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Return probability for the Anderson model on the random regular graph
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We study the return probability for the Anderson model on the random regular graph and give evidence of the
existence of two distinct phases: a fully ergodic and nonergodic one. In the ergodic phase, the return probability
decays polynomially with time with oscillations, being the attribute of the Wigner-Dyson-like behavior, while in
the nonergodic phase the decay follows a stretched exponential decay. We give a phenomenological interpretation
of the stretched exponential decay in terms of a classical random walker. Furthermore, comparing typical and
mean values of the return probability, we show how to differentiate an ergodic phase from a nonergodic one.
We benchmark this method first in two random matrix models, the power-law random banded matrices, and the
Rosenzweig-Porter matrices, which host both phases. Second, we apply this method to the Anderson model on
the random regular graph to give further evidence of the existence of the two phases.
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I. INTRODUCTION

The problem of Anderson localization on locally treelike
structures [1,2], or Bethe lattices, which are limits of families
of random regular graphs (RRGs), has been at the center
of a recent spur of research activity [3–11]. A big role in
this renaissance has been played by the connections of this
problem with that of localization in interacting quantum sys-
tems, dubbed many-body localization (MBL) [12]. In fact,
the original idea of mapping a disordered quantum dot to a
localization problem in a section of the Fock space [13] has
been a quite useful paradigm to follow on the route to a more
accurate description of localized, interacting systems used by
Basko, Aleiner, and Altshuler in their seminal work [12].

The MBL phase [14], which now looks like the prototyp-
ical dynamical behavior of an interacting quantum system
with strong disorder, has been characterized completely in
terms of emergent, local integrals of motion [15–19] (for
a review, see Refs. [20,21]). However, a similar degree of
understanding of the phase transition or of the delocalized
region at smaller disorder is lacking (see Ref. [22] for a recent
review). Many numerical works analyzing spin chains in one
dimension did indeed confirm the MBL transition [23–30],
but critical exponents are in disagreement with very general
bounds [31], hence casting doubts on the fact that the system
sizes analyzed are in the scaling region.

Other works have found a diffusive to subdiffusive phase
transition in the delocalized region [32–34] (but Refs. [35–37]
questioned these findings). Subdiffusion has been interpreted
sometimes in terms of rare-region effects [32,34,38–44], but
this interpretation should be questioned as it is found also in
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models with quasiperiodic disorder in which Griffith effects
are suppressed.

In light of these findings, and if the mapping of the MBL
problem to the Anderson model (AM) on the RRG has to be
taken to its extreme consequences, one is led to wonder if
different flavors of the delocalized phase should be present
there too (this is at some level conjectured in Ref. [13]). This
is an intriguing possibility, and an interesting question per
se. Since numerical analysis of the AM on Zd lattices for
small d (mainly up to d = 6 [45,46]) found no such phase,
this possibility is clearly linked to the nature of the RRG, or
to mean-field approximations valid when d → ∞. However,
recently in long-range random matrix models, such behavior
has been found in several models [47–49]. More or less
simultaneously, it has been proposed that the AM on the RRG
might have a new phase within the extended phase (where
states span the entire space). In this nonergodic, extended
(NEE) phase, multifractal states possess strong fluctuations in
space [3–5,11], like the states exactly at the Anderson transi-
tion (AT) WAT do in the AM on Zd . Focusing on properties
of the eigenfunctions, several studies propose numerical and
analytical insights for the existence of this phase, but, lacking
an exact solution, the existence of this NEE phase has been
strongly questioned, giving an indication that it could be just
a finite size effect [6–9], and the topic is generating an active
debate.

In this work, we focus on the characterization of the delo-
calized phase, based on time evolution of observables, which
are more sensitive to nonergodicity and converge at available
system sizes, unlike eigenfunction statistics. Studying the
return probability of a particle initially localized in a small
region of the system, we show how to spot the existence of
multifractal states, emphasizing the importance of the fluctu-
ations of the return probability. At the level of numerical sim-
ulations, typically, studying dynamics is easier than studying
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eigenfunctions, and one can reach larger systems sizes. In this
paper, we study the AM on the RRG for N up to 220 � 106

vertices, while typically eigenfunction statistics is available
up to 217. We also show how the dynamical properties we
focus on have converged at these sizes, while eigenfunctions
observables, like the inverse participation ratio (IPR), have
not.

First, we benchmarked this characterization on two known
models that possess critical states: The power-law random
banded matrix (PLRBM) [45,50], and the Rosenzweig-Porter
random matrix (RPRM) models [47,51]. The former model
mimics the Anderson localization transition at finite d, show-
ing only ergodic and localized phases and giving the access
to multifractal states at the AT point. The latter exhibits an
entire fractal phase [47] in a range of parameters along with
the standard ergodic and localized phases.1

Then, we use the same concept to study the AM on the
RRG, showing similarities and differences with the previous
two models, PLRBM and RPRM. We find that the ratio
of logarithms of the mean and typical values of the return
probability is, to a good approximation, a constant. While this
constant equals to unity in the ergodic phase of the PLRBM
and for the RPRM model, it is smaller than unity for the
multifractal phase of the PLRBM and for the AM on the RRG.
In the ergodic phase in all models, both mean and typical
values of the return probability show a universal algebraic
decay with time with oscillations, due to the rigidity of their
spectrum [52–55]. This kind of ergodicity is usually referred
to as full ergodicity and characterized by standard Gaussian
ensembles with ergodic fully correlated wave functions and
Wigner-Dyson-level statistics [56].

In the multifractal phase of the PLRBM, mean and typical
values of return probability are power-law decaying but with
different powers, while in the RPRM the decay is exponential.
In the multifractal phase of the AM on the RRG, the mean and
typical values are stretched exponentials R(t ) ∼ exp[−�tβ],
with the same power β but different prefactors �. Notice
that the return probability for the AM on the RRG has been
numerically investigated in Ref. [10], but for smaller system
sizes and timescales, where the stretched exponential was
approximated with a power law.

Our analysis gives a characterization of the delocalized
region of the AM on the RRG, W < WAT. Indeed, at small
enough disorder strengths, W/WAT < 0.16, a fully ergodic
phase is established, while for W/WAT from 0.4 to 0.7 an NEE
phase appears, which is somehow intermediate between the
PLRBM one and the fractal region of the RPRM. Moreover,
within the range of values of disorder in which the nonergodic
phase has been found (0.4 � W/WAT � 0.7), the parameters
of the stretched exponential β and � evolve smoothly with W ,
where β → 0 as W approaches the critical value WAT.

In the last section, we provide a classical random walk
model in which the particle jumps in random directions but
at random times �t , which are distributed in a power-law way

1Recently, some works reported on other models, showing the
presence of the nonergodic extended phases away from criticality
(see, e.g., Refs. [48,49,70,71]).

P (�t ) ∼ (�t )−(1+β ). The exponent β � 1 − W/WAT is the
exponent of the stretched exponential.

II. MODEL AND METHODS

We study the Hamiltonian

Ĥ :=
L∑

x,y=1

hx,y |x〉〈y|, (1)

represented in the basis of the site states |x〉, where L is the
number of sites in the system. We consider three different
models that have a metal-insulator transition (MIT) with wave
functions changing properties from ergodic to localized via
multifractal ones.

First, we consider the PLRBM ensemble [45,50], which
is obtained from Ĥ (1) with hx,y = hy,x = μx,y/(1 + (|x −
y|/b)2a )1/2. Here and further, μx,y are independent uniformly
distributed random variables taken from [−1, 1]. This ensem-
ble of matrices parameterized by a and b has an MIT at a = 1,
for any b. For a < 1, the model shows an ergodic phase2

and at a > 1 the eigenstates are power-law localized. At the
critical point (a = 1), all the states are multifractal and the pa-
rameter b tunes the multifractal properties of eigenstates from
strong (b � 1) to weak (b 	 1) multifractality [50,57,58].
There is no mobility edge in this model, i.e., for any a, b all
the states are either extended or localized.3

Second, we discuss the RPRM [47,51], which is obtained
choosing hx,y = hy,x = μx,y/L

γ/2 for x 
= y, while for x =
y, hx,x = μx,x . Like the PLRBM, the RPRM has no mobility
edge, but it has three distinct phases. For γ < 1, all the states
are fully ergodic while at γ > 2 all the states are localized
nearly at a single site [47,52]. For 1 < γ < 2, a simple fractal
phase arises, (one does not have multifractality)4 In a fractal
phase of the RPRM, the wave functions can be considered
ergodic on a large number of sites (which form a fractal),
which is, however, a small fraction of the whole system (zero
measure in the thermodynamic system L → ∞). The conse-
quence of this is that the exponents τq of a certain eigenstate
φE (x) of the Hamiltonian Ĥ , defined by

∑
x |φE (x)|2q ∼

L−τq take a simple linear form τq = (2 − γ )(q − 1), q > 1/2.
Third, we examine the RRG with the uncorrelated di-

agonal disorder hx,x uniformly distributed in the interval
[−W/2,W/2]. The hopping amplitudes are deterministic and
equal to hx,y = hy,x = −1 if the sites x and y are linked
in RRG with fixed local connectivity K + 1 and hx,y = 0
otherwise. The local connectivity is taken to be three (i.e.,
K = 2), like in many previous studies. This model is believed

2However, some recent works claim that the fully ergodic Wigner-
Dyson wave function distribution realizes only at a < 1/2, showing
at 1/2 < a < 1 weakly nonergodic behavior though with ergodic
wave function moments (see, e.g., Refs. [48,72]).

3Note that the model with deterministic hopping terms hx,y =
1/(1 + (|x − y|/b)2a )1/2 at x 
= y, considered first in Ref. [73],
always shows power-law localized states for any a [48,74].

4Note that the model with deterministic hoppings hx,y =
gxgyL

−γ /2 with fixed gx ∼ L0 being an integrable model is either
localized or critical [48,49,70,71,74,75].
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to have the AT at WAT ≈ 18.2 (this number is the most recent
one in Refs. [11,59]). Moreover, the matter of discussion is
the possibility of the existence of a nonergodic (multifractal)
phase constituted by extended states at W < WAT [3] and
thus a transition at even smaller disorder strength between
these multifractal states and ergodic states [4]. This putative
transition has been estimated to be around WEMT ≈ 10 (EMT,
ergodic to multifractal) [4]. It implies existence of an entire
phase (WEMT < W < WAT) composed of multifractal states.
The RRG has mobility edges, thus the spectrum of Ĥ de-
pending on the disorder strength can host separated bands of
energies composed of extended or localized eigenstates.

In this work, we focus on the study of these different
extended phases (ergodic, nonergodic multifractal, fractal)
by investigating their dynamical properties. In particular, we
study the return probability starting from a projected state
P̂�E |x〉 [37,52,60], defined as

R(t ) := |〈x|P̂�Ee−iĤ t P̂�E |x〉|2
|〈x|P̂�E |x〉|2 , (2)

where for RRG P̂�E := ∑
E∈�E |E〉〈E| is the projector to

eigenstates of Ĥ with energy E, which belongs to a small
energy shell E ∈ �E = [−δE, δE] around the middle of the
spectrum of Ĥ , |�E| = 2δE = EBW/32 is considered to be a
fraction of the whole bandwidth EBW for the AM on the RRG.
For PLRBM and RPRM (where there is no mobility edge) the
projector is taken to be P̂ = I.

The reason to use the projector P̂�E in the AM on the
RRG is dual. On one hand, one wants to avoid the mixing
of states with different dynamical properties, and in general
some |x〉 have overlap with both localized and delocalized
states. So, for the RRG, �E has been chosen small enough
so that the eigenstates involved in the dynamics are almost
all extended for the values of considered disorder.5 On the
other hand, one would like to create a semiclassical wave
packet, in hope that some kind of classical random process
can capture the quantum dynamics. So one has to balance the
uncertainties �x and |�E| such that the uncertainty principle
�x|�E| � h̄v is satisfied (here v is some velocity O(1)).

The average over matrix ensemble and initial states |x〉 is
indicated with a bar over the quantity considered. In particular,
we focus on mean and typical values of R(t ), defined as R(t )
and elogR(t ), respectively.

The scaling of R(t ) to zero with the system size L in the
long-time limit is also in our main focus (both typical and
mean averages):

R∞ := lim
T →∞

1

T

∫ T

0
R(t )dt, (3)

elogR∞ := lim
T →∞

1

T

∫ T

0
elogR(t )dt. (4)

These quantities will give information on the properties
(ergodicity or multifractality) of the eigenstate belonging in

5We tested that our result barely depend on the choice of the
fraction |�E|/EBW < 1/8. Please see Ref. [64] for the data with
|�E|/EBW from 1/64 to 1/8.

the energy shell �E, as the mean R∞ can be expressed in
terms of the IPR of wave functions {φE} of Ĥ ,6

R∞ = IPRx =
∑

E∈�E |φE (x)|4
(
∑

E∈�E |φE (x)|2)2
. (5)

The typical value elog IPRx of IPRx is not equal to elogR∞ in
general. This difference possibly originates from the time
fluctuations of R(t ). Nevertheless, for long times (of the order
of the saturation time of R(t ) in a finite system) the time fluc-
tuations of R(t ) scale to zero as a function of L, so in the first
approximation the correction due to time fluctuations does not
change the L-scaling of elog IPRx ∼ elogR∞ . We confirmed the
scaling elog IPRx ∼ elogR∞ with exact numerics.

Nevertheless, the scaling of IPRx and elog IPRx can, in
principle, be different depending on the phase. Indeed, in the
ergodic phase the envelope of the wave functions {φE} is in
the first approximation uniformly distributed over the entire
system (|φE (x)|2 ∼ 1/L), thus it does not reveal strong spatial
fluctuations. In this case, we do not expect any difference in
the scaling of mean and typical values. In a fractal phase,
like in the RPRM, the magnitude of wave functions in space
do not possess significant fluctuations, since the fractality is
emerged due to a fractal spatial support set of wave functions,
forming subbands in the entire energy spectrum from eigen-
states living in the same fractal set and fully correlated to each
other [47,52]. Thus, in this case, we expect a situation similar
to that of the ergodic phase. Nevertheless, in the multifractal
phase, the wave functions {φE (x)} could have strong spatial
dependence, which could imply a possible difference in scal-
ing with L between R∞ and elogR∞ .

III. PLRBM AND RPRM

In this section, we study R(t ) and its long time satu-
ration value for the PLRBM and RPRM. We perform the
time evolution using exact full diagonalization. At the critical
point of the PLRBM, a = 1, where all states are multifractal,
both R(t ) and elogR(t ) decay algebraically, R(t ) ∼ t−α1 and
elogR(t ) ∼ t−α2 in full agreement with the previous analytical
investigations for R(t ) [61–63]. Figure 1(a) shows the alge-
braic decay of R(t ) and elogR(t ) at criticality (multifractal
phase). As observed, the two decay rates (α1, α2) are different
from each other, and due to the inequality between arithmetic
and geometric mean α1 < α2.7 Instead, in the ergodic phase
(a < 1), the asymptotic decay rates of R(t ) and elogR(t )

are the same and R(t ) demonstrates power-law decay with
oscillations, being an attribute of Wigner-Dyson fully ergodic
behavior [64]. As a consequence of the difference in decay

6Note that the considered definition of the inverse participation
ratio, IPRx , is different from the standard one IPRE = ∑

x |φE (x )|4
as the summation is taken over energy window, but not over sites.

7We also analyzed the ultrametric random matrix model, a different
model in which an MIT happens. At its critical point, all eigenstates
are multifractal and the same difference between mean and typical
value of R(t ) like in PLRBM holds.
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(a) (b)

(c) (d)

FIG. 1. Mean R(t ) and typical elogR(t ) return probability as a
function of time t (a), (b) or versus each other (c), (d) for PLRBM and
RPRM models. (a) R(t ) and elogR(t ) versus t shown in log-log scale
in the multifractal phase of the PLRBM (a = 1, b = 0.5) for a fixed
system size L = 214. The dashed lines are guides for the eyes empha-
sizing the power-law decay of R(t ) and elogR(t ) in time with different
powers. (b) R(t ) and elogR(t ) versus t shown in log-linear scale in the
fractal phase of RPRM (γ = 1.25) for L = 214. R(t ) ∼ elogR(t ) ∼
e−ETh t show exponential decay with the same exponent ETh being

the Thouless energy of the model (ETh ∼ L1−γ ). (c) R∞
−1

versus
e−logR∞ in two different phases of the PLRBM: In the ergodic phase

(a = 0.5, b = 1), the mutual dependence is linear R∞
−1 ∼ e−logR∞ ,

while in the multifractal phase (a = 1, b = 0.5) R∞
−1 ∼ e−αlogR∞

with α < 1. The inset shows the scaling of the typical IPRx versus
the typical R(∞) in the linear scale and confirms the same L-scaling

of both typical quantities. (d) R∞
−1

versus e−logR∞ for the RPRM in
two phases. Both in ergodic (γ = 0.5) and fractal (γ = 1.25) phases,

the mutual dependence is linear R∞
−1 ∼ e−logR∞ .

rates of R(t ) and elogR(t ) in the multifractal phase the sat-
uration values R∞ Eq. (3) and elogR∞ Eq. (4) may have
different scaling to zero as functions of L, R∞ ∼ L−D2 , and
elogR∞ ∼ L−Dtyp (D2 < Dtyp < 1), while in the ergodic phase
the exponents are the same and equal to unity D2 = Dtyp = 1.

To emphasize the difference in the behavior of the typical
and mean R(t ) in different phases of PLRBM, in Fig. 1(c) we

show R∞
−1

as a function of e−logR∞ in a log-log plot for two
different set of values of a, b: one in the ergodic phase and

another in the multifractal phase. In the ergodic phase, R∞
−1

and e−logR∞ scale in the same way as a function of system

size (R∞
−1 ∼ e−logR∞ ). In the multifractal phase, R∞

−1
and

e−logR∞ scale in a different way, R∞
−1 ∼ e−αlogR∞ with α =

D2/Dtyp < 1. This difference is also possible to observe in
the probability distribution of R∞ (for the scaling with L

of the probability distribution of R∞ see Ref. [64]), which

in the multifractal region becomes long-tailed, giving the
discrepancy in the scaling between mean and typical values.
In the ergodic phase, the probability distribution of R∞
is close to Gaussian. The inset of Fig. 1(c) shows elog IPRx

as a function of elogR∞ in a linear scale, giving indication
that elogR∞ ∼ elog IPRx . Furthermore, substituting the equal-
ity R∞ = IPRx , Eq. (5) in the latter obtains that IPRx

−1 ∼
e−αlog IPRx with the same α as in R∞

−1 ∼ e−αlogR∞ .
In the RPRM, both R(t ) and elogR(t ) decay exponen-

tially in time in the nonergodic phase, 1 < γ < 2, R(t ) ∼
elogR(t ) ∼ e−ETht and polynomially with oscillatory time-
dependence in ergodic phase, γ < 1, R(t ) ∼ elogR(t ) ∼
[J1(2δEt )/(2δEt )]2 [52]. Here J1 is the Bessel function of
the first kind, ETh is the Thouless’s energy and 2δE coincides
in this case with the energy bandwidth EBW (as we take
P̂�E = 1 for this model). Some of authors of this paper
have also studied in Ref. [52] an accurate extraction of the
L-dependence of ETh from R(t ) nearly free from the finite
size effects.

Figure 1(b) shows R(t ) and elogR(t ) versus t in the fractal
critical region. It gives evidence that both R(t ) and elogR(t )

decay exponentially in time with the same rate ETh. The
same dependence with time between mean and typical implies
that their saturation values scale to zero as functions of L

in the same way. Figure 1(d) shows R∞
−1

as a function
of e−logR∞ both in ergodic and in fractal phases. In both
phases, typical and mean return probabilities scale in the same

manner R∞
−1 ∼ e−logR∞ , confirming the above-mentioned

arguments about the fractal states.

IV. ANDERSON MODEL ON RRG

Having shown that the difference in the behavior between
the mean and the typical value of R(t ) can be used to distin-
guish ergodic and multifractal phases, we now study R(t ) in
the RRG. In the RRG, the existence of the multifractal phase is
under active debate because of two issues: First, the existence
of a correlation length Lcor, which diverges as W approaches
the AT (Lcor ∼ ec/

√
WAT −W ).8 For finite systems of size L

smaller than Lcor, the wave functions could share properties
both of localized and ergodic states and thus they could be
mistakenly classified as multifractal. Second, even for L >

Lcor, finite size corrections for the IPR might be quite strong
and

∑
x |φE (x)|4 ∼ log(L)ηL−D2 , for some η could affect

the accuracy of the extraction of the critical exponent D2.
Thus, the calculation of D2 (D2 = 1 for ergodic, D2 < 1 for
nonergodic) is an extremely challenging numerical problem.

The AM on the RRG has a mobility edge, thus in our
study we consider only the energies in the middle of the
spectrum, choosing |�E| = 2δE = EBW/32, ensuring that
all the states {φE}E∈�E share the same properties for our
choice of the disorder strength W . We perform the time
evolution using full diagonalization for small system sizes
L � 214, and using Chebyshev integration technique [65] for

8Recently, a different expression for Lcor, Lcor ∼ ec/(WAT−W ) has
been proposed [11].
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FIG. 2. The return probability R(t ) versus t for the RRG with the energy shell |�E| = 2δE = EBW/32 being a fraction of the
whole energy bandwidth EBW for several disorder strengths W and system sizes L. (a) R(t ) in the ergodic phase W = 3 for several
system sizes L = 216, 218, 220; The inset shows that R(t ) for W = 3 and L = 220 almost coincides with the ergodic solution Eq. (6)
Rerg(t ) = [sin(2δEt )/(2δEt )]2 (shown by a black dashed line) [52–55]; (b) R(t ) in the nonergodic phase W = 12 at several system sizes
L = 216, 218, 220. The inset shows a nontrivial plateau in the ratio logR(t )/logR(t ) < 1. (c) R(t ) for a fixed L = 220 and several disorder
strengths W = 3, 6, 8, 9, 10, 12.

larger 215 � L � 220. The projector P�E has been constructed
using full diagonalization for L � 214, and using a truncated
Chebyshev expansion [37] for larger 215 � L � 220.

Figure 2(a) demonstrates time dependence of the mean
of R(t ) at rather small disorder strength (W = 3) for sev-
eral system sizes. The presence of oscillations in the re-
turn probability R(t ) surviving in the thermodynamic limit
L → ∞ confirms the existence of the fully ergodic phase
consistent with Wigner-Dyson behavior [52–55]. The inset of
Fig. 2(a) confirms the form of oscillations without any fitting
parameter:

Rerg(t ) =
[

sin(2δEt )

2δEt

]2

, (6)

which is valid for small energy shell δE � EBW, approxi-
mating the local density of states with a box function and
uncovering the rigidity of the spectrum. However, at moder-
ate disorder strength W = 12, the time dependence of R(t )
[shown in Fig. 2(b)] demonstrates absence of oscillations and
a clear bending in a log-log scale, excluding the power-law
decay. This time dependence is consistent with a stretched-
exponential decay R(t ) ∼ Ae−�tβ up to a possible sublead-
ing polynomial prefactor (see also Fig. 3). Also the typical
value of R(t ) decays like a stretched exponential, elogR(t ) ∼
Atype

−�typt
β

. This stretched-exponential time behavior holds
for moderate values of disorder strength W in the extended
phase (0.4 � W/WAT � 1) both for R(t ) and elogR(t ) (for
additional data for R(t ), see Ref. [64]).

For disorder strengths between 0.16 � W/WAT � 0.4 er-
godic oscillations are also present. Nevertheless, their am-
plitudes reduce with the increasing system size, preserving
us from giving a final conclusion on the existence of the
fully ergodic or multifractal phases in this regime. Indeed, in
Ref. [52] it has been shown that in the fractal phase of the
RPRM oscillations are just a finite-size effect, which disap-
pears in the thermodynamic limit, thus one cannot exclude
that the similar behavior could happen also for the AM on
the RRG. Figure 2(c) shows R(t ) for a fixed system size
L = 220 for several values of W . The inset of Fig. 2(b) shows
the ratio logR(t )/logR(t ) for W = 12, which develops a
large plateau over more than two orders of magnitude of t ,
increasing with increasing system size. The formation of this

plateau gives evidence that the power β is the same for mean
and typical. Since value of the ratio logR(t )/logR(t ) at the
plateau is less than unity, one can claim that � < �typ, as
for large time logR(t )/logR(t ) ∼ �/�typ. This difference
between � and �typ has been observed for values W > 10,
while for smaller values of W , the numerics give evidence
that � = �typ [64].

For disorder strengths between 0.4 � W/WAT � 0.7,
where both the residual oscillations and the proximity to AT
do not matter, the stretched-exponential parameter β decays
approximately linearly. The linear extrapolation of β(W )
gives reasonable values of the Anderson localization transi-
tion WAT, where β(WAT) = 0. Although, at small disorder
strength the ergodic oscillations of R(t ) Eq. (6) hide the
stretch-exponential behavior (as in RPRM model close to γ =
1 [52]). The linear extrapolation to this region β(W → 0) = 1
is consistent with works on classical diffusion on the Bethe
lattice [66,67]).

To avoid any problems with unstability of multiparameter
fit, in Fig. 3 we show R(t ) exponentially decaying as a func-
tion of t (1−W/WAT ) for several values of W , providing the direct
indication that β � (1 − W/WAT ). In summary, our analysis
for R(t ) provides the evidence that for small disorder W <

FIG. 3. The return probability R(t ) versus t1−W/WAT in the non-
ergodic phase for several disorder strengths W = 8, 9, 10, 12,
and fixed L = 220 [rescaled data from Fig. 2(c)], confirming the
stretch-exponential behavior R(t ) ∼ e−�tβ , with β = 1 − W/WAT

and WAT = 18.2.
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TABLE I. Behavior of typical and average return probability and ratio of their logarithms for large t for the different models.

Ergodica PLRBM (a = 1) RPRM (1 < γ < 2) RRG (8 � W � 12)

R(t ) ∼ t−α0 ∼ t−α1 ∼ e−ETh t ∼ e−�tβ

exp[logR(t )] ∼ t−α0 ∼ t−α2 ∼ e−ETh t ∼ e−�typtβ

log(R(t ))/logR(t ) 1 α1/α2 < 1 1 �/�typ � 1

aPLRBM (a < 1), RPRM (γ < 1), and RRG W � 3. a0 = 2(3) for |�E| � EBW(|�E| � EBW). Oscillations of the type Eq. (6) are present
in both cases.

0.16WAT � 3, the RRG is in the fully ergodic phase [due to the
oscillatory behavior Eq. (6)], while at 0.4 < W/WAT < 0.7
the behavior is certainly nonergodic (absence of oscillations,
� < �typ, stretch-exponential time-dependence of R(t )), see
also Table I. As a result, one should expect the ergodic
transition in the range 0.16 < WEMT/WAT < 0.4 in agreement
with Ref. [4].

It is important to underline that the timescale t∗ ∼ �−1/β

in which the decay of R(t ) can be distinguished from an alge-
braic decay diverges approaching the AT (see also Ref. [68])
i.e., for W = 14 the bending in a log-log plot is only visible
for t	 ≈ 104 and it requires having system size of L = 220,
thus the decay of R(t ) for smaller times and smaller system
sizes could be interpreted as a power law [10]. Moreover,
in a recent work [10], it is argued on the base of numerics
that a possible power-law decay of R(t ) ∼ t−ζ is consistent
with an algebraic dependence of the overlap of different wave
functions K(ω) ∼ ω1−ζ defined as

K(ω) = 1

N
∑

E,E′∈�E

|〈x|E〉|2|〈E′|x〉|2δ(ω − E + E′), (7)

with a normalization constant N ensuring
∫

dωK(ω) = 1.
However, using stationary phase approximation, it is pos-

sible to show that for R(t ) ∼ e−�tβ , the overlap decays as

K(ω) ∼ ω− 1+(1−β )−1

2 for moderately large ω and as K(ω) ∼
ω−(1+β ) for very large ω. As for observed values of β � 0.5,
the difference between the above-mentioned exponents is less
than 7%, a stretched-exponential behavior for R(t ) can be
consistent, in the first approximation, with a single power-law
behavior of K(ω) observed in other works (e.g., Refs. [10,69])
as well as with the power-law with logarithmic corrections.9

V. CLASSICAL RANDOM WALK APPROXIMATION

Let us now present a classical model of subdiffusion which
can explain stretched-exponential behavior of the return prob-
ability on the RRG, while giving normal subdiffusion on
a regular lattice. Let us consider a random walk in which
every time �t the walker makes a step in a randomly picked
direction. We assume that different dwelling times �t and
jump directions, determining the random number N (t ) of
steps the walker takes in time t , are statistically independent.
Within this assumption on a line, one can easily see that the
averaged square distance from the initial point is determined

9In the work [68], authors claim that at large ω the overlap
correlation function decays as K(ω) ∼ [ω log3/2(1/ω)]

−1
.

solely by N (t )

〈x2(t )〉 = a2N (t ), (8)

where a is the lattice constant. If we have N (t ) ∼ (t/τ )β , we
straightforwardly obtain a subdiffusion law:

〈x2(t )〉 = a2(t/τ )β. (9)

It is possible to see that, by choosing P (�t ) ∼ 1/�t1+β for
β � 1, the typical number of steps in an interval is indeed
scaling as N (t ) ∼ tβ . For β > 1, instead we have N ∼ t .10

On any regular lattice, the probability distribution follows
the Markov rate equation:

P (y,N + 1) − P (y,N ) =
∑

x

(A − (K + 1)I)y,xP (x,N ),

(10)

where K + 1 is the connectivity and A the adjacency matrix
of the graph. While for a typical nonexpander like a square
lattice Zd , or similar, the decay of the return probability after
N steps is power-law R(N ) ∼ N−d/2, for a RRG/Bethe lattice
the return probability scales exponentially:

R(N ) = P (x,N |x, 0) ∼ e−gN , (11)

irrespective of x, where g is the gap in the adjacency matrix,
g = (K + 1) − 2

√
K . If we now take into account the above-

mentioned assumption N (t ) ∼ (t/τ )β , we immediately obtain
a stretched-exponential form

R(t ) ∼ e−�tβ , (12)

which is in accord with our numerics. Moreover, for a
RRG/Bethe lattice, the averaged distance from the initial point
grows linearly with N (t ):

〈x(t )〉 = aN (t ), (13)

giving in our case subballistic wave-packet spreading:

〈x(t )〉 = a(t/τ )β . (14)

The prediction of the subdiffusive spreading of the wave
packet following from Eq. (9) needs to be verified in further
works. Notice, moreover, that the fluctuations of N (t ) can
explain the difference between logR(t ) and log(R(t )), even
if the distribution of N (t ) does not have long tails. For
example, a distribution like P (N ) = e

ν
e−N/ν for N � ν and 0

10The relation between this phenomenology and the “miniband”
phenomenology of Ref. [11] did not escape us. Unfortunately, we
are not able to provide a quantitative connection between the two
and we plan to investigate this point in the future.
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(a) (b) (c)

FIG. 4. Scaling of mean and typical IPR in RRG versus the system size L and versus each other. (a) IPRx and elog IPRx as a function
of L at the disorder strength W = 11. Both curves show significant deviations from the power-law scaling IPRx ∼ L−D . (b) IPRx

−1
versus

e−log IPRx (IPRx ∼ eαlog IPRx ) for several W . Different points of the curve correspond to the different system sizes L = 29 − 217. Panel (c) shows
L-dependent power αL of the mutual IPR scaling as a function of W . αL has been extracted from the linear fitting of log IPRx versus log IPRx

with an enlarging L. The inset of panel (b) shows αL and DL as a function of L. DL has been extracted from the linear fitting of (− log IPRx )
versus log L. The subscript L in αL and DL indicates the largest system size considered in the fit starting with L = 29.

otherwise gives a ratio logR(t )/log(R(t )) = 1/2. The above-
mentioned assumption of the classical dynamics in RRG can
be justified in our numerics due to not-too-small width �x ∼
h̄v/|�E| of the initial wave packet P̂�E|x〉. The power-law
distribution of the dwelling times �t is possibly related to the
strength of the on-site disorder.

VI. PARTICIPATION RATIOS

In this section, we analyze the system size dependence
of the saturation values Eq. (5) of mean R∞ = IPRx and
typical elogR∞ ∼ elog IPRx return probability in AM on RRG.
We directly observe scaling of IPRs with system size IPRx ∼
L−D2 , but the scaling exponents D2 have not yet reached
saturation.

Using the time evolution algorithm, it is difficult to extract
the saturation values of R(t ) systematically and reliably, since
very large times are needed. Therefore, we find it easier to
analyze IPRx using a shift-inverse exact diagonalization tech-
nique. Figure 4(a) shows IPRx and elog IPRx as a function of L

in a log-log scale for a fixed disorder strength W = 11. Strong
finite size effects are visible for available systems sizes,
which makes the extrapolation of D2 and Dtyp unreliable.
Nevertheless, IPRx and elog IPRx seem to suffer from similar
finite-size effects. Indeed, plotting IPRx parametrically as
a function of elog IPRx drastically reduces finite-size effects.
Figure 4(b) shows IPRx as a function of elog IPRx for several
values of W , giving an indication that IPRx ∼ eαlog IPRx . As
we have already shown, in the ergodic phase α = 1, while in
the multifractal phase one expects α = D2/Dtyp < 1. Using
an enlarging linear fitting procedure, we are able to extract
the exponent α as a function of the disorder strength and
the system size L, αL, (here L indicates the last system size
which has been taken into consideration in the fit starting from
L = 29). Extracting in the same manner the critical exponent
D of the L-scaling of the mean IPRx value, we compare the
results for αL and DL in the inset of Fig. 4(b). From the
inset, one can see that DL has a change of 30% for available

system sizes, while αL changes only by 3%. Nevertheless, αL

increases with L and we cannot, in principle, exclude that its
asymptotic value may be α = 1.

Figure 4(c) shows αL for several L as a function of W . For
W < 10, α ≈ 1 gives the evidence that in this regime, even at
our system sizes, the eigenstates are ergodic (but possibly not
fully ergodic as at W � 3). For W > 10 ≈ WEMT, α drops to
a smaller value confirming that for available systems sizes the
system has not developed ergodicity. The flow of αL towards
unity with increasing L is visible at least for 10 < W < 12,
while for W > 12 the data does not change with system size.
For large disorder strength, one should also keep in mind that
the convergence could be induced by the finite system sizes,
which are small compared to the correlation length Lcor.11

VII. CONCLUSION

We have studied the quantum dynamics of particle initially
prepared in a narrow wave-packet form in three different
ensembles of disordered systems, giving a characterization of
multifractal phases based on the statistics of the return prob-
ability. In particular, we have studied the return probability
R(t ) to the initial state during the quantum dynamics. We
have proposed that in the multifractal phase, fluctuations over
disorder and initial site are so strong that the long-time limit of
the mean and typical value of R(t ) scale to zero differently as
a function of system size. In the ergodic and in fractal phases,
the scaling is shown to be the same.

First, we have benchmarked these ideas in the PLRBM
ensemble, where one observes both ergodic and multifractal
phases. We have shown that the long-time limit of the mean
and typical value of R(t ) scale to zero in the same way in
its ergodic regime while, at criticality, where all the states are

11The difference between mean and typical R(t ) is also possible to
observe in the probability distribution of R∞. For the scaling with L

of the probability distribution of R∞, see Ref. [64].
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multifractal, the scaling of these observables differ from each
other.

Second, we have pointed out, analyzing the RPRM model,
that this difference in the scaling disappears in the case of
fractal (but not multifractal) states.

Finally, we have used this idea to tackle the AM on RRGs,
in which the existence of an extended multifractal phase is
under debate. We present the results for the return probability
R(t ) for system sizes, where the convergence of R(t ) is
ensured, and provide the numerical evidence of the difference
of the mean and typical values of the return probability, giving
a signature of nonergodic behavior of eigenstates, in the range
0.4 < W/WAT < 0.7. Furthermore, we have shown that in
this range, R(t ) decays likes a stretched exponential and we
have extracted the parameters of this stretched-exponential
decay. We give a phenomenological classical subdiffusive
hopping model, which reproduces the stretched exponential
of the return probability and provides predictions of the wave-
packet evolution with time, which are worth further verifying.

For small disorder strengths, W � 0.16WAT, R(t ) shows
oscillations which survive in the thermodynamic limit, con-
firming the existence of the fully ergodic phase consistent with
the standard Wigner-Dyson behavior.

Our analysis based on dynamical properties allows us to
conclude that the RRG is in the fully ergodic phase at least for

small disorder W < 0.16WAT and in the NEE phase at least
for the 0.4 < W/WAT < 0.7, which implies that a transition
between ergodic and nonergodic phases should exist in the
range 0.16 < WEMT/WAT < 0.4 in agreement with Ref. [4].

The subdiffusion results for the wave packet spreading
Eq. (9) guessed from the classical model need more analysis
and we left them for further investigations.

Note added. During the consideration of the paper in
the journal, authors have become aware of the work [68]
considering, in particular, the return probability R(t ) in RRG
and having similar results of the stretched-exponential decay
of R(t ) with time in the corresponding range of system sizes
and time intervals.
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