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Correlating structural distributions in silica glass with two-dimensional J-resolved spectroscopy
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A two-dimensional (2D) J -resolved magic-angle spinning nuclear magnetic resonance (NMR) spectrum of
silica glass at 29Si natural abundance levels, 4.7%, was measured using the shifted-echo phase-incremented
echo train acquisition (SE-PIETA) pulse sequence. At 29Si natural abundance levels the JSi-O-Si coupling
splittings appear as overlapping doublet patterns arising from isolated 29Si-O-29Si linkages. The experimental
2D J -resolved spectrum is analyzed to obtain a bivariate probability distribution correlating the central Si-O-Si
angle of a Q4-Q4 linkage to its mean Si-O-Si angle (seven angles) using relationships between 29Si isotropic
chemical shifts and geminal JSi-O-Si coupling of a Q4-Q4 to its local structure. To obtain a self-consistent bivariate
probability distribution it was necessary to introduce an additional dependence of the 29Si chemical shift of a
Q4 on mean Si-O distance as well as mean Si-O-Si angle. The implication of this necessary modification is
a positive correlation between Si-O-Si angle and Si-O distance in the silica glass, consistent with recent 17O
NMR measurements on ambient and densified silica glasses but running opposite to the trend generally found
in crystalline silica polymorphs. From the analysis of the 29Si 2D J -resolved spectrum we determine a Si-O-Si
bond angle distribution in silica glass as having a mean at 147.8◦, a mode at 147◦, and a standard deviation of
10.7◦. Our statistical model for analyzing the experimental 29Si 2D J -resolved spectrum also indicates that the
individual Si-O-Si bond angle distributions are relatively uncorrelated.
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I. INTRODUCTION

Glass structure is a difficult thing to characterize. Any
structural model of glass is necessarily statistical in nature;
that is, the individual atomic positions cannot be known.
When constructing structural models of glasses the most com-
monly used prior information comes from the static structure
factors obtained from diffraction measurements [1,2], whose
Fourier transform is the pair (2-body) correlation function of
the material. Unfortunately, in the case of a glass this one-
dimensional statistical distribution is smooth and provides few
structural constraints [3]. While techniques like reverse Monte
Carlo [4] and recent variants [5,6] rely solely on experimental
information, the unfortunate truth is that the information con-
tent of most experimental measurements on glass structure is
low. Recently devised hybrid methods attempt to incorporate
additional prior information from classical and ab initio poten-
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tials. The challenge with this approach, however, is in finding
accurate potentials that are transferable to structural studies of
glasses when they are trained on crystalline databases [3,7].

Here we focus on the experimental side of the problem
by attempting to increase the information content of measure-
ments through the use of more sophisticated multidimensional
nuclear magnetic resonance (NMR) spectroscopy measure-
ments and spectral analysis. We illustrate this approach in
the case of the archetypical network-forming glass, vitreous
SiO2. In the majority of NMR studies of network-forming
glasses, where spectra contain a number of resolved “reso-
nances,” spectroscopists focus almost entirely on using NMR
spectra to identify and quantify populations of polyhedral
units, and polyhedral linkages [8]. This coarse-grain analysis
has generated tremendous insight into the structure of glass
over the last 30 years, yet it falls short in exploring the full
range of noteworthy structural distributions. By using the
term “coarse-grain analysis” and referring to “resonances”
in quotes, we are highlighting the fact that these resolved
“resonances” are inhomogeneously broadened; that is, inside
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each “resonance” is a mix of homogeneous resonances from
numerous structurally distinct sites. The shape of these in-
homogeneous “resonances” contains a wealth of structural
information, and it is two mappings: (1) from NMR line
shape to probability distribution of NMR parameters, and (2)
from NMR parameter distribution to probability distribution
of structure parameters that lie at the heart of more refined
structural assignments of glass NMR spectra. We refer to such
a quantitative spectral analysis that produces a probability
distribution for glass structure parameters as a “fine-grain”
analysis.

One of the first attempts to perform a fine-grain analysis
of an inhomogeneous NMR line shape from a glass was in
1984 by Dupree and Pettifer [9] on the 29Si magic-angle
spinning (MAS) spectrum of silica glass. Using then-recently
established correlations between 29Si isotropic chemical shift
and the mean Si-O-Si angle of a tetrahedron, Dupree and
Pettifer inverted the MAS line shape of a Q4 resonance
into the Si-O-Si angle distribution of silica. While a direct
inversion of the 29Si MAS spectrum of silica glass yields
the distribution of mean Si-O-Si angles of the Q4 sites, the
individual Si-O-Si bond angle distribution can be obtained in a
more sophisticated analysis with the assumption that the four
Si-O-Si angles on each Q4 are statistically independent [9–
11]. Unfortunately, in more compositionally diverse silicate
glasses the correlation between 29Si isotropic chemical shift
and the mean Si-O-Si angle becomes strongly influenced by
the identity of the next-nearest-neighbor polyhedral units and
modifier cations, and the line shape inversion is no longer as
simple. These caveats aside, the Dupree and Pettifer study
pointed the way towards more systematic inversions of glass
spectra.

While NMR spectroscopy of glasses generally suffers the
same malady of overlapping resonances as other spectro-
scopies, NMR has a distinct advantage of not being limited to
one spectroscopic dimension. In 1992 Farnan et al. [12] used
dynamic-angle spinning [13–16] (DAS) NMR to measure the
isotropic 17O NMR line shape of the bridging oxygen in
a potassium tetrasilicate glass. Although there is no simple
mapping between the 17O isotropic shift and Si-O-Si angle,
they showed that the correlated anisotropic line shapes from
the full two-dimensional (2D) DAS spectrum can be used
to extract mean quadrupolar coupling parameters for each
correlated part of the inhomogeneous isotropic line shape.
The quadrupolar asymmetry parameter, for which correlations
to Si-O-Si angle were known, was then used to invert the
isotropic line shape into the mean Si-O-Si angle distribution
of the potassium tetrasilicate glass.

Since the work of Farnan et al. [12] considerable progress
has been made in determining more precise relationships
between the 17O nuclear quadrupolar coupling parameters of
the intertetrahedral bridging oxygen and its first coordination
sphere structure [17–27]. A particular advantage of 17O 2D
DAS is that it can now determine the bivariate distribution
of Si-O distances and Si-O-Si angles. In the case of silica
this advance was significant because it revealed a strong posi-
tive correlation, i.e., Si-O distance increasing with increasing
Si-O-Si angle [28,29]. This correlation runs counter to con-
ventional wisdom of a negative correlation in silicate glass
structure. Further evidence of this positive correlation could

impact our understanding of the role of configuration entropy
in stabilizing certain silicate glass structures [30].

In this work we develop an approach for determin-
ing the bivariate probability distribution correlating the
central Si-O-Si angle of a Q4-Q4 linkage to its mean
Si-O-Si angle (seven angles) using relationships between 29Si
isotropic chemical shifts and geminal JSi-O-Si coupling of a
Q4-Q4 to its local structure. While J couplings are a pow-
erful probe of structure in liquid-state NMR spectroscopy,
they have seen limited use in solid-state NMR studies. This
is because (1) the J splittings are often tiny compared to
linewidths in solid-state magic-angle spinning (MAS) NMR
and, therefore, difficult to detect, and (2) our understanding of
the relationships between J couplings and local structure had
lagged behind other NMR probes of structure, such as chem-
ical shifts and nuclear quadrupole couplings. An important
advance in solving the first problem occurred in 2012 with the
development of a new NMR method called phase-incremented
echo train acquisition (PIETA), which not only removes the
inhomogeneous broadenings obscuring J splittings in MAS
spectra but also is a method for rapid and sensitive mea-
surement of a 2D J -resolved spectrum [31]. More recently,
Srivastava et al. [32] have addressed the second problem in
discovering a robust relationship for converting a geminal
2JSi-O-Si coupling into an intertetrahedral Si-O-Si angle.

In a previous attempt by Florian et al. [33] in 2009,
J -resolved spectra of 29Si-enriched crystalline and glassy
CaSiO3 were measured. Due to 29Si enrichment, the spectrum
resulted in J multiplets (Q2) for crystalline wollastonite
whereas the J multiplets rendered the J -resolved spectrum
featureless in CaSiO3 glass. The number of resonances in a
J multiplet increase as 2n with n neighboring 29Si. Thus, the
degree of complexity introduced to the spectrum by the J

multiplets increases with Q1 < Q2 < Q3 < Q4. Since silica
glass is entirely Q4, 100% 29Si enrichment gives the worst-
case scenario. To make the spectra analysis more tractable
we take on the experimental challenge of measuring the 2D
J -resolved spectrum in silica glass at 29Si natural abundance
levels, 4.7%, where, instead of the overlapping multiplet
patterns [33] in 29Si-enriched samples, the J splittings appear
as simpler overlapping doublet patterns arising from isolated
29Si-O-29Si linkages. Another advantage of natural abundance
is that the homonuclear dipolar coupling between 29Si is easily
removed with MAS due to its inhomogeneous nature [34].
Most importantly, we develop and present a detailed spectral
analysis for mapping the 2D J -resolved spectrum into the
bivariate probability distribution correlating the central
Si-O-Si angle of a Q4-Q4 linkage to its mean Si-O-Si angle
(seven angles) in silica glass which is significantly more
information rich than the one-dimensional Si-O-Si angle
distribution.

II. THEORETICAL BACKGROUND

A. J coupling under echo train acquisition

A theoretical treatment of the detection of homonuclear J

coupling between spin 1/2 nuclei using echo train acquisition
in the context of liquid state NMR [35,36] has been given by
Allerhand [35]. For two spin 1/2 nuclei coupled through the
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J interaction, the modulation of the nth echo predominantly
follows

s(n) ∝ cos

[
πJn2τ − n sin−1

{
J sin(πR 2τ )

R

}]
, (1)

where

R = (�ν2 + J 2)1/2. (2)

Here 2τ is the interecho period and �ν is the difference in the
chemical shifts of the J -coupled spins. From Eq. (1) one finds
the well known behavior that the echo modulation frequency
disappears as the strong-coupling limit, where J � �ν, is
approached,

lim
R→J

s(n) → 1. (3)

All resonances close to the strong-coupling limit exhibit mod-
ulation frequencies of or near 0 Hz.

From Eq. (1) one can also find in the weak-coupling limit,
where J � �ν, that

s(n) ∝ cos {πJn2τ [1 − sinc(πR 2τ )]}. (4)

It is critical to be aware of two limiting behaviors for echo
train acquisition in the weak-coupling limit. When 2τ is
large, or more specifically, sinc(πR 2τ ) � 1, this expression
simplifies to the expected behavior,

lim
2τ→∞

s(n) → cos(πJn2τ ). (5)

On the other hand, in the limit that 2τ goes to zero, i.e.,
sinc(πR 2τ ) = 1, the echo modulation frequency disappears,

lim
2τ→0

s(n) → 1. (6)

Thus, even in the weak-coupling limit, the J modulation dur-
ing echo train acquisition deviates from the expected behavior
of Eq. (5), instead giving, according to Eq. (4), a τ -dependent
echo modulation frequency (sinc function variation of the J

splitting) when the interecho period is short relative to the
inverse of the shift difference. The influence of this effect
diminishes as 1/(π�ν 2τ ). In this study the majority of the
29Si-29Si pairs fall in the weak-coupling limit and we show
that only a small fraction (see below) are lost due to being in
the strong-coupling limit or having frequency shift differences
that are small compared to 1/(2τ ).

B. Pulse sequence

The shifted-echo phase-incremented echo train acquisition
(SE-PIETA) pulse sequence is shown in Fig. 1. We describe
this sequence using the symmetry pathway formalism [37]
which generalizes the concept of coherence transfer pathways
[38] to the “spatial pathway,” which maps into a set of spatial
symmetry pathways, and the “transition pathway,” which maps
into a set of transition symmetry pathways. In the case of weak
J coupling between dilute 29Si-29Si pairs under fast magic-
angle spinning (MAS) the rotating frame transition frequency
is given by

�AX = −ω0σiso,A pA − ω0σiso,X pX − 2πJAX dAX, (7)

[ ]

0
1

-1

0
1

-1

FIG. 1. Graphical representation of the shifted-echo PIETA se-
quence and relevant symmetry pathways. Here κ = 1, . . . , N and
n = 1, . . . , 2N is the echo counter where 2N is the number of echoes
acquired.

where the transition symmetry functions are given by

pA = mA,j − mA,i,

pX = mX,j − mX,i,

dAX = mA,jmX,j − mA,imX,i . (8)

Here σiso,A and σiso,X are the isotropic nuclear shieldings,
ω0 is the Larmor frequency, and JAX is the indirect-coupling
constant. The quantum numbers, mA and mX, are associated
with quantized energy levels of A and X nuclei, respectively,
while i and j represent the initial and final energy state of
the NMR transition. The pA, pX, and dAX values for single
quantum transitions in a system of two weakly coupled spin
1/2 nuclei are shown in Fig. S1 of the Supplemental Material
[39]. In the case of two weakly coupled homonuclear nuclei it
is useful to define the additional transition symmetry function
pAX = pA + pX. The pA, pX, and dAX spin transition sym-
metry functions reflect their symmetry under the orthogonal
rotation subgroup where simple rules hold under a π pulse,
such as that the dAX spin transition symmetry function is
invariant, whereas pA, pX, and pAX spin transition symmetry
functions change sign.

The SE-PIETA sequence separates and correlates the third
frequency term in Eq. (7), the weak J coupling, with the
isotropic 29Si chemical shifts of the first and second terms
in Eq. (7). This sequence is based on the PIETA method for
obtaining a 2D J -resolved spectrum in a “pseudo-single-scan”
experiment [31], “single scan” in the sense that the entire
multidimensional time domain signal is acquired in a single
acquisition, and “pseudo” because the separate “single-scan”
signals must also be acquired along an rf pulse phase dimen-
sion. Sampling in the rf pulse phase dimension, however, need
not increase the total experiment time since it is performed in
lieu of conventional phase cycling and signal averaging.

The shifted-echo modification of the sequence eliminates a
signal artifact when using the original PIETA experiment for
2D J -resolved spectroscopy which arises from an inability
to acquire a full echo for the t1 = 0 (n = 1) cross section.
Using the shifted-echo approach [16,37], in the case of 2D
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J -resolved spectroscopy, requires a simultaneous echo of both
p and d transition symmetries at t1 = 0. It is well known
[40–42] that such a simultaneous echo in the case of two
weakly coupling nuclei can be generated with the sequence

equilibrate − π

2
− τ − π − τ − π

2
− τ − π − τ → •. (9)

The first π/2 pulse on a system of two weakly coupled spin
1/2 nuclei excites all eight single quantum transitions, shown
in Fig. S1, which then evolves for a period τ . Next, the π

pulse converts the transition |mA,j ,mX,j 〉〈mA,i,mX,i | entirely
into the transition | − mA,j ,−mX,j 〉〈−mA,i,−mX,i | leaving
the number of transition pathways after the π pulse at eight.
By the end of the second τ period all chemical shift evolution
phases on these 8 transition pathways refocus into an echo. At
this point these eight transition pathways can be divided into
two sets of four with the first set having the same negative J

(or dAX) evolution:

A∗
2

π→ A1, X∗
2

π→ X1,︸ ︷︷ ︸
pAX = +1 → −1

2dAX = −1 → −1

A1
π→ A∗

2, X1
π→ X∗

2︸ ︷︷ ︸
pAX = −1 → +1

2dAX = −1 → −1

,

(10)

and the other set having the same positive J (or dAX) evolu-
tion:

A∗
1

π→ A2, X∗
1

π→ X2,︸ ︷︷ ︸
pAX = +1 → −1

2dAX = +1 → +1

A2
π→ A∗

1, X2
π→ X∗

1︸ ︷︷ ︸
pAX = −1 → +1

2dAX = +1 → +1

.

(11)

The second π/2 pulse has a similar effect to that in a
solid echo experiment [43], which is to transfer coherence
only between single quantum transitions with opposite signs
of dAX [44]. As the dAX values of transitions remain invariant
under the second π pulse while the pAX symmetries refocus
again into an echo there will be a simultaneous echo of both
pAX and dAX symmetries at the end of the fourth τ period
as shown in Fig. 1. With perfect π/2 and π rotations the
transition pathways in two weakly coupled nuclei generate the
simultaneous echo at t1 = 0 with no loss of intensity to other
transition pathways.

After the formation of the simultaneous echo the chemical
shift evolution can be continually refocused by a train of π

pulses into echoes whose modulation by J evolution leads to
the desired doublet splitting. The 16 detectable pathways with
2�dAX = +2, leading to the nth echo, are given in condensed
notation below,

A∗
2

π→ A1

π
2→

X∗
2

π→ X1

π
2→

A1
π→ A∗

2

π
2→

X1
π→ X∗

2

π
2→

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⊗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗
1 [

π→ A2(t2)
π→ A∗

1 ]κ ,

X∗
1 [

π→ X2(t2)
π→ X∗

1 ]κ ,

A2 [
π→ A∗

1
π→ A2(t2) ]κ ,

X2 [
π→ X∗

1
π→ X2(t2) ]κ ,

(12)

and the 16 detectable pathways with 2�dAX = −2, leading to
the nth echo, are similarly given by

A∗
1

π→ A2

π
2→

X∗
1

π→ X2

π
2→

A2
π→ A∗

1

π
2→

X2
π→ X∗

1

π
2→

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⊗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗
2 [

π→ A1(t2)
π→ A∗

2 ]κ ,

X∗
2 [

π→ X1(t2)
π→ X∗

2 ]κ ,

A1 [
π→ A∗

2
π→ A1(t2) ]κ ,

X1 [
π→ X∗

2
π→ X1(t2) ]κ ,

(13)

where t2 next to a transition represents acquisition of an echo.
A full expansion of these 32 transition pathways is given in
the Supplemental Material [39].

The symmetry pathways associated with these transition
pathways are

pAX = 0
π
2→ +1

π→ −1
π
2→ +1 [

π→ −1(t2)
π→ +1 ]κ ,

2dAX = 0
π
2→ ∓1

π→ ∓1
π
2→ ±1 [

π→ ±1(t2)
π→ ±1 ]κ ,

(14)

pAX = 0
π
2→ +1

π→ −1
π
2→ −1 [

π→ +1
π→ −1(t2) ]κ ,

2dAX = 0
π
2→ ∓1

π→ ∓1
π
2→ ±1 [

π→ ±1
π→ ±1(t2) ]κ ,

(15)

pAX = 0
π
2→ −1

π→ +1
π
2→ +1 [

π→ −1(t2)
π→ +1 ]κ ,

2dAX = 0
π
2→ ∓1

π→ ∓1
π
2→ ±1 [

π→ ±1(t2)
π→ ±1 ]κ ,

(16)

pAX = 0
π
2→ −1

π→ +1
π
2→ −1 [

π→ +1
π→ −1(t2) ]κ ,

2dAX = 0
π
2→ ∓1

π→ ∓1
π
2→ ±1 [

π→ ±1
π→ ±1(t2) ]κ .

(17)

Because the second π/2 must allow both �pAX = 0 and
�pAX = ±2 it is necessary to implement separate phase
dimensions for the preparation sequence of Eq. (9) and the
echo train acquisition as shown in Fig. 1. A Fourier transform
of the signal, s(φ1, φ2, n, t2), with respect to the pulse phases
φ1 and φ2 transforms the signal to s ′(�p1,�p2, n, t2) where
the two desired pathway signals at nth echo appear at the
coordinates

{�p1,�p2}n = {3(−1)n−1, 2(−1)n�n/2�},
{�p1,�p2}n = {5(−1)n, 2(−1)n�n/2�}. (18)

Here �p1 is the accumulated change in coherence order
through the first three pulses while �p2 is the accumulated
change in coherence order through the subsequent π pulses
leading up to the nth echo and �· · · � is the ceiling function.
Because desired signal along the �p1 dimension is always
sampled at either ±3 or ±5 for all n, we show in the Supple-
mental Material [39] an improved pulse sequence where the
φ1 phase dimension is replaced by a phase cycling scheme.
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III. METHODS AND ANALYSIS

A. Sample preparation

The glass was synthesized starting from SiO2 (99.7%;
Strem Chemicals) and cobalt (II) carbonate hydrate (CoCO3 ·
xH2O) (99.99%; Aldrich). The latter was first heat-treated
in an alumina crucible for one hour at 800 ◦C to eliminate
anionic impurities (and H2O). The same heat treatment was
applied after the mixing and before melting. The mixed
starting components were melted for approximately 2 min
on a water-cooled aluminum plate connected to a vertical
laboratory solar furnace of 2 kW power and heat flux of 900–
1000 W/m2. Within a few seconds the temperature reached
around 1900 ◦C (±50 ◦C) and instantaneous melting was
observed without the formation of bubbles or any visible
precipitates. Some fumes were observed, indicating vaporiza-
tion of SiO2, which are expected in an oxidizing atmosphere
[45]. Transparent quasispherical blue glassy droplets between
2–5 mm in diameter were obtained after melting. The glass
composition was determined by SEM-EDX analysis (Hitachi
S 4500, EDS: Kevex) after a metallization with gold using the
beam energy of 20 keV. With no cobalt signal detected, its
amount is estimated to be less than a few 100 ppm.

B. NMR spectroscopy

The experiment was performed on a Bruker Avance III
HD 400 MHz NMR spectrometer operating at 9.4 T, with
a 29Si Larmor frequency of 79.40716 MHz, using a 4 mm
rotor spinning at 14.286 kHz. The chemical shift was refer-
enced with respect to TMS at 0 ppm. The radio-frequency
field strength was set to 53.7 kHz with a t90◦ of 4.65 μs.
The magic angle was set accurately to within 0.002◦ using
STMAS [46,47] on RbNO3. This procedure provides better
accuracy than the KBr spinning sidebands based procedure
and removes residual 29Si-29Si dipolar couplings in the 29Si
2D J -resolved experiments.

The four-dimensional pulse sequence shown in Fig. 1 was
implemented, with a time dimension, t2, an echo count dimen-
sion, n, and two phase dimensions, φ1 and φ2. The pulse phase
increment was set to π/6 and π/128 for the phase dimensions,
φ1 and φ2, with 12 and 256 phase points, respectively. A total
of 254 echoes were collected with a recovery period of 60 s.
The dwell time was set at 40 μs. The interecho period, 2τ ,
was set to 40 ms. A total of 16 scans were averaged for a total
experiment time of 40 days. The Bruker pulse sequence for the
shifted-echo PIETA sequence is available in the Supplemental
Material [39].

C. Signal processing

All signal processing was performed with RMN [48].
A two-dimensional Fourier transform was performed on
the four-dimensional signal, s(φ1, φ2, n, t2), with respect
to the two phase dimensions, φ1 and φ2, transforming to
s ′(�p1,�p2, n, t2). The signal corresponding to the de-
sired {�p1,�p2}n coordinates in Eq. (18) were retained in
s ′(�p1,�p2, n, t2) whereas signals at all other {�p1,�p2}n
coordinates were zeroed. Next, a projection onto the �p1

dimension followed by a projection onto the �p2 dimension
was performed. From the resulting two-dimensional echo

count n vs time t2 signal, s ′′(n, t2), the echo count dimension
n was converted to the echo time dimension, t1, using the
relationship

t1 = 2τ (n − 1). (19)

The formation of simultaneous pAX and dAX echo occurs
at t1 = t2 = 0. A step-by-step graphical illustration of this
processing is given in the Supplemental Material [39]. Al-
ternatively, a MATLAB script that performs a postacquisition
“phase cycling” down to a conventional 2D J -resolved signal,
s ′′(t1, t2), is also made available in the Supplemental Material
[39].

A two-dimensional Fourier transform was performed on
s ′′(t1, t2), transforming the time dimension, t2, into the 29Si
MAS dimension and echo time dimension, t1, into the J -
resolved dimension. Next, a shear of −45◦ was performed
along the 29Si MAS dimension to transform it into a pure 29Si
isotropic chemical shift dimension, δ. The resulting 29Si 2D
J -resolved spectrum is shown in Fig. 2(a).

D. 29Si isotopomer statistics

Of the three stable isotopes of silicon, 28Si is the most
abundant at 92.23%, followed by 29Si at 4.67%, and 30Si
at 3.1%. Of these only 29Si is NMR active with I = 1/2.
To predict the relative intensity of all possible J multiplets
in the 29Si NMR spectrum of silica glass we start with the
probability that n of the four Si atoms connected to a 29SiO4

tetrahedron in silica glass are 29Si nuclei,

Pn =
(

4
n

)
pn(1 − p)(4−n), (20)

where p = 0.0467 is the natural abundance of 29Si. This
expression predicts that the relative intensity of J multiplets
decrease rapidly with increasing n, with P0 = 0.826 for the
uncoupled resonance, P1 = 0.162 for the two-spin multiplet,
P2 = 0.0119 for the three-spin multiplet, P3 = 0.000388 for
the four-spin multiplet, and P4 = 4.76 × 10−6 for the five-
spin multiplet. While the 29Si NMR spectrum of silica glass
contains contributions from all five cases we can confidently
take the observed intensity as arising entirely from the uncou-
pled and two-spin doublet resonances. Thus while the sum of
the Pn is 1 we can approximately terminate the sum at P1:∑

n

Pn ≈ P0 + P1 ≈ 1. (21)

In Eq. (7) and Sec. II, we considered the resonances from
an ideal case of two weakly J -coupled spin 1/2 nuclei where
the only interactions were isotropic chemical shifts of the two
nuclei and the J coupling between them. In the solid state,
however, the chemical shift anisotropies (CSAs) and dipolar
couplings also play an important role in the detection of J

couplings. In a simple Hahn echo experiment a two-coupled
spin system in the solid state behaves identical to that of
solution-state NMR [49] in the fast-MAS limit [50] where

|νr | > |d�ν/2πJ |, |�νiso|. (22)

Here νr is the spinning frequency, d/2π is the instantaneous
dipole-dipole coupling frequency, �ν is the difference in
the instantaneous chemical shift frequencies, J is the scalar
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FIG. 2. (a) Natural abundance 29Si-O-29Si 2D J -resolved spectrum of CoO-doped silica glass showing contributions from both coupled
and uncoupled 29Si resonances. (b) Simulation and (c) residue obtained from the least-squares minimization of experimental data using model
s(δ, t1) in Eq (25). (d)–(f) Decomposition of the Fourier transform of the model s(δ, t1) in Eq. (25) into (d) uncoupled 29Si spin resonances,
(e) weakly coupled 29Si-O-29Si spin resonances, and (f) nonweakly coupled 29Si-O-29Si spin resonances.

coupling frequency, and �νiso is the difference in the isotropic
chemical shift frequencies of the connected nuclei. On the
other hand, under moderate MAS speeds [50],

|�νiso| � |�νansio| < |νr | < |d�ν/2πJ |, (23)

the coupled spins mostly remain within a weak-coupling limit
because the CSA ensures that the instantaneous chemical
shifts of the coupled spins are different for most of the time
even when the two spins have identical isotropic chemical
shifts. In Eq. (23), �νansio is the differences in the anisotropic
part of the instantaneous chemical shift frequencies.

Because of the disordered network in silica glass, there is
a distribution of isotropic chemical shifts as well as CSAs,
dipole-dipole, and J couplings. In silica glass, the Q4 chemi-
cal shift anisotropy [51] is on the order of 2 kHz, the dipole-
dipole coupling frequency between two 29Si at 3 Å is on the
order of 170 Hz, the isotropic chemical shift spans a range
of over 2 kHz, and the J coupling varies from 5 to 25 Hz.
With νr = 14.286 kHz, most of the coupled-spin systems in
silica glass would reside within the moderate-MAS condition,
Eq. (23), and would result in echoes that are modulated by
J coupling as cos πJ t , i.e., the weak-coupling limit. Given
the strength of all interactions in silica glass, some fraction of
the coupled spins—more likely for the higher J couplings—
may be in the fast-MAS limit, in which case there will be a
finite probability of nonweak couplings. To account for these

nonweak resonances we split the doublet relative intensity into

P1 ≈ Pa0 + Pa1 , (24)

where Pa0 is the relative intensity of weakly coupled
29Si-O-29Si spins, and Pa1 is the relative intensity of nonweak
couplings.

E. Line shape analysis

As a starting point in our 2D line shape analysis we define
p(J, δ) as the bivariate probability distribution for isotropic
29Si chemical shift and 2JSi-O-Si coupling in silica glass. The
observed signal can be decomposed into a weighted sum
of three contributions from (1) uncoupled 29Si sites, (2)
weakly coupled 29Si-O-29Si sites, and (3) nonweakly coupled
29Si-O-29Si sites,

s(δ, t1) =(1 − Pa0 − Pa1

)
s1(δ, t1) + Pa0s2(δ, t1)

+ Pa1s3(δ, t1), (25)

where the weights are constrained by the natural abundance
29Si statistics of Eq. (21) and (24).

The first contribution, s1(δ, t ), from uncoupled 29Si reso-
nances, is modeled as the product

s1(δ, t1) = p(δ)sdecay(δ, t1), (26)
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where p(δ) is the one-dimensional probability distribution for
isotropic 29Si chemical shift of silica glass, given by

p(δ) =
∫

J

p(J, δ)dJ, (27)

and sdecay(δ, t1) is a stretched exponential decay in the echo
time dimension, t1, associated with each isotropic chemical
shift. The isotropic 29Si line shape of silica glass has been
well established [9,51–53] as a skewed distribution. Of the
various models that have been proposed to describe this line
shape [52], the skew-normal distribution [51,54] has been
found to be reasonably accurate. In our analysis, however,
any small inaccuracy is of concern because, as stated earlier,
the coupled 29Si-O-29Si resonances only account for 16.2%
of the total observable resonances. Therefore, any residual
modulation from inaccuracies in modeling the uncoupled
isotropic 29Si line shape will cause a significant distortion
in the extracted 2J doublet line shape. Thus, we introduce
additional flexibility into the isotropic 29Si uncoupled line
shape model with a combination of skew-normal and normal
distribution functions

p(δ) ≈ C1

�1
e−Y 2

1 {1 + erf(α1Y1)}︸ ︷︷ ︸
skew-normal

+ C2

�2
e−Y 2

2︸ ︷︷ ︸
normal

, (28)

where

Yi = δ − ξi√
2�i

, (29)

and Ci, ξi, �i , and αi are the amplitude, location, scale,
and shape parameters, respectively, for the ith distribution.
This model gives good agreement with the observed isotropic
29Si line shape, as shown in Fig. S9 of the Supplemental
Material [39]. The familiar moments of this distribution—
mean isotropic chemical shift, μmas, the standard deviation,
σmas, the skewness, γmas, and the excess kurtosis, κmas—are
listed in Table I.

It is well established that NMR relaxation behavior in
glasses, specifically low-abundance nuclei like 29Si, are often
found to be stretched exponentials with a stretch exponent of
β ≈ 0.5—the hallmark of a continuous distribution of relax-
ation times arising from distant and fluctuating paramagnetic
centers [55]. Considering paramagnetic relaxation to be the
only dominant mechanism in the silica glass used in our
measurement, doped with CoO where Co is the paramagnetic
center, we expect a similar stretch exponential behavior for
the signal decay along the echo time dimension. We further
observe a differential stretch exponential relaxation across
29Si isotropic chemical shift sites ranging from −95 ppm to

TABLE I. Moment analysis of uncoupled 29Si isotropic MAS
line shape from model p(δ) in Eq. (28) where μn is the nth moment.

Moments Description Value

μmas = μ1 mean − 109.63 ppm
σmas = √

μ2 standard deviation 6.45 ppm
γmas = μ3/σ

3
mas skewness 0.06

κmas = μ4/σ
4
mas − 3 excess kurtosis 1.42

−125 ppm with a slight linear variation in the stretch exponent
from 0.6 to 0.5, respectively. This is modeled as

sdecay(δ, t1) = exp

{
−
(

t1 + 4τ

T2

)β(δ)
}

, (30)

where the stretch exponent is given by

β(δ) = cβ + mβ (δ − μδ ), (31)

with cβ and mβ as the corresponding intercept and slope,
respectively, and T2 is the transverse dephasing time constant.
The term 4τ is added in Eq. (30) because t1 is referenced to
zero at the first echo whereas the signal starts relaxing after
the first π/2 pulse, i.e., a period of 4τ before the detection of
first echo. Here, μδ is the mean 29Si isotropic chemical shift.

The second echo train signal contribution, s2(δ, t1), from
the weakly coupled 29Si-O-29Si resonances for a given chem-
ical shift is given by

s2(δ, t1) =
[∫

J

pw(J, δ) cos(πJ t1)dJ

]
sdecay(δ, t1), (32)

where pw(J, δ) is the bivariate probability distribution of
2JSi-O-Si couplings and isotropic chemical shifts from the
weakly coupled 29Si nuclei in silica glass. For s2(δ, t1) we
find it sufficient to approximate pw(J, δ) as a bivariate normal
distribution with a correlation coefficient rJ,δ . One can then
express s2(δ, t1) (see Supplemental Material [39]) as

s2(δ, t1) = N

σδ

exp

[
− (δ − μδ )2

2σ 2
δ

]
︸ ︷︷ ︸

coupled 29Si lineshape

exp

[
−1

2
π2t2

1 σ 2
J

(
1−r2

J,δ

)]
︸ ︷︷ ︸

J -distribution

× cos [πt1J (δ)]sdecay(δ, t1), (33)

where N = [C1 + C2] and

J (δ) = rJ,δ

σJ

σδ

(δ − μδ ) + μJ . (34)

The first part in Eq. (33) refers to the 29Si isotropic chemical
shift line shape arising from coupled 29Si-O-29Si resonances
and is described by a normal distribution with mean μδ and
standard deviation σδ . The second part describes a normal dis-
tribution of J coupling with mean μJ and standard deviation
σJ . The cosine term describes the time domain oscillation and
sdecay(δ, t ) simulates the signal decay as given in Eq. (30).

Similarly, the third contribution, s3(δ, t1), from the non-
weakly coupled 29Si-O-29Si resonances, is modeled as the
product

s3(δ, t1) = N

σδ

exp

[
− (δ − μδ )2

2σ 2
δ

]
︸ ︷︷ ︸

coupled 29Si line shape

× exp

[
−π2σ 2

s t2
1

2

]
sdecay(δ, t1), (35)

which shares the same 29Si isotropic chemical shift line shape
as the weakly coupled resonances, and experiences an addi-
tional decay during the echo time which follows a Gaussian
dependence with standard deviation σs .

The experimental data were subjected to a least-squares
minimization with the full model of Eq. (25) using
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TABLE II. Optimized fit parameters and reduced chi squared, χ2
r , from least-squares minimization of the residuals using model in Eq. (25).

The reported uncertainties are twice the standard deviation.

p(δ) sdecay(δ, t ) p(J, δ) s3(δ, t )

C1 (4.21 ± 0.01) × 107 C2 (4.5 ± 0.1) × 106 T2 0.9669 ± 0.004 s Pa0 0.144 ± 0.001 Pa1 0.018
ξ1 −114.16 ± 0.01 ppm ξ2 −109.7 ± 0.2 ppm cβ 0.546 ± 0.001 σJ 4.55 ± 0.06 Hz μδ −109.57 ± 0.05 ppm
�1 7.25 ± 0.01 ppm �2 11.8 ± 0.2 ppm mβ (0.00326 ± 0.00005)/ppm μJ 12.51 ± 0.06 Hz σδ 6.2 ± 0.04 ppm
α1 1.283 ± 0.008 rJ,δ −0.51 ± 0.01 σs 3.3 ± 0.2 Hz

χ 2
r = 2.5

PYTHON’s LMFIT [56] module. All data modeling and spec-
tral analysis were performed with code written in PYTHON
3 [57]. The graphics were produced using PYTHON’s MAT-
PLOTLIB library [58]. The optimized fit parameters along
with reduced chi squared are listed in Table II. Note that
the mean and standard deviations in Tables I and II, for the
uncoupled and coupled isotropic line shapes, respectively, are
approximately identical. The best-fit simulation and residuals
after a Fourier transformation along the echo time dimension,
t1, are presented in Fig. 2.

F. Mapping to Si-O-Si bond angle distribution

The dependence of the 2JSi-O-Si coupling on local struc-
ture in two connected Q4 was recently examined using first-
principles DFT calculations [32]. The two main influences on
2JSi-O-Si were found to be a primary dependence on the linkage
Si-O-Si angle and a secondary dependence on a double mean
of Si-O-Si linkage angles of the two connecting tetrahedra Q4

i

and Q4
j containing the coupled 29Si nuclei. Here, the double

mean is given by

〈�〉 = 〈�〉i + 〈�〉j
2

= 1

8

(
2�0 +

6∑
k=1

�k

)
, (36)

where 〈�〉i and 〈�〉j are mean Si-O-Si bond angles at Q4
i and

Q4
j , respectively, and given by

〈�〉i = 1

4

∑
k=0,1,2,3

�k, and 〈�〉j = 1

4

∑
k=0,4,5,6

�k. (37)

In this numbering scheme the six outer Si-O-Si linkage angles
correspond to k �= 0. Following these definitions the 2JSi-O-Si

can be related to the Q4
i -Q4

j intertetrahedral linkage angle, �0,
according to

�0(J, 〈�〉) = aJ + bJ

(
J − J0

m1〈�〉

)
+ cJ exp

{
dJ

(
J − J0

m1〈�〉

)}
.

(38)

The coefficients aJ , bJ , cJ , dJ , J0, and m1 determined pre-
viously [32] are given in Table III. Note that this expression
requires both 2JSi-O-Si and the double mean, 〈�〉, of the Q4

i -Q4
j

pair to determine �0.
There is an established linear relationship [53,59,60] be-

tween 29Si isotropic chemical shift δ of a Q4 site and its mean
Si-O-Si angle,

〈�〉 = (δ − bδ )/aδ, (39)

with coefficients, aδ and bδ , given in Table III. From this one
readily obtains

〈�〉 = (δ − bδ )/aδ, (40)

where δ = 1
2 (δi + δj ) is the mean 29Si isotropic chemical

shift, and δi and δj are the 29Si isotropic chemical shifts
of Q4

i and Q4
j , respectively. Thus, Eqs. (38) and (40) can

be combined to map p(J, δ) into p(�0, 〈�〉). While this
mapping requires p(J, δ), the line shape analysis of the 2D
J -resolved spectrum only provides pw(J, δ). To proceed it
is necessary to make the approximation p(J, δ) ≈ pw(J, δ).
Based on the values of Pa0 = 0.144 and Pa1 = 0.018 from the
experimental line shape analysis this would suggest a loss of
intensity due to the nonweakly coupled sites as 11.1%. This
loss will be strongest at the highest J couplings. Therefore,
this approximation is likely to reduce intensity in the Si-O-Si
bond angle distribution at the higher angles. Note that this
loss can be diminished by performing measurements at higher
magnetic field strengths and using longer interecho periods.

We begin the analysis by determining p(J, δ) from p(J, δ)
through the coordinate transformations

Series A:p(J, δ)
A1=⇒ p(J, δi, δj )

A2=⇒ p(J, δ) .

Step A1. Given that p(J, δ) is approximately a bivari-
ate normal distribution we assume that we can construct
p(J, δi, δj ), a trivariate normal distribution of silica glass,
imposing the restrictions that

p(δi ) =
∫

p(J, δi, δj )dJdδj =
∫

p(J, δ)dJ = p(δ),

p(δj ) =
∫

p(J, δi, δj )dJdδi =
∫

p(J, δ)dJ = p(δ).

TABLE III. Coefficients used in Eqs. (40) and (38) for mapping
the mean chemical shift and 2JSi-O-Si coupling into the double-mean
Si-O-Si angle of the two Q4 involved in coupling and the linkage
Si-O-Si angle of the two coupled nuclei.

Coefficient Value Coefficient Value

aJ 107.88◦ bJ 223.49◦

cJ 0.00002487◦ dJ 53.01
m1 0.778 Hz/deg J0 − 7.5 Hz
aδ −0.6148 ppm/deg bδ − 19.297 ppm
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This leads to a covariance matrix for p(J, δi, δj ) given by

V J,δi ,δj
=

⎡
⎢⎣ σ 2

J rJ,δσJ σδ rJ,δσJ σδ

rJ,δσJ σδ σ 2
δ rδi ,δj

σ 2
δ

rJ,δσJ σδ rδi ,δj
σ 2

δ σ 2
δ

⎤
⎥⎦, (41)

and a mean vector of μJ,δi ,δj
= [μJ ,μδ, μδ]T where the

superscript T represents the transpose. The only unknown
parameter in the covariance matrix V J,δi ,δj

is the correlation
coefficient, −1 � rδi ,δj

� 1, between the 29Si isotropic chem-
ical shift distributions p(δi ) and p(δj ).

Since Q4
i and Q4

j share a common angle, i.e., �0, their
mean angle distributions, p(〈�〉i ) and p(〈�〉j ), will be cor-
related even when the individual bond angle distributions,
i.e., p(�k ), are uncorrelated. In the Appendix we derive
approximate expected relationships between the variances
and covariances of �0, 〈�〉i , 〈�〉j , and 〈�〉 with an initial
assumption of a seven-dimensional normal distribution cor-
relating all seven angles. In this assumption we further take
the individual bond angle distributions, p(�k ), as identical,
and correlated to each other with correlation coefficient r

if the Si-O-Si bond angles share a Si, and with correlation
coefficient r ′ if not. This leads to a covariance matrix for the
bivariate distribution, p(〈�〉i , 〈�〉j ), given by

V 〈�〉i ,〈�〉j = σ 2
�

4

[
(3r + 1) 1

4 (6r + 9r ′ + 1)
1
4 (6r + 9r ′ + 1) (3r + 1)

]
,

(42)

where σ 2
� is the variance of the individual bond angle distri-

bution. The corresponding correlation coefficient is given by

r〈�〉i ,〈�〉j = 6r + 9r ′ + 1

4(3r + 1)
. (43)

From this expression one can show that uncorrelated individ-
ual bond angle distributions, i.e., r = r ′ = 0, lead to a corre-
lation coefficient between the two mean angle distributions of
r〈�〉i ,〈�〉j = 0.25. The linear relationship between δ and 〈�〉
leads to

rδi ,δj
= r〈�〉i ,〈�〉j . (44)

Thus, we expect rδi ,δj
= 0.25 when the individual bond angle

distributions, i.e., p(�k ), are uncorrelated.
Similarly, the seven-dimensional normal distribution also

leads to the covariance matrix for the bivariate distribution,
p(�0, 〈�〉), given by

V �0,〈�〉 = σ 2
�

[
1 1

4 (3r + 1)
1
4 (3r + 1) 1

32 (18r + 9r ′ + 5)

]
, (45)

with a corresponding correlation coefficient given by

r�0,〈�〉 =
√

2(3r + 1)√
18r + 9r ′ + 5

. (46)

We will refer back to these last two results in later steps of this
analysis.

Step A2. The distribution p(J, δi, δj ) is mapped to distri-
bution p(J, δ) following the linear coordinate transformation

[
J

δ

]
=
[

1 0 0

0 1
2

1
2

]
︸ ︷︷ ︸

A1

⎡
⎢⎣J

δi

δj

⎤
⎥⎦, (47)

where A1 is the projection matrix that projects the distribution
p(J, δi, δj ) onto the diagonal δi = δj . The mean vector of the
p(J, δ) distribution becomes

μJ,δ = A1 · μJ,δi ,δj
= [μJ ,μδ]T , (48)

and the covariance matrix becomes

V J,δ = A1 · V J,δi ,δj
· AT

1 =
[

σ 2
J rJ,δσJ σδ

rJ,δσJ σδ σ 2
δ

(1+rδi ,δj
)

2

]
,

(49)

with the correlation coefficient

rJ,δ = rJ,δ

√
2√

1 + rδi ,δj

. (50)

To obtain the Si-O-Si angle distribution, p(�0), we con-
tinue with the following transformations:

Series B: p(J, δ)
B1=⇒ p(J, 〈�〉)

B2=⇒ p
(
�0, 〈�〉) .

Step B1. We transform p(J, δ) to p(J, 〈�〉) using Eq. (40).
In matrix notation this linear coordinate transformation is
represented as[

J

〈�〉

]
=
[

1 0

0 1
aδ

]
︸ ︷︷ ︸

A2

[
J

δ

]
+
[

0

− bδ

aδ

]
︸ ︷︷ ︸

b2

. (51)

Here A2 is the affine transformation matrix and b2 is a
constant vector. The mean vector of the p(J, 〈�〉) distribution
follows as

μJ,〈�〉 = A2 · μJ,δ =
[
μJ ,

μδ − bδ

aδ

]T

, (52)

and the covariance matrix becomes

V J,〈�〉 = A2 · V J,δ · AT
2 =

[
σ 2

J rJ,δσJ
σδ

aδ

rJ,δσJ
σδ

aδ

σ 2
δ

a2
δ

(1+rδi ,δj
)

2

]
.

(53)

Step B2. The final transformation from the p(J, 〈�〉) to
p(�0, 〈�〉) distribution is performed numerically using the
nonlinear transformation in Eq. (38). For this we first con-
struct the two-dimensional probability distribution p(J, 〈�〉)
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from μJ,〈�〉 and V J,〈�〉 following

p(J, 〈�〉)

= exp
{− 1

2 (x − μJ,〈�〉)
T · [V J,〈�〉]

−1 · (x − μJ,〈�〉)
}

2π
√

det(V J,〈�〉)
,

(54)

where x = [J, 〈�〉]T and “det” denotes matrix determinant.
From the p(J, 〈�〉) distribution, we determine the p(�0, 〈�〉)
distribution following

p(�0, 〈�〉) =
∫

J

p(J, 〈�〉)D[�0 − �0(J, 〈�〉)]dJ, (55)

where the function D[· · · ] denotes the Dirac delta function
and function �0(· · · ) is given by Eq. (38).

In principle, this entire mapping only requires the
introduction of one additional parameter, rδi ,δj

, the correlation
coefficient between the isotropic chemical shift distributions,
while the other statistical parameters characterizing p(J, δ)
are determined from the experimental spectrum and given in
Table II. Performing this analysis of the experimental results
with just these assumptions, however, results in the statistics
of

p(�0) =
∫

p(�0, 〈�〉)d〈�〉 (56)

not being consistent with

p(〈�〉) =
∫

p(�0, 〈�〉)d�0 (57)

for any value of rδi ,δj
. To highlight this point we take

rδi ,δj
= 0.25 which corresponds to r = r ′ = 0 and obtain

μ� = 146.8◦ and μ〈�〉 = 146.8◦, and σ� = 10.64◦ and
σ〈�〉 = 8.0◦ from the analysis of the experimental spectrum.
While the two means are consistent, the two standard
deviations are not. This can be seen by calculating the
expected double-mean standard deviation using Eq. (45) with
r = r ′ = 0 where one obtains

σ〈�〉 =
√

5

32
σ�. (58)

Thus, if the standard deviation of p(〈�〉) from the
experimental 2D spectrum analysis has a standard deviation of
σ〈�〉 = 8.0◦ then one would expect the standard deviation of
p(�0) to be σ� = 20.2◦, a value that is significantly larger
than the expected value of σ� = 10.64◦. This statistical
inconsistency remains no matter what values of r and r ′ are
investigated.

We believe the series of transformations given here are
conceptually correct and that the source of the statistical
inconsistency is the use of an incomplete relationship for
29Si isotropic chemical shift to local structure around Q4.
Specifically, there is a less established additional dependence
on mean Si-O distance, which is commonly overlooked but
noticed in porous siliceous zeolites by Lewis et al. [61].
They report an improved relationship between 29Si isotropic
chemical shift and the local Q4 structure given by

δ = b′
δ + a′

δ

4

∑
k

(
〈dSi-O,k〉 cos �k

cos �k − 1

)
, (59)

where 〈dSi-O,k〉 is the mean Si-O bond distance of Si-O-Si
linkage with angle �k . The summation over index k de-
notes all four Si-O-Si bond angles of the Q4. The values
a′

δ = −216.95 ppm/Å and b′
δ = 48.54 ppm were obtained

by Lewis et al. [61] after calibrating with respect to high-
silica zeolites ZSM-5(RT), ZSM-5(HT), ferrierite(RT), and
ferrierite(HT) where RT = room temperature and HT =
high temperature, and the dense-phase SiO2 polymorphs,
quartz and cristobalite. The reason why this relationship is
often overlooked, and why the previous relationships between
chemical shift and mean Si-O-Si angle alone has applied so
well in crystalline silicates, is due to the coexistence of a
strong correlation between Si-O distance and Si-O-Si angle
[62,63]. A similar issue arose in early efforts to determine
the relationship between the 17O quadrupolar coupling con-
stant and the Si-O-Si angle in silicates. In those studies the
influence of the Si-O distance was included only through
its parametric dependence on the Si-O-Si angle which was
conventionally thought to vary according to a negative corre-
lation discovered in crystalline silica polymorphs and further
supported by potential energy surfaces determined in ab initio
studies of small silicate clusters [62,63]. Instead of assuming
this correlation Clark et al. [27] determined a relationship for
the 17O quadrupolar coupling constant that explicitly includes
both Si-O distance and Si-O-Si angle and calibrated this ex-
pression with experimental 17O results from crystalline silica
polymorphs, coesite, α-quartz, cristobalite, and ferrierite(RT).
Armed with this relationship Clark and others [28,29] dis-
covered a counterintuitive result from the 17O DAS spectrum
of silica glass showing a positive correlation between Si-O
distance and Si-O-Si angle. Thus, to proceed in our analysis
we assume a line of regression in the correlation between
〈dSi-O,k〉 and �k in silica glass of the form

〈dSi-O,k〉 = d◦
Si-O + m�(�k − �∗), (60)

where �∗ = 150◦. As shown in the Appendix, one can invoke
Eq. (60) and linearize Eq. (59) about �∗ = 150◦ as

δ = [
�0d

◦
Si-O + �1m�

]︸ ︷︷ ︸
aδ

〈�〉 + [
b′

δ + �2d
◦
Si-O + m��3

]︸ ︷︷ ︸
bδ

.

(61)
Equation (61) shows how the slope and intercept of the
linear relationship between 29Si isotropic chemical shift and
mean angle 〈�〉 depend on the trend between the Si-O-Si
bond angle � and mean Si-O distance 〈dSi-O〉, where
�0 = −0.543716 ppm/(deg Å), �1 = −100.687 ppm/Å,
�2 = −19.1295 ppm/Å, and �3 = 15 103.03 (ppm deg)/Å.
In other words, we assume that the 29Si isotropic chemical
shift relationship to mean angle has the same function form
of Eq. (39) but now with unknown aδ and bδ values which
depend on the linear trend in the correlation between 〈dSi-O,k〉
and �k .

Alternatively, one might also call into question the validity
of Eq. (38) to account for the statistical inconsistency. Previ-
ous investigations of Eq. (38), however, were fairly exhaustive
in determining 2JSi-O-Si behavior in a wide range of cluster
geometries—investigating dependencies on Si-O distance, the
central Si-O-Si linkage angle, the dihedral angle, and the outer
Si-O-Si linkage angles. Thus, we are confident in its accuracy
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FIG. 3. Shaded area represents the statistically allowed corre-
lation coefficients r and r ′. The contour lines with corresponding
legend on the right indicate the associated value of the correlation
coefficient rδi ,δj

. The dotted line corresponds to r = r ′. The solid
line represents the subset of r, r ′ values where a self-consistent
distribution is obtained from the analysis of the experimental 2D
spectrum. The closed and open circles represent the two solutions
presented in Table IV.

and robustness for interpreting 2J in both crystalline and
glassy materials, regardless of the angle-distance correlation.

Since both 2JSi-O-Si and δ depend on the same seven Si-O-Si
angles associated with the Q4

i -Q4
j linkage we can propose a

statistical model that provides the necessary constraints to
keep p(�0) and p(〈�〉) statistically consistent and, at the
same time, calibrate the unknown aδ and bδ values of Eq. (61).
We begin by writing the covariance matrix derived from the
analysis of the experimental spectrum as

V {exp}
�0,〈�〉 =

[
σ 2

�exp cov(�0, 〈�〉)exp

cov(�0, 〈�〉)exp
σ 2

δ

a2
δ

(1+rδi ,δj
)

2

]
. (62)

Because of the linear relationship of Eq. (40) or Eq. (61),
the experimental variance of p(〈�〉) remains the same as in
Eq. (53) through the numerical transformation of Eq. (55)—
recalling that σ 2

δ is obtained from the experimental isotropic
chemical shift line shape. Taking the mean and variance of
p(�0) from experiment as the same as the model,

μ�exp = μ� and σ 2
�exp = σ 2

�, (63)

we equate the covariance matrices of Eqs. (62) and (45) and
obtain the two constraints

cov(�0, 〈�〉)exp = σ 2
�

4
(3r + 1), (64)

σ 2
δ

a2
δ

(
1 + rδi ,δj

)
2

= σ 2
�

32
(18r + 9r ′ + 5). (65)

Substituting the expression of Eq. (43) for rδi ,δj
into Eq. (65)

leads to the solution

r = 4

3

(
σδ

aδσ�

)2

− 1

3
. (66)

Note, there is also an unphysical solution, r = −(5 + 9r ′)/18,
which lies outside the bounds discussed below. For Eqs. (66)

and (64) to have a simultaneous solution in r , we substitute
Eq. (66) in Eq. (64) and obtain

cov(�0, 〈�〉)exp = σ 2
�

4
(3r + 1) =

(
σδ

aδ

)2

. (67)

In Eq. (67) we have the constraints between the covariance
of the experimentally derived distribution, p(�0, 〈�〉), the
model parameters, σ�, r , and the slope aδ , all of which
enforce statistical consistency.

Additionally, we find that the range of the correlation
coefficients r and r ′ can be further constrained with this
statistical model. In our analysis we combine the correlation
coefficients r〈�〉i ,〈�〉j , rδi ,δj

, rJ,δ , and r�0,〈�〉 in Eqs. (43), (44),
(50), and (46), respectively, with the experimentally deter-
mined correlation coefficient rJ,δ = −0.5 to determine the
bounds on r ∈ [− 1

3 , 1] and a parametric dependence on r ′ as

r ′ ∈
{[−1 − 4r, 1

3 (1 + 2r )
]
, r ∈ (− 1

3 , 0
]
,[

1
18 (36r2 − 12r − 6), 1

3 (1 + 2r )
]
, r ∈ (0, 1].

(68)

This range of allowed values for r and r ′ is shown as the
shaded area in Fig. 3. The associated rδi ,δj

is indicated by the
shaded contour colors with the corresponding legend on the
right.
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aδ = −0.6148 ppm/deg and (b) aδ = −1.33 ppm/deg. In (a), there
is no point in r where a self-consistent p(�0, 〈�〉) distribution is
obtained.
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Algorithm 1. Iterative algorithm used in this analysis. The
convergence is obtained when the absolute tolerance between the
three covariances in Eq. (67) is less than 0.005◦.

input: aδ, bδ, aJ , bJ , cJ , dJ , m1, J0 (values from Table III);
assign: r, r ′;
repeat

Evaluate rδi ,δj
; /* Eq. (43)*/

Evaluate V J,〈�〉; /* Eq. (53)*/
Construct p(J, 〈�〉); /* Eq. (54)*/
Compute p(�0, 〈�〉); /* Eq. (55)*/
Evaluate μ�, σ 2

�, σ 2
〈�〉, cov(�0, 〈�〉)exp;

Update r = 4
3

(
σδ

aδ σ�

)2 − 1
3 ; /* Eq. (66)*/

Update aδ = − σδ√
cov(�0,〈�〉)exp

; /* Eq. (67)*/

Update bδ = μδ − aδ μ�; ; /*pivot at (μδ, μ�)*/
until convergence;
end

To illustrate the statistical inconsistency when us-
ing the previous relationships between chemical shift
and mean Si-O-Si angle alone, we take the slope,
aδ= − 0.6148 ppm/deg, calibrated from crystalline silica
polymorphs, and plot the three covariances of Eq. (67) in the
case of r ′ = 0 in Fig. 4(a). Since solutions to Eq. (67) can
only be true at the intersection of all three lines we clearly
see that there can be no statistically consistent solution in this
particular case.

To find solutions we adopt the iterative approach outlined
in Algorithm 1. For each possible value of r ′ we apply this
algorithm to determine the r value that satisfies Eq. (67).
The results of this approach, giving all values of r and r ′
consistent with the experimental spectrum, are shown as the
solid black line in Fig. 3. Not all of these solutions, however,
are reasonable since a high value of |rδi ,δj

| would lead to
a greater fraction of 29Si-29Si pairs being in the strong J

coupling limit. The more likely solutions are in the range
near smaller values of |rδi ,δj

|, and, as we will see, result in
distribution statistics that are not significantly different. For
example, in the case where r ′ = 0 there is a single solu-
tion, shown as the open circle in Fig. 3, with r = −0.082,

aδ = −1.33 ppm/deg, and bδ = μδ − aδμ� = 87.34 ppm.
Here bδ is determined through the constraint of the mean of
p(�0) and p(〈�〉) distributions being identical. This solution
is illustrated as the intersection of the three lines in Fig. 4(b)
where Eq. (67) is satisfied. This case corresponds to the
physical situation where the Si-O-Si angle distributions which
do not share a Si are entirely uncorrelated, i.e., r ′ = 0. The
resulting distribution p(�0, 〈�〉) is presented in Fig. 5(a).
The projection onto the �0 dimension in Fig. 5(a) gives
p(�0), the Si-O-Si bond angle distribution in silica glass
presented as a bold solid line in Fig. 5(c). The statistics of
this distribution are given in Table IV. We also present the
statistics in Table IV for the consistent solution with r = r ′
where there is a single solution, shown as the filled circle
in Fig. 3, with r = r ′ = −0.068, aδ = −1.3 ppm/deg, and
bδ = 82.54 ppm. Comparing the two cases in Table IV illus-
trates the small degree of variation in the parameters along this
solid line of solutions.
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FIG. 5. (a) Correlation between Si-O-Si bond angle �0 and
double-average angle 〈�〉 when r ′ = 0. (b) Comparison of double-
average Si-O-Si bond angle distributions 〈�〉 against Si-O-Si bond
angle distributions from 17O DAS [28]. (c) Comparison of Si-O-Si
bond angle distributions from various models. Line 1, XRD Mozzi
and Warren model [64]; line 2, HXRD short-range-order (SRO)
model [65]; line 3, HXRD/ND Neuefeind and Liss chain [66] model.
The bond angle distribution from current work is represented in bold
line.

IV. RESULTS AND DISCUSSION

A contour plot of the self-consistent bivariate probability
distribution correlating the central Si-O-Si angle of a Q4-Q4
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TABLE IV. Mean, mode, standard deviations of Si-O-Si bond
angle distributions, and correlation coefficients between them for the
two models r ′ = r (left) and r ′ = 0 (right).

r ′ = r r ′ = 0
Statistic response response

μ� = μ〈�〉 = μ〈�〉 147.8◦ 147.8◦

σ� 10.7◦ 10.7◦

σ〈�〉 4.8◦ 4.7◦

σ〈�〉 3.4◦ 3.5◦

r −0.068 −0.082
rδi ,δj

= r〈�〉i ,〈�〉j −0.005 0.17
r�,〈�〉 0.45 0.43
r�,〈�〉 0.63 0.57
mode ≈147◦ ≈147◦

aδ −1.3 ppm/deg −1.33 ppm/deg
bδ 82.54 ppm 87.34 ppm

linkage to its double-mean Si-O-Si angle (seven angles) is
given in Fig. 5(a). In Figs. 5(b) and 5(c) are the 1D projections
onto dimensions associated with the double-mean Si-O-Si
angle and central linkage angle, respectively. The statistics
of the bivariate distribution are given in Table IV. Although
there is a strong correlation of r�,〈�〉 = 0.57 between these
two distributions, this is expected as the central linkage angle
is used in defining the double mean of Eq. (36). More note-
worthy, however, is the relatively low value of the correlation
coefficient, r = −0.082, for the four Si-O-Si angles of each
Q4 unit, determined with the underlying model of a septavari-
ate probability distribution of Si-O-Si angles in the Q4-Q4

linkage [see Eq. (A1)]. The Si-O-Si angles in silica glass have
been commonly assumed as uncorrelated in both diffraction
[64–66] and NMR [9,10,53,67,68] analyses, although Malfait
et al. [69] had argued against this assumption due to ring
topology constraints. Here we find experimental confirmation
of uncorrelated tetrahedral linkage angles in silica glass.

The 1D Si-O-Si bond angle distribution in silica glass
derived from this bivariable distribution [Fig. 5(c)] has a mean
at 147.8◦, a mode at 147◦, and a standard deviation of 10.7◦.
As mentioned earlier, some intensity at the larger Si-O-Si
angles may be lost due to the nonweak couplings which
corresponds to ∼11.1% of the total coupled resonances. A

selected comparison of bond angle distribution statistics from
silica glass obtained from other methods is shown in Table V.
The often cited Si-O-Si bond angle distribution of Mozzi and
Warren [64] for silica glass is also shown in Fig. 5(c) as line
1. While the mode of 144◦ falls close to our 29Si 2J -derived
distribution, the width of Mozzi and Warren distribution is
significantly wider—an observation that has generally been
attributed to incorrect assumptions of uncorrelated angles
and distances in Mozzi and Warren’s analysis [1,66]. Using
assumptions nearly identical to Mozzi and Warren, Poulsen
et al. [65] used high-energy x-ray measurements of silica
glass to obtain the distribution shown as line 2 in Fig. 5(c).
Neuefeind and Liss [66] obtained the distribution shown as
line 3 in Fig. 5(c) after reanalyzing high-energy x-ray [70] and
neutron [71,72] diffraction data of silica glass. They attribute
the narrowness of their distribution to a nonuniform distri-
bution of dihedral angles, Si-O-Si-O, but find no evidence
of correlation among Si-O distances, Si-O-Si angles, and the
dihedral angles. This distribution gives the closest agreement
with our 29Si 2D J -resolved spectrum-derived distribution.

An extensive comparison of experimental and molecular
dynamics (MD) predicted 1D Si-O-Si bond angle distributions
in silica glass was given by Malfait et al. [69] in 2008. Overall,
there is little agreement among the 1D Si-O-Si bond angle
distributions obtained from various MD approaches, and no
particular MD approach seems to give consistent agreement
with the experimental values obtained here. Unfortunately, the
possibility of a full-blown ab initio MD simulation of a liquid
cooled from the melt into the glassy state is decades away—
maybe longer—from our current capabilities. The challenges
to classical MD simulations today not only depend on finding
accurate potentials but also on obtaining the computational
resources to simulate the glass transition at a realistic cooling
rate with a realistic number of atoms. Ab initio MD methods
[73] have advanced significantly in the last decade and hold
great promise, particularly in providing accurate potentials;
however, this comes at the cost of even greater demands for
computational resources which have yet to be realized.

In 2004, Clark et al. [28] measured and analyzed the 17O
DAS spectrum of silica to obtain an angle distribution that
agrees with the mean and mode obtained from our 29Si 2D
J -resolved spectral analysis but is considerably narrower in
width. As described earlier [29], however, the narrow width
from the 17O DAS analysis is an artifact of an oversimplified

TABLE V. Comparison of the mean, mode, and standard deviation of the Si-O-Si bond angle distribution in silica glass obtained from
other experimental methods.

Bond angle distribution

Distribution Method μ� Mode σ� ≈FWHM

Mozzi and Warren [64] (1969) X-ray 147.9◦ [53] 144◦ 12.7◦ 37◦

Neuefeind and Liss [66] (1996) High-energy x-ray 146.7◦ 146.8 7.3◦ 17◦

Mauri et al. [53] (2000) 29Si MAS NMR 151.4◦ 148◦ 11.3◦ 30◦

Clark et al. [28] (2004) 17O DAS NMR 146.6◦ 147◦ 3.8◦ 10◦

Charpentier et al. [11] (2009) 17O DAS NMR reanalyzed 147.1◦ 147◦ 11.17◦ 23◦

Charpentier et al. [11] (2009) 29Si NMR 148.4◦ 10.8◦ 23◦

This work 29Si-O-29Si J -coupling NMR 147.8◦ 147◦ 10.7◦ 19◦
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FIG. 6. (a) Correlation of Si-O bond distance and Si-O-Si bond angle for crystalline silica polymorphs along with the positive trend
observed in silica glass (dashed black line). The negative angle-distance trend (solid black line) corresponding to m� = −0.25 pm/deg is
obtained from low quartz, coesite, and tridymite. The solid black circles correspond to high silica ferrierite structure with the negligible
angle-distance trend shown in dotted line, m� ≈ 0 pm/deg. (b) Overlay of the 2D histogram correlating mean Si-O bond distance to mean
Si-O-Si angle obtained by Trease et al. [29] on ambient and densified silica glasses along with the positive trend obtained from the analysis of
the 2D J -resolved spectrum.

assumption that each ω1 (anisotropic) DAS spectrum cross
section contains a single site. In reality each ω1 cross section
contains overlapping line shapes arising from a multitude
of sites with varying Cq, ηq , and 17O chemical shift. By
modeling each cross section with a single site their analysis
determines the mean Cq and ηq of each cross section. This
biased the overall Cq and ηq distributions obtained from the
full 2D spectrum towards a mean Cq and ηq distribution
with smaller widths. Therefore, the previous 17O DAS results
on silica [28,29] were analyzed in terms of a mean Si-O-Si
bond angle distribution, which, as seen in Fig. 5(b), compares
favorably to the 〈�〉 distribution obtained from the J -resolved
spectrum. Thus, we expect the correlations and the modes
of the distributions obtained with 17O DAS to be accurate.
It should be noted that the 17O DAS spectra analysis could
be improved to obtain the individual � distribution. Such an
approach would be highly worthwhile as 17O DAS spectra still
provide the most direct measure of the correlation between the
distributions of Si-O-Si bond angle and Si-O distance.

In 2009, Charpentier et al. [11] reanalyzed the 17O DAS
spectrum and employed a more realistic p(Cq, ηq ) distri-
bution for modeling the 17O DAS and obtained a Si-O-Si
distribution that is consistent with our result derived from
the 29Si 2D J -resolved spectrum. Charpentier claim no ev-
idence for the positive correlation between Si-O bond dis-
tance and Si-O-Si bond angle reported by Clark et al. [28],
although we would caution that Charpentier’s re-calibration
of the Cq relationship to Si-O-Si and Si–O distance used
only 17O NMR results from quartz, cristobalite, and coesite,
and did not include 17O results from any siliceous porous
silicates which can have a distinctly different angle-distance
correlation.

Finally, we focus on the need to modify the linear rela-
tionship between the Q4 29Si chemical shift and mean Si-O-Si
angle to obtain a self-consistent bivariate distribution from the

2D spectrum correlating 29Si chemical shift and 2JSi-O-Si. As
we show in Sec. III F, using the linear relationship of Eq. (39),
calibrated on crystalline silica polymorphs, to analyze the
experimental 29Si MAS spectrum of silica glass leads to a
standard deviation of σ� = 20.2◦, significantly larger than
all values in Table V, including the distribution of Mozzi
and Warren. As noted earlier, it is an often overlooked fact
that the 29Si isotropic chemical shift of a Q4 is dependent
on both mean Si-O-Si bond angle and mean Si-O distance.
Equation (61) further illustrates how the coefficients aδ and
bδ in Eq. (39) depend on the trend in the correlation between
the mean Si-O bond distance and Si-O-Si bond angle given
by Eq. (60). A plot of mean Si-O bond distance and Si-O-Si
bond angle of various crystalline silica polymorphs is shown
in Fig. 6(a) and illustrates the well known negative trend in
this particular correlation. This trend approximately follows
m� = −0.25 pm/deg, also shown in Fig. 6(a) as the solid
black line. It is this value of m� in Eq. (61) that leads to
aδ = −0.62 ppm/deg and bδ = −19.82 ppm. Interestingly, a
similar plot for ferrierite, shown as the solid black symbols
in Fig. 6(a), illustrate a different correlation between mean
Si-O-Si bond angle and mean Si-O distance, approximately
following m� ≈ 0 pm/deg, and shown in Fig. 6(a) as the
dotted line.

Turning this argument around, we interpret the values of
aδ = −1.33 ppm/deg and bδ = 87.34 ppm, obtained from our
self-consistent analysis of the 2D J -resolved spectrum, using
Eq. (61) and find m� = 0.459 pm/deg and d◦

Si-O = 1.596 Å.
This positive trend is shown as the dashed black line in
Fig. 6(a) and is nearly orthogonal to the trend from crystalline
silica polymorphs. More impressive is the excellent agreement
between the trend obtained in this study and that obtained by
Trease et al. [29] from 17O DAS measurements on an ambient
pressure silica glass, shown together in Fig. 6(b). Also shown
in Fig. 6(b) are the results of Trease et al. [29] on two
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other silica glasses densified at 8 and 13.5 GPa. In the three
silica glasses of the Trease et al. [29] study and the ambient
pressure silica glass of the Clark et al. [28] study a consistent
positive trend in the correlation of Si-O-Si bond angle and
Si-O distance is observed in agreement with the results of
this study. Our analysis of the 29Si 2D J -resolved spectrum
provides an independent confirmation of this positive trend.
Unlike the 17O DAS measurements, however, the strength of
this positive correlation cannot be determined from the 29Si
2D J -resolved measurement.

Given this growing evidence for a positive correlation
between Si-O bond distance and Si-O-Si angle in silica glass,
what is its physical origin? Clark et al. [28] invoked density
fluctuations to explain the positive correlation between Si-O
distance and Si-O-Si angle from their 17O DAS results of
silica suggesting that smaller angles and distances correspond
to higher density regions with smaller rings and vice versa. In
this study, however, we find little to no correlation between
Si-O-Si angles, i.e., r ≈ 0, that is, a result that would be
inconsistent with this hypothesis of density fluctuations. This
positive correlation appears to be something more fundamen-
tal to the structure of silica glass and perhaps other fully con-
nected tetrahedral networks. A more plausible explanation,
recently proposed by Sen [30], uses the concept of differential
entropy to show that a positive correlation between angle and
distance has a higher entropy than the negative correlation.
And while a positive correlation between distributions is lower
in entropy than fully uncorrelated distributions, Sen shows
that the combination of entropic and energetic contributions
stabilizes the positive correlation in silica glass structure
over both uncorrelated or negatively correlated distributions.
Overall, this suggests that the notion that SiO4 tetrahedra in
silica glass are structurally identical to those in crystalline
silica polymorphs is incorrect.

V. SUMMARY

We have used the shifted-echo PIETA pulse sequence to
measure the natural abundance 29Si 2D J -resolved spectrum
of silica glass. A full analysis of the NMR transition path-
ways in this experiment is given as well as a review of the
effects of intermediate to strong couplings and the interecho
delay times on the J modulated signal measured during echo
train acquisition. By working with a 29Si natural abundance
sample we find that the doublets from isolated 29Si-29Si
pairs are dominant, making the 2D J -resolved spectrum of
silica glass more easily analyzed than a 29Si-enriched sample
where multiplets are present. It is only through the sensitivity
gain of PIETA that such a natural abundance strategy is
possible.

Our analysis of the 2D J -resolved spectrum exploits a
recently improved understanding [32] of the relationships
between geminal J couplings and local structure of a Q4-Q4

linkage in which knowledge of both 2JSi-O-Si coupling and
mean 29Si chemical shift of a Q4-Q4 linkage can be used
to determine its central Si-O-Si linkage angle and the mean
(seven) Si-O-Si linkage angle. Even then, this mapping of the
2D J -resolved spectrum of silica glass into the bivariate distri-
bution is not trivial, and requires additional assumptions that
(1) the majority of the J couplings are in the weak limit, (2)

there is a bivariate normal distribution of 29Si chemical shifts
of the two linked Q4, with a correlation coefficient determined
in the mapping, and (3) the statistics of correlated angle distri-
butions can be constrained with the assumption of a multivari-
ate (seven-dimensional) normal distribution of angles in the
Q4-Q4 linkage. These three assumptions, however reasonable,
do not lead to a statistically consistent bivariate probability
distribution. Additional flexibility in the mapping must be
introduced. This is done by assuming that a line of regression
in the correlation between 〈dSi-O〉 and � in silica glass, using
an adjustable slope and intercept, can be combined with a
known relationship [61] between isotropic 29Si chemical shift
of a Q4 and its mean Si-O distance and mean Si-O-Si angle.
This approach is suggested by the failure of previous attempts
to determine the correct Si-O-Si angle distribution width from
the 29Si MAS line shape. In other words, any relationship be-
tween 29Si chemical shift and mean Si-O-Si angle alone, when
calibrated with 29Si chemical shifts of crystalline silicates,
will be inappropriate for analyzing the 29Si MAS spectra of
silica glass. Only with this added flexibility in the analysis can
a statistically consistent bivariate probability distribution cor-
relating the central Si-O-Si angle to the mean Si-O-Si angle be
obtained.

From our measurement and analysis of silica glass we
determine that the Si-O-Si linkage angles are relatively un-
correlated and that the Si-O-Si angle distribution has a mean
at 147.8◦, a mode at 147◦, and a standard deviation of 10.7◦.
An unexpected outcome from our analysis is that the line
of regression in the correlation between 〈dSi-O〉 and � in
silica needed to obtain this consistent bivariate probability
distribution reveals a positive correlation. This confirms a
trend previously determined by 17O DAS measurements of
ambient pressure and densified silica glasses, and recently in-
terpreted as playing an important entropic role in determining
the structure of a fully connected tetrahedral network of silica
glass [30].
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APPENDIX

1. Statistical model

Consider a seven-dimensional multivariate normal
Si-O-Si bond angle distribution in silica glass about a
Q4-Q4 linkage where individual bond angle distributions
p(�k ) are assumed to be identically described by a normal
distribution with mean μ� and standard deviation σ�.
We represent the coordinate of this seven-dimensional
space by the vector � = [�3,�2,�1,�0,�4,�5,�6].
Furthermore, an individual bond angle distribution from
this seven-dimensional space is assumed to be identically
correlated to another bond angle distribution with correlation
coefficient r if the Si-O-Si bond angles share a Si. The
other bond angle pairs are assumed to be correlated with a
correlation coefficient r ′. Under these assumptions we write
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the covariance matrix of p(�) as

V 7 = σ 2
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 r r r r ′ r ′ r ′

r 1 r r r ′ r ′ r ′

r r 1 r r ′ r ′ r ′

r r r 1 r r r

r ′ r ′ r ′ r 1 r r

r ′ r ′ r ′ r r 1 r

r ′ r ′ r ′ r r r 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A1)

Exploiting the properties of linear transformations, we de-
rive analytical expressions for the statistic of p(�0, 〈�〉)
distribution using the covariance matrix V 7. We also derive
expressions for the statistics of the p(〈�〉i , 〈�〉j ) and p(δi, δi )
distributions.

a. p(�0, 〈�〉) statistics

Following the definition of Eq. (36) the seven-dimensional
Si-O-Si bond angle distribution p(�) is subjected to the
following linear coordinate transformation,[

�0

〈�〉

]
= 1

8

[
0 0 0 8 0 0 0

1 1 1 2 1 1 1

]
︸ ︷︷ ︸

M1

�T , (A2)

where M1 is the coordinate transformation matrix. From
M1, we derive the expression for the covariance matrix of
p(�0, 〈�〉) distribution, V �0,〈�〉 = M1 · V 7 · M1

T , to obtain
the expressions in Eqs. (45) and (46).

b. p(〈�〉i , 〈�〉 j ) statistics

From the definition of Eq. (37) we construct a
p(〈�〉i , 〈�〉j ) distribution by performing the following linear
coordinate transformation,[〈�〉i

〈�〉j

]
= 1

4

[
1 1 1 1 0 0 0

0 0 0 1 1 1 1

]
︸ ︷︷ ︸

M2

�T , (A3)

where M2 is the transformation matrix. From the covariance
matrix for this distribution, V 〈�〉〈�〉 = M2 · V 7 · M2

T , we
obtain Eqs. (42) and (45).

c. p(δi , δ j ) statistics

Using the linear transformation

δλ = aδ〈�〉λ + bδ,

where λ = i or j , the distribution p(〈�〉i , 〈�〉j ) can be
mapped to distribution p(δi, δj ) when subjected to the follow-
ing coordinate transformation,[

δi

δj

]
=
[
aδ 0

0 aδ

]
︸ ︷︷ ︸

M3

[〈�〉i
〈�〉j

]
+
[
bδ

bδ

]
︸︷︷︸

b3

, (A4)

where M3 is the affine transformation matrix and b3 is a
constant vector. The covariance matrix for the p(δi, δj ) dis-
tribution, V δi ,δj

= M3 · V 〈�〉i ,〈�〉j · M3
T , is given by

V δi ,δj
= a2

δ V 〈�〉i ,〈�〉j , (A5)
and the correlation coefficient of Eq. (44) follows from V δi ,δj

.

2. 29Si chemical shift dependence on Si-O distance

To compare Eq. (59) with the linear relationship in
Eq. (39), we consider a linear trend of Eq. (60). Substituting
Eq. (60) in Eq. (59), followed by a linearization using a series
expansion in �k about �∗, we have

δ = (
a′

δx2d
0
Si-O + a′

δx1m�

)〈�〉 + (x1a
′
δ − x2a

′
δ�

∗)d0
Si-O

− a′
δx1m��∗ + b′

δ, (A6)

where x1 = (2
√

3 − 3) and x2 = π
90◦ (7 − 4

√
3) are coeffi-

cients from the series expansion. Here 〈�〉 = 1
4

∑
k �k is

the average Si-O-Si bond angle about the Si tetrahedron.
Expanding about �∗ = 150◦ leads to

�0 = a′
δx2 = −0.543716 ppm/(deg Å),

�1 = a′
δx1 = −100.687 ppm/Å,

�2 = �1 − �0�
∗ = −19.1295 ppm/Å,

�3 = −�1�
∗ = 15 103.03 (ppm deg)/Å, (A7)

and the expression in Eq. (A6) reduces to Eq. (61). Equation
(61) shows how the slope and intercept of the linear relation-
ship of Eq. (39) between 29Si isotropic chemical shift and
mean angle 〈�〉 depends on the trend between the Si-O-Si
bond angle, �, and the mean Si-O distance, 〈dSi-O〉.
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