrected
by including the phonon contribution in the total angular
momentum. In nonmagnetic materials without spin-phonon
interactions where the time-reversal symmetry is conserved,
the total phonon angular momentum is zero since the phonon
angular momentum is an odd function of the wave vector.
However, each phonon mode can have a nonzero phonon
angular momentum in the honeycomb AB lattice with broken
inversion symmetry, which means it can be elliptically or
circularly polarized; that is, the phonon is chiral [7]. Partic-
ularly in Brillouin-zone corners—valleys K (K ′), the phonon
can either be right- or left-circularly polarized. Endowed
with a quantized pseudoangular momentum, chiral phonons
at valleys decide selection rules for intervalley scattering of
electrons by phonons in valleytronics, an emerging field of
manipulation of the valley degree of electrons [8–17]. The
chiral phonons at valleys also have nonzero distinct phonon
Berry curvature; then, under a strain gradient field a transverse
phonon transport can emerge from valleys; that is, a valley
phonon Hall effect can be observed [7]. Since the chiral
phonon was predicted in a honeycomb AB lattice, the chiral
phonons have also been found in Weyl semimetals [18],
Kekulé lattice [19], bilayer triangle lattice [20], graphene
boron nitride heterostructure [21], etc.
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Very recently, chiral phonons were experimentally verified
in monolayer WSe2 [22], which is remarkable progress since
it confirms that phonons, a kind of Bosonic quasiparticle, can
attain chirality. Considering that the chiral phonons can be
vastly excited by the optical pump-probe technique [22], it
is possible to manipulate phonon chirality [23] and then pave
the way in future phononic applications. The chiral phonons
also play an important role in other fields [24,25], such as
the control of topological states [26], the electronic phase
transition [27,28], the intervalley scattering [13,14,29–33], as
well as solid-state quantum information applications [34,35].
The finding of chiral phonons also promotes the progress of
other fields such as the valley transport of sonic crystals [33],
the polarization in two-dimensional (2D) materials [36], and
so on.

As we know, the theoretical prediction and experimental
verification of chiral phonons are concentrated on the valleys
K (K ′). The detection of valley phonons depends on the
second-order interaction where the photon absorbtion and
phonon emission coincide in the hole intervalley scattering,
which is relatively complicated and difficult to measure.
The work of helicity-resolved Raman scattering showed that
the degenerate phonons at the Brillouin-zone center � can
reverse the helicity of incident photons completely, where
the involved � phonons attain chirality by superposition of
the degenerated modes [37]. Actually, the two inequivalent
valleys K (K ′) can fold and couple into the same � in tailored√

3N × √
3N or 3N × 3N graphene superlattices by Bragg

scattering from periodic adsorption [38]. Thus, a natural ques-
tion arises: Through folding and coupling of two inequivalent
valley phonons, can we get nondegenerate chiral phonons
at the Brillouin-zone center? If yes, then one can easily
detect the nondegenerate chiral phonons by Raman scattering.
Here, we introduce

√
3 × √

3 honeycomb superlattices by the
periodic atomic mass doping, which may act as an option
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for electronics and phononics, especially for chirality phonon
application.

In this paper, we study chiral phonons and its Berry phase
effect in 2D

√
3 × √

3 honeycomb superlattices. While in the
honeycomb AB lattices all the phonons are nonchiral around
the � point except the degenerate phonons exactly at � which
can be chiral by superposition, in

√
3 × √

3 superlattices,
around the Brillouin-zone center we do observe right- or
left-circularly polarized phonons with distinct energies. We
also find that the chiral phonons have nonzero Berry curva-
ture, which can induce transverse phonon transport under a
strain gradient; thus, phonon Hall effect appears. In addition,
we uncover a useful valley manipulation mechanism at �

point by adjusting the doping sublattice’s mass such that
circularly polarized phonons can be engineered in specific
branches. Finally, it is found that chiral phonons remain in the
Brillouin-zone center if

√
3 × √

3 honeycomb superlattices
are deformed.

II. METHOD

In this section, we introduce the method for phonon po-
larization. To calculate the eigenmodes of phonons and get
the Bloch-like eigenvectors, the periodic solution of lattice
dynamics is set as

ul,α = m
− 1

2
α εα (k)eir l,α ·k, r l,α = Rl + dα, (1)

where Rl and dα represent the equilibrium position of the lth
unit cell and the αth atom in each unit cell, respectively. Thus,
we have the dynamical matrix

Dαα′ (k) =
∑

Rl′−Rl

Klα,l′α′√
mαmα′

ei(Rl′−Rl+dα′−dα )·k. (2)

In our mass-spring model, for the spring constant matrix
K , only the neares-neighbor interactions are considered. The
equation of motion can be written as

ω2
k,σ εα (k, σ ) = Dαα′ (k)εα′ (k, σ ); (3)

here σ denotes different branch.
Since we consider phonon polarization along z direction

(i.e., out of-plane direction) in which only 2D motion in x − y

plane has contribution, the phonon eigenvectors can be written
as

ε = (x1 y1 · · · xn yn)T , n = 6, (4)

which can be obtained from Eq. (3). In such a right-(left-)
circular polarization basis:

|R1〉 ≡ 1√
2

(1 i 0 · · · 0)T ,

|L1〉 ≡ 1√
2

(1 −i 0 · · · 0)T ,

...

|Rn〉 ≡ 1√
2

(0 · · · 0 1 i)T ,

|Ln〉 ≡ 1√
2

(0 · · · 0 1 −i)T . (5)

We can represent the phonon mode as

ε =
n∑

α=1

(
εRn

∣∣Rn

〉 + εLn

∣∣Ln

〉)
, (6)

where

εRn
= 〈Rn|ε〉, εLn

= 〈Ln|ε〉. (7)

The phonon polarization along the z direction can be defined
as Sz

ph. Under the operator for phonon polarization, we have

Sz
ph =

n∑

α=1

(∣∣εRα

∣∣2 − ∣∣εLα

∣∣2)
h̄. (8)

Here, in the phonon polarization Sz
ph of a unit cell, each

sublattice has a contribution of Sz
α = |εRα

|2 − |εLα
|2.

If a phonon has chirality, we can use phonon polarization
Sz

ph to represent it. Sz
ph > 0, the phonon is right-handed; Sz

ph <

0, the phonon is left-handed.
From Eq. (3), the phonon wave function satisfies

Dαα′ (k)εα′ (k, σ ) = ω2
k,σ εα (k, σ ), in analogy to electron

Berry curvature calculated from Hψn = Enψn, the phonon
Berry curvature can be defined as [7,39]

�σ
kxky

= i
∑

σ ′ �=σ

ε†σ
∂D
∂kx

εσ ′ε
†
σ ′

∂D
∂ky

εσ − (kx ↔ ky )
(
ω2

σ − ω2
σ ′

)2 . (9)

III. RESULTS

A. Chiral phonons with fixed mass doping mc

As shown in Fig. 1(a), our
√

3 × √
3 superlattices are tai-

lored on a honeycomb AB lattice by the periodic atomic mass
doping of sublattice mc. We can classify the six atoms in each
primitive cell into three different categories by atomic mass:
three atoms with ma , two atoms with mb, and one doping
atom with mc. If mc = mb, that is, we take the honeycomb AB
superlattice with

√
3 × √

3 periodicity, although the real unit
cell is 1 × 1 (see Appendix A), all the valley chiral phonons
are folded to �. However, such

√
3 × √

3 superlattice is a
hypothetical one, periodic doping is a feasible way to realize a√

3 × √
3 superlattice. For the isotopic doping, we can ignore

the change in atomic bonding, thus first we only change the
mass of the doping atoms without considering the changes
of the interaction between them, thus our model can still
maintain the basic orthohexagonal structure. For the spring
constant matrix along the longitudinal direction, we take it
as (KL 0

0 KT
), where KL = 1 and KT = 0.25, all other spring

constant matrices can be obtained by rotation operators [20].
By obtaining the dynamic matrix of

√
3 × √

3 honeycomb
superlattices model, we can get the phonon dispersion rela-
tion. Since our model has six atoms in each unit cell and 2D
motion is considered, there are twelve phonon branches, see
Fig. 1(b). Here, we only focus on branches 5, 6, 7, and 8,
which come from folding and splitting of branches 2 and 3
in honeycomb AB lattices [7]. The flat branches, nondiffusion
localized vibration modes 6 and 7 are observed, which can
be understood by the much bigger mass doping mc. At �

point, the lower and upper two branches are double degen-
erate. In Fig. 1(c), we get the nonzero phonon polarization of
the four branches by inserting the eigenvectors into Eq. (8).
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FIG. 1. (a) Schematic representation of the orthohexagonal√
3 × √

3 superlattices. The blue balls, red balls, and cyan balls
represent sublattices 1, 3, and 5 with ma , sublattices 2 and 6 with mb,
and sublattice 4 with mc, respectively. The magenta lines represent
lattice primitive cells basic vectors α1 and α2. (b), (c) Phonon disper-
sion and phonon polarization along the kx-directions. The red solid,
blue dash, olive dash dot, and orange short dash lines correspond
to branches 5, 6, 7, and 8, respectively. (d) Contour plot denotes
value of phonon polarization from −1 to +1 for branch 7. Here,
ma = 1, mb = 1.2, and mc = 1.5; the spring constants are KL = 1
and KT = 0.25.

Apparently, each branch’s phonon polarization is an odd
function of the wave vector in the kx direction. Near �, all
four branches reach a maximum, and the trend of phonon
polarization shows a type of jumping which has nonzero
value. Especially for branches 7 and 8, the abrupt change of
phonon polarization equals ±1h̄. The phonon polarization for
branch 7 in the Brillouin zone, which is invariant under a
threefold rotation, is also shown in Fig. 1(d). As we see, the
phonon polarization is zero in the valley K (K ′) regions, while
they are concentrated in the Brillouin-zone center �. Deserved
to be mentioned, in honeycomb AB lattices, phonons have
nearly no polarization in the Brillouin-zone center, when the
phonon polarization reaches a maximum at the Brillouin-zone
corners. Here, due to the folding of two inequivalent valleys,
we do observe chiral phonons in the Brillouin-zone center of√

3 × √
3 honeycomb superlattices.

As shown in Fig. 1(c), near the � point, the phonon
polarization of ±1h̄ will appear in the upper two branches 7
and 8. From the analysis of eigenvectors shown in Fig. 2, the
upper two branches 7 and 8 come from the folding of branch 3
in the original honeycomb AB lattice, and at � point the atoms
inherit the circular vibrations from those at K of original
honeycomb AB lattice; that is, in a unit cell atoms 1, 3, and
5 make circular vibrations while the other atoms stay still. In
this model, we keep the atomic bonding independent on atom
mass, thus the atoms 1, 3, and 5 feel no change after doping
and keep the original vibration, i.e., the phonon polarization of
branches 7, 8 keep ±1h̄ which comes from the simple folding
of phonon modes at K of original honeycomb AB lattice.

FIG. 2. At a fixed point (kx = 1
10a

, ky = 0) near the zone center

�. (a) Phonon vibration modes of branches 5, 6, 7 and 8 in
√

3 × √
3

honeycomb superlattices. (b) Phonon vibration modes of branches 2
and 3 in honeycomb AB lattices. The gray balls represent original
location of all sublattices in a unit cell, the arrow denotes rotation di-
rection. Here, ma = 1, mb = 1.2 and mc = 1.5; the spring constants
are KL = 1 and KT = 0.25.

For the lower two branches 5 and 6, very close to �, the
phonon polarization comes to zero which is different from
those of branches 7 and 8. Similar to the analysis above, as
shown in Fig. 2, the lower two branches 5 and 6 come from
the folding of branch 2 in the original honeycomb AB lattice,
in a unit cell at � point atoms 2, 4, and 6 make circular
vibrations while the other atoms stay still, which is similar
to the modes at K in original honeycomb AB lattice where
only atom 2 vibrates. However, the mass changing of atom 4
which introduces valley interaction when the two degenerated
valleys fold to the same point of �, such interaction kills
the phonon polarization. Away from the Brillouin center, the
phonon polarization remains since the valley interaction plays
a less important role.

Here we discuss the topological properties of chiral
phonons in the Brillouin zone center of

√
3 × √

3 honey-
comb superlattice structures. The phonon Berry curvature of

FIG. 3. The phonon Berry curvature of branches 7 and 8 along
the kx-directions. Here, ma = 1, mb = 1.2 and mc = 1.5; the spring
constants are KL = 1 and KT = 0.25.
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FIG. 4. (a) At the � point, phonon dispersion of branches 5, 6, 7, and 8 versus mc. (b) The phonon polarization of the four branches
when mc = 1.2. (c)–(f) The phonon dispersion relation of the four branches at mc = 2.0, 1.0, 0.6, and 0.1, respectively. (g)–(j) The phonon
polarization of the four branches at mc = 2.0, 1.0, 0.6, and 0.1, respectively. Here, ma = 1 and mb = 1.2; the spring constants are KL = 1 and
KT = 0.25.

branches 7 and 8 along the kx directions are reported in
Fig. 3. As we see, the nonzero Berry curvature is the odd
function of the wave vector, which can be understood by the
the preservation of time-reversal symmetry in our model. With
the integral of the Berry curvature, the Chern numbers of the
two branches are zero. An abrupt change point appears at the
� which the Berry curvature is maximum, thus the circularly
polarized chiral phonons have relatively large nonzero Berry
curvature here. Such chiral phonons exist near the Brillouin
center, and thus can be vastly excited by Raman scattering.
If we apply a strain gradient or even a temperature gradi-
ent, the nonzero Berry curvature can give chiral phonons an
anomalous velocity, thus one can observe a phonon Hall effect
contributed from phonons near the Brillouin-zone center �

although the system is topologically trivial.

B. A valley manipulation mechanism by adjusting mc

As mentioned before, we obtain chiral phonons in the
Brillouin-zone center by introducing periodic mass doping
mc. At � point, we find that the phonon frequency is indeed
related to the mc and the lower and upper two branches are
always double degenerate, see Fig. 4(a). When mc = 1.2,
our model turns to an original honeycomb AB lattice, and
the only difference is that we choose a triple-size unit which
has six atoms, thus all the chiral phonons at K are simply
folded to �, near �, the phonons have maximum polarizations
of ±1, see Fig. 4(b). As discussed in the above session,
branches 7 and 8 correspond to vibrations of light atoms 1,
3, and 5 while branches 5 and 6 denote the vibrations of
heavy atoms 2, 4, and 6, thus we can call them light phonons
(branches 7 and 8) and heavy phonons (branches 5 and 6). If
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FIG. 5. (a) The phonon frequency difference between branches 5
and 6, branches 7 and 8 changes versus mc at a fixed point (kx = 1

100a
,

ky = 0) which is near zone center �. (b) The phonon polarization
of the four branches changes versus mc at a fixed point (kx = 1

100a
,

ky = 0). The inset shows a part of the phonon polarization in the kx

direction (from kx = − 1
2a

to kx = 1
2a

). Here, ma = 1 and mb = 1.2;
the spring constants are KL = 1 and KT = 0.25.

we increase the doping mass mc > 1.2, as shown in Fig. 4(c),
the light phonons and heavy phonons keep double degenerate,
respectively, but the gap between them increases. The
phonon polarization of branches 7 and 8 keep ±1 while the
polarization of branches 5 and 6 goes to zero near � due to the
valley interaction as discussed above, as shown in Fig. 4(g).
When we decrease the doping mass but mc > 0.6, as shown
in Fig. 4(d), the four branches keep double degenerate but the
gap between them decreases since the heavy phonon becomes
lighter, i.e., the frequency increases due to the mass decrease.
Before gap closing, the heavy phonons are separated from the
light ones, and the phonon polarization shown in Fig. 4(h)
has a behavior similar to that in Fig. 4(g). If the mass of
the doping atom decreases to 0.6, the gap between the light
and heavy phonons closes, as shown in Fig. 4(i), the four
branches are degenerate at �, which introduces interaction to
light phonons, and all the phonon polarization goes to zero
near �. When mc is less than 0.6, then the bands invert, the
original heavy phonons become light with a higher frequency
(branches 5 and 6), and the original light phonons become
heavy with a lower frequency (branches 5 and 6) as shown in
Fig. 4(f), thus the phonon polarization of doubly degenerate
branches 5 and 6 equals ±1, while the other two degenerate
branches have a relatively small polarization.

For the two double degenerate phonons, one is longitudinal
optical (LO) mode, the other is transverse optical (TO) mode,
they are degenerate at the � point, and split at wave vectors
away from �. The LO/TO splitting is affected by the doping
[40]. Here we discuss the TO/LO splitting effect on the
phonon polarization near to �, as shown in Fig. 5. Due to mass
doping, mc has no change on atomic bonding; before branches
inverting at mc = 0.6, the light phonons (branches 7 and 8)

FIG. 6. (a) Schematic representation of the deformed
√

3 × √
3

superlattices. (b), (c) Phonon dispersion and phonon polarization
along the kx directions. (d) Contour plot of the phonon polarization
for branch 5. Here, ma = 1, mb = 1.2 and mc = 1.5; the spring
constants are KL = 1 and KT = 0.25.

keep circularly polarized (with a maximum polarization ±1)
and after the inverting (mc < 0.6) the lower two phonons
(branches 5 and 6) have maximum polarization ±1, and the
LO/TO splitting is almost zero, as shown in Fig. 5(a) (see
the solid-dot line at mc > 0.6 and the solid line at mc < 0.6).
If mc < 0.6, branches 7 and 8 have a small polarization due
to the large LO/TO splitting. For branches 5 and 6, they
have maximum polarization at mc = 1.2 where the LO/TO
splitting is almost zero; if mc �= 1.2, the phonon polarization
decreases when the LO/TO splitting increases. However, near
mc = 0.6, due to the branch inversion and strong interaction,
the monotonous relation between LO/TO splitting and phonon
polarization does not apply. Therefore, for the chiral phonons’
folded valley to Brillouin center, except the � point, mostly
we can find a large phonon polarization if the LO/TO splitting
is small.

C. Chiral phonons in a deformed
√

3 × √
3 superlattice

If the doping atom is not isotopic, then the force constants
will change, thus the

√
3 × √

3 honeycomb superlattice will
be deformed. There are two kinds of springs, one is the
spring between mb and ma (mb-centered interaction), another
is the one between mc and ma (mc-centered interaction). Since
ma is taken to be 1, to mimic the difference between the
spring constants, we take the spring constant matrices be-
tween ma and mα as Kaα = (

3√mαKL 0
0 3√mαKT

), where α = b, c,
KL = 1,KT = 0.25. The deformed structure is confirmed by
the first-principles calculation (see Appendix B), the ortho-
hexagonal honeycomb primitive cell occur deformation to
ensure the structure optimization here, see Fig. 6(a). Similarly,
the phonon dispersion relation and phonon polarization of
branches 5, 6, 7, and 8 are illustrated in Figs. 6(b) and
6(c). Branches 5 and 6 correspond to heavy atoms 2, 4, and
6, which are the same with those in nondeformed lattice
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discussed above, the phonon polarization of the branches 5,
6 can’t get ±1 because the mass doping of mc produced
a weak intervalley interaction, which means the phonon is
elliptically polarized here. The contour plot of the phonon
polarization for branch 5 also presented a threefold rotation
symmetry, and concentrated in the � regions. However, due
to the atomic bonding change, which introduces a strong
intervalley interaction when the valley phonons are folded to
�, and such strong interaction makes branches 7 and 8 be
nondegenerate at � point. Therefore, branch 7 and 8 phonons
have a rather small value of polarization due to the abrupt
LO/TO splitting. Although some chiral phonons are killed by
the valley interaction in the deformed

√
3 × √

3 honeycomb
superlattice, we do also observe chiral phonons around the
Brillouin-zone center.

IV. CONCLUSION

We study phonon chirality and its topological properties in
an orthohexagonal

√
3 × √

3 honeycomb superlattice. For the
middle four branches, which come from folding and splitting
of branches 2 and 3 in honeycomb AB lattices, we do observe
right or left chiral phonons with distinct energies around the
Brillouin-zone center �. By discussing the contribution of
each sublattice in a unit cell to the total phonon polarization,
we conclude that the intervalley interaction at �, which folded
two inequivalent valleys, is vital to study circularly polarized
phonon modes. For the chiral phonons, we find that they
have nonzero phonon Berry curvature, thus the phonon Hall
effect can be proposed with a strain gradient. Furthermore, we
uncover a useful valley manipulation mechanism at � point
by adjusting the doping sublattice’s mass. Thus, circularly
polarized phonons can be engineered in specific branches. We
also find that the larger LO/TO splitting makes the phonon
polarization be smaller. Finally, even in a deformed

√
3 × √

3
honeycomb superlattice, we also observe chiral phonons.

ACKNOWLEDGMENT

This work is supported by NSFC (Grant No. 11574154).

APPENDIX

1. Chiral phonons in honeycomb AB superlattices

In our calculation of chiral phonons, we also consider a
special honeycomb AB superlattice with

√
3 × √

3 periodic-
ity, although the real unit cell is 1 × 1, as shown in Fig. 7(a).
Here, mc = 1.2 and each sublattice keeps its threefold rotation
symmetry. The phonon dispersion relation and phonon polar-
ization of branches 5, 6, 7, and 8 are illustrated in Figs. 7(b)
and 7(c). Similarly, the lower and upper two branches are
double degenerated at � point and the middle four branches’
phonon polarization is an odd function of the wave vector in
the kx direction. In the process of the two inequivalent valleys
folding to the same �, the lower and upper two branches
cannot only keep consistent with the honeycomb AB lattices’
vibration modes of branches 2 and 3, but also inherit the
motion properties of the circular polarization. Thus, all four
branches have the polarization of ±1 at � point, which is
different from the

√
3 × √

3 honeycomb superlattices with

FIG. 7. (a) Schematic representation of the honeycomb AB su-
perlattices. The blue balls and red balls represent sublattices 1, 3,
and 5 with ma , sublattices 2, 4, and 6 with mb, respectively. The ma-
genta lines represent lattice primitive cells basic vectors α1 and α2.
(b), (c) Phonon dispersion and phonon polarization along the kx

directions. The red solid, blue dash, olive dash dot, and orange short
dash lines correspond to branches 5, 6, 7, and 8, respectively. (d)
Contour plot of the phonon polarization for branch 7. Here, ma = 1
and mb = 1.2; the spring constants are KL = 1 and KT = 0.25.

mass doping of mc, where the intervalley interaction increases
the LO/TO splitting and decreases the phonon polarization
near the � point. The contour plot of the phonon polariza-
tion for branch 7 have also presented a threefold rotation
symmetry, and concentrated in the � regions, see Fig. 7(d).
As a conclusion, due to the folding and coupling of two
inequivalent valleys, we do observe chiral circular phonons
in the Brillouin-zone center of honeycomb AB superlattices.

2. The first-principles calculation

As shown in Fig. 8, we dope one silicon atom on the
hexagonal boron nitride structure. The structure is calculated

FIG. 8. The structure of one unit cell of hexagonal boron nitride
structure with doping of one silicon atom.
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by the Quantum Espresso code [41], where the local density
approximation is used for the exchange and correlation energy
functional. The normcons pseudopotentials are used, and the
kinetic energy cutoff for wave functions is 60 Ry. Within

the framework of density functional perturbation theory,
the dynamical matrices are calculated using a 9 × 9 × 1
q-point mesh. For this structure, the lattice parameter
is 4.87.
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