
PHYSICAL REVIEW B 98, 134303 (2018)

Scrambling and entanglement spreading in long-range spin chains
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We study scrambling in connection with multipartite entanglement dynamics in regular and chaotic long-
range spin chains, characterized by a well-defined semi-classical limit. For regular dynamics, scrambling and
entanglement dynamics are found to be very different: up to the Ehrenfest time, they rise side by side, departing
only afterward. Entanglement saturates and becomes extensively multipartite, while scrambling, characterized by
the dynamic of the square commutator of initially commuting variables, continues its growth up to the recurrence
time. Remarkably, the exponential growth of the latter emerges not only in the chaotic case but also in the regular
one, when the dynamics occurs at a dynamical critical point.
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I. INTRODUCTION

Classical systems with long-range interactions display
many interesting dynamical properties that have been exten-
sively studied for many decades [1]. In the quantum domain,
instead, long-range systems have been the focus of a great deal
of attention only lately, as a result of their experimental sim-
ulation with different platforms [2–5]. These systems allow
the controlled study of quantum dynamics in the absence of
significant decoherence, a property that allows the study of a
number of important phenomena as, for example, dynamical
phase transitions (DPTs) [6–8] or the dynamics of correlations
[9–13] in a situation where Lieb-Robinson bounds do not
apply [14,15].

It is well established that understanding the coherent dy-
namics of a quantum many-body system requires a thorough
understanding of the behavior of its quantum correlations
[16,17]. The spreading of quantum correlations has been the
focus of a lot of theoretical efforts [18], starting from the
initial important results on the dynamics of entanglement en-
tropy [19]. Very recently, a new way to characterize quantum
dynamics of many-body systems has been proposed, based on
the concept of scrambling. Initially introduced as a probe of
quantum chaos [20–23], scrambling is generically identified
as the delocalization of quantum information [24] in a many-
body system. A measure of scrambling is associated with
the growth of the square commutator between two initially
commuting observables [20,21]. For quantum chaotic systems
[20,21,25,26], this quantity is expected to grow exponentially
before the Ehrenfest time — defined as the time at which
semiclassics breaks and quantum effects become dominant
[56] — otherwise, it grows, at most, polynomially in time
[27–29].
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Despite the impressive progress over the last years, several
different questions related to scrambling and entanglement
propagation still await a more detailed answer. It has been ob-
served that the exponential growth of the square commutator
is connected to the chaotic behavior of an underlying semi-
classical limit. The precise role of semiclassical correlations
in determining scrambling dynamics and its various stages are
presently under intense study [30–32]. Furthermore, in view
of the various forms in which quantum correlations manifest
in a many-body system, it is important to understand how en-
tanglement is connected to the scrambling of information. A
first connection between square commutators and the spread-
ing of quantum entanglement has been made in the context
of unitary quantum channels [33,34]. An analysis of different
velocities of propagation of information has been performed
in Ref. [24], while connections of scrambling to the growth of
Rényi entropies and multiple-quantum coherence spectra have
been investigated in Refs. [35–37]. In long-range systems,
scrambling has been studied in connection with correlation
bounds [13,38] and its time average as a probe of criticality
[39]. However, an analysis of the dynamics and the relevant
timescales in relation to the different processes involved in
the spreading of information is still missing.

In this paper, we address all these questions by studying
multipartite entanglement propagation and scrambling in spin
chains with long-range interaction, either subject to a quantum
quench or a periodic drive. There are several reasons behind
this choice. Spin chains with long-range interactions possess a
well-defined semiclassical limit, and thus represent a natural
playground [40] to study the role of classical correlations in
scrambling. Furthermore, they allow exploration of the transi-
tion from semiclassical to quantum dominated regimes in the
dynamical behavior. We will consider both the case of inte-
grable and chaotic dynamics. Moreover, scrambling is experi-
mentally accessible with long-range quantum simulators, as it
has been measured for unitary operators [41]. We will present
results for the entanglement dynamics of the quantum Fisher
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information (QFI), the tripartite mutual information (TMI),
and operator scrambling, studied via the square commutator.
As we are going to show in the rest of the paper, scrambling
and entanglement dynamics turn out to be very different.

The paper is organized as follows. The next section is
devoted to a summary of the results with a direct comparison
between multipartite entanglement growth and scrambling. In
Sec. III, we review the long-range version of the Ising chain
and the types of dynamics that are considered across the paper.
We recall the semiclassical limit together with the quantum
and classical characterization of chaos. In Sec. IV, we briefly
review the definitions of the quantities under consideration:
the QFI, the TMI, and the square commutator. In Sec. V, we
describe the different numerical and the semianalytical meth-
ods used to reproduce the behavior of the square commutator.
We first present in Sec. VI A the results for the entanglement
dynamics and its semiclassical nature for sufficiently long-
range interaction. We discuss how this behavior changes when
the range of the interaction is decreased. Then, in Sec. VI B,
we consider the results for the square commutator and we
argue that the long-time dynamics of the square commutator
accounts for the quantum chaoticity of the dynamics. We
provide evidence for our claims by discussing an example
of exponential growth of scrambling in the case of a regular
quantum dynamics. Section VII is devoted to our conclusions.

II. MAIN RESULTS

In this paper, we study how entanglement and operator
scrambling grow and spread in Ising spin chains with two-
body power-law decaying interactions, Jij ∝ |i − j |−α . We
consider the case in which an initial separable state, i.e.,
|ψ0〉 = | ↑↑ . . . ↑ 〉, is brought out-of-equilibrium by means
of a quantum quench or a periodic drive. Our findings can be
summarized as follows:

(1) Entanglement dynamics reflects the semiclassical na-
ture of the system: it is weak, slow growing, and saturating
at the Ehrenfest time tEhr. This is what lies at the heart of
the classical “simulability” of quantum long-range interacting
systems in the context of MPS-TDVP [42,43] with small
bond-dimension as well as semiclassical methods [44–46].

(2) The square commutator is characterized by two differ-
ent regimes, a first semiclassical growth up to the tEhr (expo-
nential for chaotic dynamics), followed by a fully quantum
nonperturbative polynomial growth (saturation for chaotic
dynamics), symmetric around t∗ = trec/2 the recurrence time
trec. We show that the initial growth encodes the nature of
classical orbits and can be exponential also for regular inte-
grable dynamics, provided they have some classical instabili-
ties. Conversely, the second regime accounts for the quantum
chaoticity of the dynamics, see Table I.

(3) The dynamics of the information spreading changes
with the range of interaction α. The Hamiltonian with
0 � α < 1 is dominated by the classical limit and the structure
of entanglement and scrambling is the same as in the infinite
range case, see Table I. For 1 � α < 2, the entanglement
grows linearly in time and the structure of the asymptotic state
is the same as for α < 1. For α � 2, the state displays the
typical entanglement dynamics and structure of short-range
interacting systems, with negative TMI.

TABLE I. Scrambling and entanglement dynamics for the dif-
ferent protocols with the infinite range Hamiltonian. While, for all
the types of dynamics, entanglement grows and saturates at tEhr,
scrambling continues its growth in the regular case. Particularly
interesting is that, despite the dynamics being regular, the early-
time exponential behavior emerges when the dynamics occurs at the
critical point of the dynamical phase transition (DPT), see Fig. 8.
The Ehrenfest time and the recurrence time depend on the dynamics
too: tEhr ∝ √

N for the regular quantum quench, tEhr ∝ log N for the
quench at DPT and for the periodic kicking, while trec ∝ N for the
quantum quench dynamics and trec ∝ exp(exp(N )) for the chaotic
period kicking.

Quantum Quench Periodic
α = 0 quench at DPT kicking

Scrambling t < tEhr t2/N 3 eλt eλt

tEhr < t < t∗ t4/N 4 t/N const.
Entanglement t < tEhr growth peak growth

tEhr < t < t∗ const. const. const.

This shows that the state’s entanglement growth and op-
erator’s scrambling are two distinct, apparently disconnected
phenomena. Interestingly, this becomes glaringly obvious in
the regular regime rather than in the chaotic one, see Fig. 4.

III. THE MODEL AND OUT-OF-EQUILIBRIUM
PROTOCOLS

We consider an Ising chain in transverse field with long-range
interactions,

Ĥ = −1

2

N∑
i �=j

Jij σ̂
z
i σ̂ z

j − h

N∑
i

σ̂ x
i , (1)

where σ̂ x
i , σ̂ z

i are spin operators and Jij = J |i − j |−α/N (α)
and N (α) = ∑N

r=1 1/rα is the Kac normalization [47]. The
(solvable) infinite range limit α = 0 of Eq. (1) is known as
the Lipkin-Meshov-Glick model (LMG) [48] and it has been
intensively studied out-of-equilibrium [6,49–52]. In this case,
the Hamiltonian conserves the total spin and we restrict our
analysis to the sector of the ground state S = N/2. This has
a semiclassical limit before tEhr, controlled by h̄eff = h̄/N ,
where the system can be described classically in terms of only
two degrees of freedom {Q,P } and a classical Hamiltonian
[6,49,50]. For finite N , ground states of the Hamiltonian
Eq. (1) can be seen as coherent wave packets with width
σ ∼ √

h̄eff that evolve for short times classically [6]. The semi-
classical dynamics is discussed in detail in the next section.
As far as the dynamics of local observables is concerned, the
Hamiltonian of Eq. (1) is found to behave as the infinite-range
one for α < 1, as a short-range one for α > 2 [7,10].

Taking an initial separable state totally polarized along the
z axis |ψ0〉 = | ↑↑ . . . ↑ 〉, we probe entanglement dynamics
and scrambling with the two following protocols:

(a) Quantum quench. The state |ψ0〉 is evolved with the
Hamiltonian Eq. (1) with a transverse field hf . For α � 1,
a special case, important also for the present analysis, is
represented by hf = hc = 1

2 , where a DPT occurs [53], whose
origin can be traced back to the corresponding classical dy-
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FIG. 1. Classical phase space (a) and Poincaré sections of the classical limit of the model (b), (c). (a) Phase space for the Hamiltonian of
Eq. (4) for hf = 1

2 . In purple, the separatrix between orbits with Q = 0 and Q �= 0, which corresponds to the ground-state energy for h0 = 0.
(b) Regular Poincaré section for K = 0.2: we see that the dynamics remains always regular and each trajectory is a closed curve. (c) Chaotic
Poincaré section for K = 20: the system clearly becomes chaotic and the trajectories tend to cover all the phase space (hf = 2, τ = 1). The
red dot in the plots represents the initial condition in the classical limit, while the orange points represent its stroboscopic evolution.

namics. Away from the dynamical critical point, the Ehrenfest
time reads t rEhr ∝ √

N while at the dynamical critical point
t cEhr ∝ log N . It was shown in Ref. [39] that DPT can be
detected with the average value of out-of-time correlators.

(b) Periodic kicking. To address chaotic dynamics in a
long-range spin system, we will also consider the case in
which periodic kicks are added to the evolution governed by
Eq. (1), with α = 0. This model, known also as the “kicked
top” for h = 0, is a paradigmatic example of the standard
quantum chaos [54,55]. The time-evolution operator over one
period reads

Û = Ûk exp[−iĤ τ ] with Ûk ≡ exp

[
−i

2 K

N
Ŝ 2

z

]
. (2)

Depending on the value of the kicking strength K , this
model is known to exhibit a transition between a regular
regime and a chaotic one [54,55]. When K 
 1 ∀hf , orbits
deviate exponentially in time and t cEhr ∝ log N .

A. Semiclassical phase-space

Let us recall the main features of the semiclassical dynam-
ics. Since the Hamiltonian of Eq. (1) commutes with the total
spin Ŝ = ∑

i Ŝi , we restrict ourself to the spin subsector of
the ground state S = N/2, where the dimensionality of the
Hilbert space is N + 1. Defining m̂ ≡ Ŝ/S, we can re-express
the LMG Hamiltonian in terms of its components:

ĤLMG = −N

(
J

2
m̂z 2 − h m̂x

)
. (3)

This allows us to consider an effective h̄eff = h̄
N

that identifies
the semiclassical limit with the large-N mean field one. In
what follows we set h̄ = 1. In this limit, the system is effec-
tively described by the classical Hamiltonian

H0(Q,P ) ≡ −J

2
Q2 − h

√
1 − Q2 cos (2P ) , (4)

where the two conjugate variables Q, P are given in terms
of the expectation values of m̂ on a wave packet as
mz = Q, mx =

√
1 − Q2 cos(2P ) and my =

√
1 − Q2 sin(2P )

and obey the classical Hamilton equations [6,49,50].
In the sudden quench case, the ground state at h0 is evolved

with the Hamiltonian with transverse field hf . The DPT be-
tween a finite and zero-order parameter occurs at hf = hc =

(h0 + 1)/2. One can define a dynamical order parameter as
the average magnetization in time: Q = limT →∞

∫ T

0 Q(s)ds,
which is different from zero in the symmetry broken phase. In-
deed, at hc the phase point associated with the initial ground-
state energy (which is conserved) lays right on the separatrix
of the final Hamiltonian: for hf > hc, it orbits around the
maximum with a Q = 0, while for hf < hc it orbits around
one of the two ferromagnetic minima and Q �= 0, see Fig. 1.

When the kicking is added, the total classical Hamiltonian
reads

H(Q,P, t ) = H0(Q,P ) + Hkick (Q,P )
∑

n

δ(t − nτ ),

(5)

where Hkick (Q,P ) = −K
2 Q2: the classical kicking acts every

period τ like a rotation around the z axis with an angle pro-
portional to mz. In the numerical calculations, we re-express
the Hamilton equations of motion as equations of motion for
the spin-components m:

ṁx (t ) = 2 J my (t ) mz(t ),

ṁy (t ) = 2h mz(t )−2 J mx (t ) mz(t ),

ṁz(t ) = −2h my (t ). (6)

Note that these equations can be obtained also from the ex-
pectation value of the Heisenberg equation of motion, setting
to zero the second-order cumulant. This is justified by the fact
that the magnetization components commute in the classical
limit: [m̂α, m̂β] = i

N/2 εαβγ m̂γ . In the limit of large but finite
N , one can consider the semiclassical WKB approximation
[6] and explore wave-packet dynamics. In this framework,
ground states of H0 can be seen as coherent wave packets
with width σ = √

h̄eff = 1/
√

N . This semiclassical picture
holds until the states behave like well-defined wave packets.
It is then natural to define the time for which semiclassics
breaks down—the Ehrenfest time—as the time for which the
initially coherent wave packet is spread and delocalized. It is
well known that this depends on the nature of the classical
dynamics [56]:

tEhr ∼
{

1√
h̄eff

= √
N regular

1
2λ

ln 1
h̄eff

= 1
2λ

ln N chaotic/unstable
, (7)
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where λ > 0 is the Largest Lyapunov exponent of the classical
dynamics in the chaotic case.

B. Characterization of chaos

In the quantum realm, an important signature of chaos is
provided by the spectral properties of the evolution operator,
in our case by the properties of the Floquet spectrum. The
distribution of the Floquet level spacings δα ≡ μα+1 − μα

(the μα are in increasing order), normalized by the aver-
age density of states, gives information on the integrability
and ergodicity properties of the system [55,57–59]: if the
distribution is Poisson, then the system is integrable; if it
is Wigner-Dyson, then the system is ergodic. To probe the
integrability/ergodicity properties through the level-spacing
distribution, we consider the so-called level-spacing ratio:

0 � rα ≡ min {δα, δα+1}
max {δα, δα+1} � 1. (8)

The different level spacing distributions are characterized by
a different value of the average r ≡ 〈rα〉 over the distribution.
From the results of Ref. [60], we expect r = 0.386 if the
system behaves integrably and the distribution is Poisson; on
the other side, if the distribution is Wigner-Dyson and the
system behaves ergodically, then r = 0.5295. In our case,
the Floquet levels fall in two symmetry classes, according
to the corresponding Floquet state being an eigenstate of
eigenvalue +1 or 1 of the operator eiπŜx , under which the
Hamiltonian is symmetric [54]. Therefore we need to evaluate
the level spacing distribution and the corresponding r only
over Floquet states in one of the symmetry sectors of the
Hamiltonian. The level spacing ratio for this model is reported
in Fig. 2 as a function of the kicking strength K: it shows a
transition from a regular to a chaotic regime.

The relationship between classical chaos and the properties
of the many-body quantum dynamics has been widely studied
in the past, giving rise to a plethora of signatures of chaos in
the quantum domain [55,57]. Classically, a system is ergodic
if all the trajectories uniformly explore the accessible part
of the phase space. In the case of few degrees of freedom,

 0.38
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FIG. 2. Regular-chaotic transition witnessed by the average level
spacing ratio. (N = 1000, τ = 1, h = 2). Throughout the paper, we
always chose K = 20, which clearly displays chaotic dynamics.

a qualitative measure of this phenomenon is the Poincaré
section: some initial values are evolved under the stroboscopic
dynamics reporting on a P,Q plot the sequence of their
positions. If the initial condition lies in a regular region of
the phase space, our points will be over a one-dimensional
manifold. If instead, the initial condition is in a chaotic region
of the phase space, our points will fill a two-dimensional
portion of phase space. The model under analysis satisfies
these conditions in the semi-classical limit, see Fig. 1.

IV. CHARACTERIZATION OF ENTANGLEMENT
AND SCRAMBLING

Let us now introduce the quantities that we will use to char-
acterize entanglement and scrambling. As far as the entan-
glement is concerned, we will focus on the multipartite case
(bipartite entanglement was already studied in Refs. [61,62]).
The characterization of multipartite entanglement is more
delicate than that of bipartite entanglement since there exists a
zoo of possible measures and witnesses. We will focus here on
the QFI FQ(t ) and on the TMI I3(t ) [33], which accounts for
the information delocalization. We instead study scrambling
via the square commutator c(t ).

The QFI is a witness of multipartite entanglement which
has been shown to obey scaling at the equilibrium transition
point [63] and is connected to the diagonal ensemble in the
nonequilibrium case [64]. The QFI gives a bound on the size
of the biggest entangled block. For example, given a system of
N spins, if the QFI density fQ ≡ FQ/N > k, then there are at
least k + 1 entangled spins [65,66]. For pure states, the QFI is
given by an optimization over a generic linear combination
of local spin operators of FQ(Ô, t ) = 4 〈�Ô2〉t . Here, we
consider collective spin operators Ô = Ŝ = 1

2

∑
i σ̂i and we

maximize over the three directions.
The TMI is defined as I3(A : B : C) = I (A : B ) +

I (A : C) − I (A : BC), where A, B, C, D are four partitions
and the quantity I (A : B ) is the mutual information between
A, B. This takes into account information about A that is
nonlocally stored in C and D such that local measurements of
B and C alone are not able to reconstruct A. Usually, I3 < 0
is associated with the delocalization of quantum information
in the context of unitary quantum channels [33]. In this case,
more appropriately, we study the delocalization of the initial
state information under the dynamics, which is a complemen-
tary measure of entanglement.

Finally, to characterize the dynamics of scrambling, we
will focus on the square commutator c(t ) = −〈[B̂(t ), Â]2〉.
This object measures the noncommutativity induced by the
dynamics between two initially commuting operators, Â and
B̂. It was introduced by Larkin and Ovchinnikov in Ref. [20],
to describe semiclassically the exponential sensitivity to
initial conditions and the associated Lyapunov exponent. By
taking collective spin operators [29] Â = B̂ = m̂z = Ŝz/S,
the square commutator has a natural classical limit for
h̄eff → 0 [67]

c(t ) = −〈 [m̂z(t ), m̂z]2 〉 → h̄2
eff{Q(t ),Q(0)}2 , (9)

where Q(t ) = 〈m̂z(t )〉 on a coherent wave packet, {·} are the
Poisson brackets of the corresponding classical trajectory,
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and the average (·) is performed over an initial phase-space
distribution.

V. METHODS

The results presented in this paper were obtained with a series
of numerical techniques and two semianalytical approxima-
tions.

The numerical methods are a combination of exact diag-
onalization (ED) and well-established semiclassical approx-
imations which are based on Wigner phase-space represen-
tations: the truncated Wigner approximation (TWA) [68] on
the continuum phase-space and the discrete truncated Wigner
approximation (DTWA) [45,69] of the finite dimensional
phase space. To this end, we generalized the corresponding
expression for the square commutator to the discrete phase-
space representation, see Eq. (20) and the Supplementary
Material for the details used in our calculations. All these
approaches neglect terms of the order of O(1/N ) and give the
same results up to the Ehrenfest time. DTWA, in particular,
is also able to reproduce entanglement long-time dynamics.
Furthermore, we also adopted the matrix product state time-
dependent variational principle (MPS-TDVP) [42,43], for the
dynamics of long-range Hamiltonians with α �= 0.

We combine these approaches with two semianalytical
methods to predict the behavior of c(t ) up to tEhr. The first
method is a equation of motion closure at fifth order: it con-
sists of deriving a hierarchy of differential equations for the
square commutator and in closing it by setting the fifth-order
cumulant to zero. This allows us to decouple the higher order
commutator and to close the system of equations. By setting
the appropriate initial conditions, one can integrate numeri-
cally the equations and get the approximated c(t ). The second
method is a time-dependent Holstein Primakoff and it consists
of including quantum fluctuations on top of the classical result
and to keep it only at the Gaussian level. These approaches
turn out to be equivalent and to correctly reproduce c(t ) before
tEhr as in Fig. 3. The following two paragraphs are devoted to
a description of these approximations.

A. Equation of motion closure at fifth order

The cumulant closure at order n is a general method that
consists of closing a set of differential equations by setting to
zero all cumulants of the order � n. A very easy example is
the cumulant closure at second order, which allows computing
the classical equation of motion for the magnetization of
Eq. (6). We are interested in the dynamics of the square
commutator and we wish to find a set of differential equations
that gives its evolution.

One first defines a symmetric (n + m + 2)-string commu-
tator:

cα1,...αn,β1...βm
(t ) = − 1

2 〈 [m̂α1 (t ) m̂α2 (t ) . . . m̂αn (t ), m̂z]

× [m̂β1 (t ) m̂β2 (t ) . . . m̂βm (t ), m̂z] 〉
− 1

2 〈 [m̂β1 (t ) m̂β2 (t ) . . . m̂βm (t ), m̂z]

× [m̂α1 (t ) m̂α2 (t ) . . . m̂αn (t ), m̂z] 〉 ,

(10)

where there are n + m time-dependent operators and two
time-independent ones. Within this notation, the square com-

0
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30

40
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0 2 4 6 8 10

c(
t)

t J

ED
Cumulant closure solution

Gaussian spin-waves
TWA

DTWA

FIG. 3. Comparison between the different semiclassical approx-
imations of the square commutator. Quantum quench dynamics with
hf = 2 and N = 50. All the approximated methods are found to
reproduce the dynamics of c(t ) up to times t r

Ehr, indicated with a thin
line in the plot.

mutator of Eq. (1) reads c(t ) = cz,z(t ). The dynamics will
generate an infinite number of coupled equations of motion.
We close this hierarchy of differential equations by setting the
fifth-order cumulant to zero: 〈ABCDE〉c = 0. If one assumes
that the magnetization is classical (second-order cumulant set
to zero), the (3 + 2)-string commutator decouples in

cα,βγ (t ) + cα,γβ (t ) = 2[ mβ (t ) cα,γ (t ) + mγ (t ) cα,β (t )],

(11)

for α, β, γ ∈ {x, y, z}. This allows us to close the hierarchy
of differential equations, which are coupled to the classical
magnetization dynamics of Eq. (6) as

ċz,z = −4 h cz,y,

ċz,y = −2 h cy,y + 2 h cz,z − 2 J [cz,z mz + cz,x mx],

ċy,y = 4 h cy,z − 4 J [cx,y mz + cx,y mz],

ċx,y = 2 h cx,z − 2 J [cx,x mz + cx,z mx]

+ 2 J [cy,y mz + cy,z my],

ċx,z = −2 h cx,y + 2 J [cz,z my + cz,y mz],

ċx,x = 2 J [cx,z my + cx,y mz]. (12)

These equations are integrated numerically via a fourth-order
Runge-Kutta method. The information about the initial state
and the dimension of the system is encoded in the initial
conditions. The cz,z(t ) that we obtain with this cumulant
closure turns out to reproduce the limit N → ∞ of all these
semiclassical approximations. It well reproduces the exact
c(t ), up to a time t rEhr (see Fig. 3).

B. Time-dependent Holstein Primakoff

In a spin-wave expansion, quantum fluctuations are treated
as small fluctuations on top of the classical solution [70].
One first produces a time-dependent rotation of the reference
frame R = (X̂(t ), Ŷ (t ), Ẑ(t )), in such a way that the Ẑ(t )
axis follows the motion of the classical collective spin 〈Ŝ(t )〉.
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Then a Holstein-Primakoff transformation is performed and
the quantum fluctuations are kept at the Gaussian order. In
this rotating frame, the collective spin operators are the zero-
mode components in the Fourier transform: σ̃ 0

a , with a ∈ R.
Our approximation consists of taking the operator on the Z

axis not varying in time: σ̃ 0
Z (0) ∼ σ̃ 0

Z (t ) + O((N/2)−1). This
allows us to compute commutators in the rotating frame,
hence to get an approximated solution for c(t ).
The main steps to solve the dynamics are the following [70]:

(1) perform a time dependent unitary rotation with
V ( θ (t ), φ(t ) ) = e−i

φ(t )
2

∑
i σ̂ z

i e−i
θ (t )

2

∑
i σ̂

y

i ; the angles are cho-
sen such that 〈ŜX〉 = 〈ŜY 〉 = 0. In the new frame the operators
evolve with H̃ = V H V † + iV V̇ †;

(2) perform an Holstein-Primakoff transformation on the
operators in R in terms of the conjugate variables (q̃0, p̃0);

(3) keep only Gaussian terms, which is equivalent to ne-
glect all O((N/2)−3/2) terms in the equations.

With such a choice, one remains with the following Hamil-
tonian:

H̃

N
= hclass(t )+ 1√

Ns
hlin(t ) + 1

Ns
hquad(t ) + O((Ns)−3/2),

(13)

where hclass(t ) = h cos θ − s cos θφ̇ − J
2 sin2 θ cos2 φ is

the classical Hamiltonian, hlin(t ) contains linear terms
in the quantum fluctuations (automatically zero on the
classical solution) and hquad(t ) = J

2 sin2 θ cos2 φ q̃02 −
J
2 (cos2 φ − sin2 φ) p̃02 + J cos θ sin φ cos φ

p̃0q̃0 + q̃0p̃0
2 +

J cos2 φ ε contains the quadratic terms in the quantum
fluctuations, being ε the spin-wave populations defined in
[70]. Then, by setting 〈ŜX〉 = 〈ŜY 〉 = 0, one gets the equation
of motion for the rotating frame, see Ref. [71]:

θ̇ = 2J sin θ cos φ sin φ, φ̇ = −2h + 2J cos θ cos2 φ.

(14)

In the same way, one can obtain the Heisenberg equations
of motion for for q̃0, p̃0. Further, defining the zero-mode
fluctuations as

�
qq

0 (t ) ≡ 〈 q̃0(t ) q̃0(t ) 〉, (15a)

�
pp

0 (t ) ≡ 〈 p̃0(t ) p̃0(t ) 〉, (15b)

�
qp

0 (t ) ≡ 1
2 〈 q̃0(t ) p̃0(t ) + p̃0(t ) q̃0(t )〉, (15c)

and combining them with the equations for q̃0, p̃0, one gets
the equations of motion for the zero-mode fluctuations

�̇
qq

0 = 4J cos θ sin φ cos φ �
qq

0 + 4J
(
cos2 φ − sin2 φ

)
�

pq

0 ,

�̇
pp

0 = −4J cos θ sin φ cos φ �
pp

0 − 4J cos2 φ sin2 θ �
pq

0 ,

�̇
pq

0 = −2J cos2 φ sin2 θ �
qq

0 + 2J
(
cos2 φ − sin2 φ

)
�

pp

0 .

(16)

They are a set of linear time-dependent differential equations,
which can be solved numerically with the appropriate initial
conditions. They are exactly the quantities that appear in
the computation of the square commutator. To compute it,
perform first a rotation σ̃ α

0 (t ) to σ̃ a
0 (t ) with V (θ (t ), φ(t )), then

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

t J

fQ(t)/N
I3

c(t)

FIG. 4. Quantum information dynamics for the regular dynam-
ics. The entanglement quantities, QFI and TMI (red and yellow),
saturate at tEhr, while the square commutator of the longitudinal
magnetization operator (blue) goes beyond semiclassics and keeps
growing up to t∗. Exact diagonalization results for N = 100, hf =
2, TMI with nA = 1 nB = 10 and nC = 20.

compute commutators like [σ̃ a
0 (t ), σ̃ Z

0 ], noticing that σ̃ Z
0 (0) =

σ̃ Z
0 (t ) + O((Ns)−1), hence at this order they are equal-time

commutators and give rise to the zero-mode fluctuations of
Eq. (15). For example, our square commutator of Eq. (3) reads
as

c(t )=sin φ2 �
pp

0 +cos2 θ cos2 φ �
qq

0 −2 cos θ sin φ cos φ�
pq

0 ,

(17)

which can be obtained numerically from the integration of
Eq. (16) and gives exactly the same result of the previous
approximation, see Fig. 3. This is correct until the spin-wave
density remains small, which, for finite N , occurs before tEhr.

Notice that this method could be, in principle, extended to
long-range systems with α �= 0 and other variations of fully
connected models [70]. In addition, one could, in principle,
go beyond the Gaussian approximation by keeping the inter-
action between spin waves.

VI. RESULTS

As we hinted at the beginning of the paper, entanglement
and scrambling are two different phenomena, characterized by
different timescales, see Fig. 4. Let us now finally describe in
detail the results obtained for the dynamics of entanglement
and scrambling using the methods described before.

A. Entanglement dynamics

In the infinite range model, entanglement dynamics and
information delocalization reflect the semiclassical nature of
the system under analysis. We start discussing the dynamics
governed by Eq. (1) after a quantum quench and describe
afterward the case of the periodic kicking protocol.

Let us focus first on the LGM model at α = 0. Both
fQ(t ) and I3(t ) have the same dynamics; growth followed by
saturation at tEhr, as dictated by the semiclassical dynamics of
the model, see Fig. 5 (top and middle panels). The stationary
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1

f Q
(t
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N

h < hc
h = hc
h > hc

I 3
(t

)

0

0.25

0.5

0.75

0 50 100 150 200 250 300 350 400

Exact
DTWA

t J

f Q
(t

)/
N

FIG. 5. QFI and TMI (top and middle) during the evolution
after a quantum quench, performed below, at, and above the DPT.
Entanglement grows in time up to t r

Ehr for quenches above and below
the dynamical phase transition (green and blue) and at t c

Ehr at the
critical point. Long-time dynamics (bottom) of the QFI, compared
with the semiclassical approximation. The DTWA is able to repro-
duce the dynamics up to t r

rec and beyond. Top and middle: N =
450, hf = 0.2, hf = 0.5 and hf = 2; for the I3: nA = 1, nB =
50, nC = 200. Bottom: N = 100 and hf = 2, DTWA obtained with
5 · 103 samplings.

state displays global entanglement of genuine multipartite
nature fQ = φQ N , where φQ � 1/2 is a function of the
transverse field. The value of the phase φQ along the z

direction can be computed analytically in terms of elliptic
integrals. Following Ref. [71], with a combination of the
classical equation of motion and energy conservation, defining
k = J/2h � 1, one gets

φz
Q = 1

k2

[
(k2 − 1) + E(θk, k)

F (θk, k)
−

(
π

2F (θk, k)

)2
]
, (18)

where F (φ, k), E(φ, k) are the elliptic integrals of first and
second kind of amplitude φ, modulus k and θk = arcsin(1/k)
is the inversion point of the classical trajectory Q(t ). The
maximum asymptotic entanglement witnessed by the QFI
is fQ = N

2 , which occurs when the system from a product
state is quenched to the maximally paramagnetic phase and
corresponds to the biggest fluctuations of the collective spin
operators.

The TMI gives complementary information: being posi-
tive, I3 > 0 shows that the information of the initial state is
not delocalized across the system. Interestingly, by increasing
α the TMI becomes negative I3 < 0, see Fig. 6.

Let us spend a few words for the quench to the DPT, which
occurs at hc = 1/2, see Sec. III. In this case, the entanglement

t J

0

0.1

0.2

0.3

0.4

0.5

(a) 0 ≤ α < 1

0

0.1

0.2

0.3 (b) 1 < α < 2

−0.8

−0.5

−0.2

0.1

0 1 2 3 4 5 6 7

(c) α ≥ 2

FIG. 6. We plot the minimal TMI (dotted lines) and the fQ(t )/N
(full lines) as a function of time, varying the range of interaction
α. We obtain the minimal TMI by calculating the tripartite mutual
information for all possible partitions A,B,C,D of the system and
then taking the minimum. For 0 � α < 1 (a), the dynamics is the
same as the LMG model. For 1 � α < 2 (b), we observe linear
growth of the QFI with time, whereas the minimum of the tripartite
mutual information remains bounded with time. When α > 2 (c),
the QFI does not scale with the system size and remains bounded,
whereas the minimum of the TMI decreases linearly with time
and becomes negative for longer times. We present the detailed
scaling with the system size in the Supplemental Material [76]. The
parameters of the evolution are: α = 0.5, α = 1.5, α = 2.5, hf =
0.75. Data obtained with TDVP for system sizes N = 200 and bond
dimension D = 256 (or N = 100, D = 512 for α = 2.5).

dynamics is qualitatively different. QFI and TMI at short
times peak at t cEhr. After a transient, they reach their stationary
value, which keeps oscillating without recurrences, see Fig. 5.
This behavior is tightly linked to the existence of the DPT,
that corresponds to a classical separatrix in phase space: the
effective classical trajectory takes time of the order of log N

to depart from its initial value. After that, the classical picture
is lost and the state is spread over the basis giving a constant
entanglement, see Fig. 5.

The entanglement dynamics is reproduced, up to very long
times, by a semiclassical approach. We studied this regime
using DTWA, spin-wave theory and cumulant closure meth-
ods, see Sec.V in the Appendix. All these approaches neglect
terms of the order of O(1/N ) and give the same results up
to the Ehrenfest time. The accuracy of all the semiclassical
analysis is justified by the entanglement structure itself. In
fact, this is what lies at the heart of the classical “simulability”
of quantum long-range interacting systems in the context of
MPS-TDVP [42,43] and with semiclassical methods [44–46].
DTWA, in particular, is able to reproduce also the long-time
dynamics even beyond the recurrence time t rrec ∝ N as shown
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in Fig. 5 (bottom panel). This is due to the fact that this
method averages over an extensive number of trajectories,
hence mimicking the discreteness of the spectrum, responsible
for the recurrences [45].

The same asymptotic structure and dynamics is found for
all mean-field-like systems 0 � α < 1: the QFI grows linearly
in time up to a value ∼ N , and the TMI increases logarith-
mically in time up to a constant value. For 1 � α < 2, the
QFI and the TMI grow linearly in time and the entanglement
structure of the asymptotic state is the same as for α < 1.
Decreasing the range of interaction the situation changes dras-
tically: for α � 2, the state displays the typical dynamics and
structure of short-range interacting systems fQ ∼ const; inter-
estingly, I3 < 0 signaling that the information about the initial
condition is spread throughout the degrees of freedom of the
state (see Fig. 6). The results are obtained with TDVP, see the
Ref. [76] for a discussion of the convergence of the method.

Finally, we conclude the analysis of the multipartite entan-
glement by considering the kicked case in the regime when
the dynamics is chaotic. This system heats up to a state
where all local observables on any Floquet state correspond
to the infinite temperature values [54]. All quantities charac-
terizing entanglement saturate to an asymptotic value at the
Ehrenfest time t cEhr, for every initial state and field h, see
Fig. S4 of the Ref. [76]. The value of the QFI, being a sum of
local observables, is compatible with the values of the infinite
temperature state: fQ = 1 + N

3 + O(1/N ). On the other side,
the entanglement entropy saturates to the value expected for
a random state, which was derived by Page in Ref. [72]
SPage = log m − m

2n
+ O(1/mn), with m, n the dimensions of

the Hilbert space of the two subsystems, and m � n. In this
case, for a partition of size L the dimensions are m = L+ 1,

n = N − L + 1 and SPage = log(L + 1) + O(1/N ). This re-
flects in the TMI and we find

I3 = log(ñ) with

ñ = (nA + 1)(nB + 1)(nC + 1)(nA + nB + nC + 1)

(nA + nB + 1)(nA + nC + 1)(nB + nC + 1)
. (19)

B. Scrambling

Scrambling, as measured by the square commutator, be-
haves in a way profoundly different from entanglement. It
is characterized by an initial semiclassical regime and a
second quantum nonperturbative growth. Interestingly, this
phenomenon is very evident in the regular regime (Fig. 7),
and it is much less clear in the chaotic one (Fig. 8) already
discussed at the beginning of the paper.

In the case of the quench dynamics, for hf 
 hc the square
commutator is characterized by a first semiclassical quadratic
growth c(t ) ∝ t2/N3 until t rEhr. In this regime, semiclassical
approximations describe very well the evolution of c(t ) and
we choose to employ DTWA. To this end, we generalize the
corresponding expression for the square commutator to the
discrete phase space representation:

c(t ) ∼ h̄2

N4

∑
i,j,k,m

[
δ

xzy

ij (t ) − δ
yzx

ij (t )
][

δ
xzy

km (t ) − δ
yzx

km (t )
]
,

(20)

10−2

100

102

104

106

108

0.1 1 10

10−5

10−4

10−3

10−2

10−1

100

0.1 1c(
t)

N
2

tJ/
√

N

quantum t4

exact
DTWA

classical t 2

FIG. 7. The two-times regime of the square commutator in the
LMG model after a quantum quench with hf = 2. In the main plot,
the quantum regime of c(t ) for different N : this regime starts at

√
N

and then c(t ) grows polynomially as t4. ED results in blue for N =
20, 100, 200, 300, 400 (increasing color darkness), dashed yellow
line for the polynomial fit. In the insert, we show the semiclassical
regime, comparing the exact c(t ) with DTWA, which predicts the
∼t2 power-law growth, dashed in the plot. Here N = 20 and DTWA
obtained with 5 · 103 samplings.

where δ
αβγ

ij (t ) = σα
i (0)

∂σ
β

j (t )

∂σ
γ

i (0)
, with σ

x,y,z

i the Weyl transform

of the spin operators and the average (·) is computed over the
initial discrete Wigner distribution, see Ref. [76]. At t rEhr the
quantum regime starts, characterized by a polynomial growth
∼(t/N )4 up to a maximum c(t r∗ ) ∼ 2. At this time, the square
commutator is independent of the system size. Even the

10−8

10−6

10−4

10−2 (a)

0

0.3

0.6

0.9
(b)

10−8

10−6

10−4

10−2

100

102

0 1 2 3 4 5

(c)

0 0.2 0.4 0.6 0.8 1 1.2

(d)

TWA
ED

N = 400
N = 800

t J

TWA
ED

t J/N

N = 800

FIG. 8. Square commutator dynamics c(t ) for the LMG model
after a quantum quench to the DPT point (a), (b) and for the kicked
top with K = 20, hf = 2, τ = 0.6 (c), (d). At early times (a), (c),
they are both characterized by an exponential growth up to t c

Ehr, see
the right side with the log scale on the y axis. This regime can be
perfectly reproduced by the TWA (b), (d). At long times, the behavior
is different depending on the quantum integrability properties. In (c),
the time is rescaled by N to show that c(t ) grows up to a maximum
at t r

∗ . In (d), in the kicked top, the c(t ) stays constant also at very long
times. In (a) and (c), we used N = 800 and TWA obtained with 104

samplings.
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DTWA, that perfectly reproduces multipartite entanglement
dynamics up to t rrec (see Fig. 5), is not able to reproduce the
long-time dynamics of the square commutator, see Fig. 7.
Indeed, DTWA, despite keeping N discrete trajectories, rep-
resents all operators as factorized on each site at any time
[45]. At times longer than tEhr, the operator expansion starts
developing longer and longer strings and the square commu-
tator resums all the correlations, until t r∗ , which corresponds
to the time at which the string of length N occurs. Quenches
to hf � hc are characterized by the same timescales t rEhr and
t r∗ and the same semiclassical regime ∼t2/N3 up to t rEhr. The
result at long times is qualitatively different: the quantum
regime is ∼ t3/N4 and c(t r∗ ) ∼ 10−3/N goes to zero at all
times in the thermodynamic limit. This is a direct consequence
of the existence of the dynamical transition, which is detected
by scrambling [39]. Due to the presence of a macroscopic
magnetization, the support of the operators has a constrained
dynamics and it will not acquire a string of length N .

A special case is represented by the quench at hf = hc;
despite the integrability of the quantum system, we find that
the square commutator grows exponentially in time up to t cEhr
as c(t ) = e2t /N3. This is due to the existence of the unstable
trajectory in the classical dynamics. The exponent is twice the
eigenvalue of the instability matrix of the separatrix trajectory
λhc

= 2
√

hc(1 − hc ) for hc = 1/2. This is valid in general
for all the classical trajectories associated with DPT. To our
knowledge, it is the only example of an early-time exponential
growth in a many-body regular system.

After t cEhr, c(t ) keeps growing linearly in time up to the
t r∗ , then it goes back, see Fig. 8. Long-range interactions do
not drastically change this finding. In the range α < 1, the
early-time dynamics is the same as that described before. The
square commutator grows like a power law at small times,
even for α > 2.

We conclude by considering the kicking, which induces a
chaotic dynamics. As expected, c(t ) is initially dominated by
the classical exponential growth, then, as t ∼ t cEhr, quantum
interference effects appear and the square commutator
saturates to a constant value [67], see Fig. 8 (lower panels).
In the quantum chaotic regime, the dynamics is reproduced
by the semiclassical approximation, which predicts the initial
time growth of the square commutator. After t cEhr, the TWA
loses any physical meaning. The quantum c(t ) remains
constant and finite in the thermodynamic limit, meaning
that the operator support is spread up to the longest string
already from t cEhr. Notice that in this case, the exponent
is different from the actual classical Lyapunov exponent,
defined as λL ≡ limT →∞ limδQ0→0 log(|δQ(t )/δQ0|)/T , that
we compute following [73]. As pointed out by Ref. [30], this
difference comes from a different ordering in evaluating the
phase-space averages.

VII. CONCLUSIONS

In this work we perform an analysis of the spreading
of multipartite entanglement in long-range spin systems in
comparison to that of scrambling. We show that quantum
correlations build up and spread in different ways. While
entanglement and the delocalization of the state’s information
are state properties, scrambling instead describes the growth
of quantum correlations in operator’s space.

After a quantum quench in the transverse field of the
infinite range Hamiltonian, entanglement is seen to satu-
rate and become extensively multipartite ∼ φQ N at tEhr. On
the same timescale, the TMI I3 saturates to a positive value
I3 > 0, showing that the information of the initial state is
not delocalized across the system. In this case, entanglement
dynamics is reproduced, up to very long times, by all the
semiclassical approaches. On the other end, scrambling, as
characterized by the square commutator of collective spin
operators, increases semiclassically up to tEhr, continuing its
growth even afterward up to the recurrence time. Particularly
interesting is that, despite the dynamics being regular, the
early-time exponential behavior emerges when the dynamics
occurs at the critical point of the DPT, see Fig. 8. This point is
associated with an unstable trajectory on the effective classical
phase-space [6] and the exponent of the square commutator is
twice the eigenvalue of the instability matrix of the separatrix
trajectory. Nonetheless, being the quantum dynamics regular,
after tEhr, the square commutator keeps growing linearly in
time up to t∗, see Fig. 8. The other quenches, as in Fig. 4, are
characterized by a first growth ∝t2/N3 up to tEhr, which is
followed by a polynomial quantum regime ∼ (t/N )4 up to t∗.

In the presence of a periodic kicking for the chaotic
evolution, entanglement saturates at tEhr ∼ log N to values
compatible with the infinite temperature state. As far as
scrambling is concerned, we recover the exponential growth
of the square commutators expected for chaotic systems up
to tEhr, followed by the corresponding saturation induced by
quantum interference effects, see Fig. 8.

We conclude the summary of our results by considering
the case in which a quantum quench is performed with α �= 0.
In this case, we employ TDVP and semiclassical analysis.
Entanglement has the same asymptotic structure and dynam-
ics within the interaction range 0 � α < 1: the QFI grows
linearly in time up to a value ∼ N , and the TMI increases
logarithmically in time up to a constant value. For 1 � α < 2,
the QFI and the TMI grow linearly in time and the entangle-
ment structure of the asymptotic state is the same as for α < 1.
Decreasing the range of interaction the situation changes: for
α � 2 the state displays the typical dynamics and structure of
short-range interacting systems ∼ const; interestingly, I3 < 0,
signaling that the information about the initial condition is
spread throughout the degrees of freedom of the state (see
Fig. 6). Coming to scrambling, we find that before tEhr for
α < 1, the square commutator grows as ∝t2.

Despite entanglement can be efficiently reproduced up
to very long times by our numerical tools, they all fail in
predicting scrambling after tEhr. In our understanding, this
follows from the fact that all methods approximate the support
of the operator to remain factorized on the initial basis. Such
approximations do not allow us to reproduce the nonlocal
behavior of scrambling at long times. We would like to stress
that the quantum regime of scrambling, which arises after tEhr

is not peculiar only of our models or of regular dynamics.
In fact, a power law in the quantum regime has also been
found in chaotic systems [74,75]. The long-time behavior of
the square commutator shows the presence of purely quantum
correlations that build up in the operator space. In this respect,
it would be interesting to explore new quantum information
protocols that encode information in the operator itself.
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