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Non-power-law universality in one-dimensional quasicrystals
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We have investigated scaling properties of the Aubry–André model and related one-dimensional quasiperiodic
Hamiltonians near their localization transitions. We find numerically that the scaling of characteristic energies
near the ground state, usually captured by a single dynamical exponent, does not obey a power law relation.
Instead, the scaling behavior depends strongly on the correlation length in a manner governed by the continued
fraction expansion of the irrational number β describing incommensurability in the system. This dependence is,
however, found to be universal between a range of models sharing the same value of β. For the Aubry–André
model, we explain this behavior in terms of a discrete renormalization group protocol which predicts rich critical
behavior. This result is complemented by studies of the expansion dynamics of a wave packet under the Aubry–
André model at the critical point. Anomalous diffusion exponents are derived in terms of multifractal (Rényi)
dimensions of the critical spectrum; non-power-law universality similar to that found in ground state dynamics
is observed between a range of critical tight-binding Hamiltonians.
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I. INTRODUCTION

Quasiperiodic structures, which are long-range ordered
without being periodic, represent a rich and fascinating middle
ground between ordinary periodic crystals and disordered
systems. They were first discovered among aperiodic tilings of
the plane, the best known of which is the fivefold symmetric
Penrose tiling [1,2]. Interest in quasiperiodicity within the
physics community was sparked by the discovery of qua-
sicrystals by Shechtman [3] and the equivalence between
Landau levels on two-dimensional lattices and a one-
dimensional quasiperiodic chain [4–6]. Recently, quasiperi-
odic structures became popular in ultracold atom experiments
as a proxy for random potentials in the study of disordered
quantum gases, Bose glasses, and many-body localization,
as they can conveniently be realized by superimposing two
incommensurate optical lattices [7–12]. Quasiperiodic tilings
also lie at the heart of recent results in the study of quantum
complexity, such as the proof of the undecidability of the
spectral gap [13].

Quasiperiodicity gives rise to a range of unusual behavior
including critical spectra and multifractal eigenstates away
from phase transitions [14–19] and localization transitions at
a finite modulation of the on-site potential [18–20]. In this pa-
per, we investigate localization transitions of one-dimensional
quasiperiodic systems, in particular the tight-binding Aubry–
André model, also known as the Harper model [4,20]:

H = −J
∑

j

(a†
j aj+1 + H.c.) − Jλ

∑
j

cos(2πβj )a†
j aj (1)

and related models. Here β �∈ Q and λ are the incommen-
surate wave number and dimensionless amplitude of the on-
site energy modulation, respectively, J is the hopping matrix
element, and a

†
j is a bosonic creation operator on the j th

lattice site. Since the integer part of β is irrelevant, we assume
β < 1. This model is known to undergo a localization

transition at λ = 2 for any irrational value of β [20–23]: below
this critical value, all eigenstates are extended while above
it, they are exponentially localized. This is a consequence of
Aubry duality: under the Fourier transform

bk = 1√
N

∑
n

exp (2πiβkn)an, (2)

(1) turns into another Aubry–André Hamiltonian in momen-
tum space with λ changed to 4/λ and all energies rescaled
by a factor of λ/2 [20]: λ = 2 is the fixed point of this
transformation.

It is well known that the spectra of one-dimensional
quasiperiodic Hamiltonians are hierarchical [14,16,17,21,24–
29], meaning they contain a hierarchy of progressively smaller
gaps. In the case of tight-binding models, the spectrum is
bounded and its entire structure is governed by the continued
fraction expansion of the incommensurate ratio β [17,21,30],

β = 1

n1 + β1
= 1

n1 + 1

n2 + β2

= · · · = 1

n1 + 1

n2 + 1

. . .
= : [0; n1, n2, n3, . . . ], (3)

where nk are integers and the irrational residuals βk are
between 0 and 1. The hierarchical spectrum of these Hamil-
tonians can be constructed as the limiting case of periodic
superlattices with increasing periods Nk described by rational
approximants of β ≈ Mk/Nk = [0; n1, . . . , nk], as discussed
in detail below. In going from the kth-order superlattice to the
(k + 1)st, each band of the spectrum is split into nk+1 new
ones [21], see Fig. 1. In this manner, the periods of these
approximant superlattices, Nk , act as ‘microscopic length
scales’ of the problem: the structure of the spectrum and
eigenstates of the Hamiltonian on length scales around each
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FIG. 1. Spectrum of the Aubry–André model for different ra-
tional Mk/Nk ≈ [0; 2] at the critical point λ = 2. In each case, the
spectrum consists of Nk bands, most of which are accounted for by
splitting the Nk−1 bands of the previous rational approximation into
nk narrower ones. Some additional bands appear due to the slight
changes to the approximation of β [6,36–39]. Double crosses denote
a pair of bands with a very small gap, not resolved well in the plot.

Nk is controlled solely by the coefficient nk . As a conse-
quence, the spectrum is self-similar if and only if the contin-
ued fraction expansion of β is periodic. Furthermore, its hi-
erarchy is topologically protected under smooth deformations
between different models sharing the same value of β [31,32].

In a continuous phase transition, the correlation length ξ

diverges at the transition point. In conventional disordered
or crystalline systems, the effect of microscopic structure be-
comes immaterial once ξ is much larger than all microscopic
scales of the system. Therefore, their behavior near the phase
transition is described by scale-invariant functions, that is,
power laws [33]. In quasiperiodic systems, however, such a
scaling regime is never reached due to the increasingly large
‘microscopic’ length scales Nk discussed above. Instead, the
behavior of the system is governed by scaling properties of
the critical spectrum and eigenstates at length scales close to
ξ as it diverges, which in turn depends on the coefficients nk .
While the connection between the structure of the spectrum
and the length scales of the system has tacitly been known,
its effects on phase transitions were not discussed, mostly
because all numerical and most analytical studies focused
on β’s of particularly simple continued fraction expansions,
such as the golden mean φ−1 = (

√
5 − 1)/2 = [0; 1] [14–

16,34,35]. (The overbar denotes a periodic continued fraction,
e.g., [0; 1, 2, 3] = [0; 1, 2, 3, 2, 3, . . . ].)

In this paper, we explore some consequences of this non-
power-law critical behavior on the localization transition of
the single-particle Aubry–André model (1) using exact diago-
nalization and renormalization group arguments. In particular,
we investigate the critical dynamics of the model for different
values of β and demonstrate that power-law behavior emerges
only when the continued fraction expansion of β is periodic.

Section II reviews the origins of hierarchical spectra in
quasiperiodic systems and presents a renormalization group
treatment of the Aubry–André model based on Ref. [21]. In
Sec. III, we discuss the scaling of energy scales near the
ground state; Sec. IV deals with fractal properties of the spec-
trum and quench dynamics at critical points. In both cases,
we find equivalent behavior for different models sharing the
same β. We understand this equivalence as a novel kind of
universality, distinct from power-law thermodynamic univer-
sality, but similarly protected by symmetries of the underlying
systems. Conclusions are presented in Sec. V.
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FIG. 2. Cartoon of the renormalization transformation of the
lowest subband of the Aubry–André model. Black dots mark the
lattice sites of the original tight-binding model, their quasiperiodic
on-site potentials are indicated by the black line. In the first step of
the transformation, every subband gives rise to one effective Wannier
state (indicated in red) for each period of the on-site potential. For
each subband, an effective tight-binding Hamiltonian can now be
defined by taking the centers of the corresponding Wannier states
as new lattice sites. Due to the incommensurability of the on-site
potential and the original lattice, the j th such Wannier state is
shifted by jβ1 relative to the original lattice sites. As a result, the
on-site energy of these new sites will depend on j in a quasiperiodic
manner described by the incommensurate ratio β1 (green line). The
procedure is then repeated using the first-order Wannier states as
lattice sites (green dots), introducing β2, and so on indefinitely.

II. STRUCTURE OF THE SPECTRUM AND EIGENSTATES

A. Structure of the critical spectrum

We consider a one-dimensional quasiperiodic tight-binding
system characterized by the incommensurate ratio β. For
simplicity, we assume that the continued fraction terms of
β, nk , are all very large; however, the qualitative structure
of the spectrum remains the same for all nk � 2 [6,38–40].
Now, as discussed in Sec. I, the structure of the spectrum can
be described in terms of a sequence of periodic superlattices
described by Mk/Nk = [0; n1, . . . , nk], which are the closest
rational approximations of β in the sense that [30]

|Nkβ − Mk| < |Nβ − M| ∀M,N ∈ Z, 0 < N < Nk.

At the first step of this protocol, M1/N1 = 1/n1: Bloch’s
theorem applies to the superlattice of period n1, resulting
in a spectrum consisting of n1 subbands with continuous
dispersion. At the next step, the period of the superlattice and
thus the number of subbands is N2 = n1n2 + 1 ≈ n1n2 [41].
Since the approximation to β changes very little, the spectrum
is still dominated by the n1 first-order bands, each now split
into n2 narrower subbands, see Fig. 1. As further continued
fraction terms are taken into account, more and more narrow
subbands are formed, each time by splitting existing subbands
into nk new ones.

The formation of this hierarchical structure can be under-
stood in terms of a discrete renormalization group procedure
[21,24–26,28]. Creating first-order subbands can be taken
as renormalizing length scales by a factor of β−1 ≈ n1: the
new ‘lattice sites’ correspond to approximate Wannier states
located at each minimum of the quasiperiodic modulation (see
Fig. 2). Since the modulation period is incommensurate to the
lattice spacing, the j th renormalized lattice site will have a
phase shift 2πβ1j compared to the original lattice sites. This
results in a quasiperiodic modulation of incommensurate ratio
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FIG. 3. Thermal entropy per particle in the Aubry–André model
for β = 1405/8658 ≈ [0; 6] and different values of λ. At criticality,
the distinct sizes of gaps appearing at different renormalization steps,
and thus length scales Nk , result in an infinite staircase structure: in a
finite portion of the model, this structure gets cut off at the narrowest
band width of the system. For λ �= 2, the critical structure persists
in the stairs corresponding to Nk < ξ . At lower energy scales, the
system is effectively localized or extended, therefore, the temperature
dependence of entropy is equivalent to that of an unmodulated tight-
binding chain, S(T ) � kB log(T )/2 at the lowest temperatures.

β1 in the effective Hamiltonian of each subband. These Hamil-
tonians can now be renormalized by a factor of β−1

1 ≈ n2,
giving rise to second-level subbands modulated with the new
incommensurate ratio β2: repeating such steps indefinitely
constructs the entire spectrum. It can be shown [21] that for
the Aubry–André model with nk � 1, the renormalized on-
site potential remains purely sinusoidal, that is, the effective
Hamiltonian of each subband is of Aubry–André form with
incommensurate ratio βk at the kth step.

B. Behavior in the extended and localized regimes

At λ = 2 in the Aubry–André model, the hierarchical
structure of the spectrum described above is manifest at all
energy scales and therefore all length scales. Away from the
critical point, the correlation length ξ of the system becomes
finite. On this length scale, either the potential or the kinetic
energy term of (1) becomes irrelevant, resulting in an either
absolutely continuous spectrum and extended states for λ < 2
or a dense point spectrum and exponentially localized states
for λ > 2. The crossover between the critical spectrum and the
extended or localized spectra can be demonstrated using the
thermal entropy of a single particle in a canonical ensemble:

S = −kB

∑
i

pi log pi pi = e−Ei/(kBT )∑
j e−Ej /(kBT ) . (4)

At temperature T , exp(S/kB) is a measure of the number of
states up to ∼kBT above the ground state. S(T ) is plotted
for different values of λ � 2 in Fig. 3. At criticality, each
renormalization step defines a new energy scale resulting in
an infinite staircase structure. For λ �= 2, such stairs persist
down to energy scales corresponding to lengths on the order
of ξ . Below this scale, the stairs smooth out and the scaling
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FIG. 4. Scaled ground state probability distribution
|ψ (n)|2/|ψ (0)|2 in the Aubry–André model for β = 1405/8658 ≈
[0; 6] at the critical point (λ = 2; orange), and for ξ ≈ 200 in the
extended (λ = 1.99; blue) and the localized (λ = 2.01; green)
phases on linear (a) and logarithmic (b) scales. On length scales
shorter than ξ , all wave functions appear similar; on larger scales,
the coarse-grained density distribution of the extended state becomes
uniform, while the localized wave function is dominated by
exponential decay ∝e−2|n|/ξ (straight lines).

of entropy with temperature approaches that expected for an
unmodulated tight-binding chain.

In the localized phase λ > 2, ξ is normally identified
with the localization length of the wave function envelope
which can be calculated without detailed analysis of the wave
function [42]: in the Aubry–André case [20],

ξ (λ > 2) =
(

log
λ

2

)−1

(5a)

for all eigenstates and all values of β. Due to Aubry duality,
the structure of the Aubry–André spectrum for modulation
amplitudes λ and 4/λ is identical save for an overall rescaling
[20]. This implies that the length scale ξ where the crossover
happens in the two cases is the same, giving

ξ (λ) =
∣∣∣∣log

λ

2

∣∣∣∣
−1

. (5b)

The crossover between critical and extended or localized
behavior is also manifest in the structure of the wave func-
tions. At λ = 2, nontrivial structure appears at all length
scales: away from criticality, this structure is only manifest
up to length scales ≈ξ beyond which the density distribution
is either dominated by exponential decay or becomes uniform.
This is demonstrated for the ground state in Fig. 4 which also
confirms the localization length given by (5a).

C. Analytic scaling theory

In this section, we present a full renormalization group
treatment of the Aubry–André model based on Ref. [21].
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This treatment becomes exact in the limit when all continued
fraction terms of β are large, that is, β, β1, · · · � 1.

As in Sec. II A, we start by approximating β with 1/n1,
that is, we consider the following periodic Hamiltonian:

H = −J
∑

j

(a†
j aj+1 + H.c.)

− Jλ
∑

j

cos

(
2π

n1
(j − φ)

)
a
†
j aj , (6)

where φ is a well-defined global spatial offset. The spectrum
of the resulting periodic lattice splits into n1 subbands each
of which gives rise to Wannier states with a spacing of n1

lattice sites (red in Fig. 2). Since n1 is large, beyond-nearest-
neighbor couplings between these new states are vanishingly
small, and thus each subband can be well described by a new
tight-binding model with dispersion

E(κ, φ) = E0(φ) − 2J ′(φ) cos κ, (7)

where J ′ is the hopping between two neighboring Wannier
states, κ is the renormalized quasimomentum, and E0 is the
mean energy of the subband. In principle, both E0 and J ′
depend on the phase φ in (6). As we will discuss below, the
variations of E0 are on the order of J ′, which is exponentially
small. Similarly, for large n1, the variations of J ′ are exponen-
tially smaller than J ′ itself, thus they can safely be ignored in
any effective theory.

We now determine the dependence of E0 on φ in this
periodic approximation by applying the Aubry duality trans-
formation (2). It is important to note that, as β is rational,
(2) only generates n1 distinct reciprocal space modes. In
order to make the transformation unitary, (6) is replaced by
a Hamiltonian acting on n1 lattice sites with twisted periodic
boundary conditions:

H = −J

n1∑
j=1

(a†
j aj−1e

iκ/n1 + H.c.)

− Jλ

n1∑
j=1

cos

(
2π

n1
(j − φ)

)
a
†
j aj , (8)

where a0 = an1 . Applying the duality transformation (2) to
(8), it becomes

H = −Jλ

2

[
n1∑

	=1

(b†	b	−1e
2πiφ/n1 + H.c.)

+ 4

λ

n1∑
	=1

cos

(
2π

n1

(
	 − κ

2π

))
b
†
	b	

]
. (9)

That is, the duality transformation exchanges the quasimo-
mentum κ and the offset φ. By (7), the energy eigenvalue of
the dual Hamiltonian depends on its quasimomentum 2πφ as
a simple cosine the amplitude of which is taken independent

of κ . Therefore, E0 also has a cosine dependence on φ:

E0(φ) = E0 − (Jλ)′ cos(2πφ) (10)

(Jλ)′ = λ

2
× 2J ′

dual. (11)

Combining (7) and (10), the dispersion relation of the periodic
approximation is finally given by

E(κ, φ) = E0 − 2J ′ cos κ − (Jλ)′ cos(2πφ). (12)

In the quasiperiodic system however, 1/β differs from n1

by a small irrational number β1, therefore, the j th minimum of
the potential is shifted φj = jβ1 away from a lattice site (see
Fig. 2). Equation (12) is thus not exact, but as β1 is assumed to
be small, φj changes slowly. Therefore, (12) can be used as an
effective Hamiltonian for the new Wannier states of separation
1/β. That is, upon rescaling by 1/β, the resulting model is
described by the Hamiltonian

H = −2J ′ cos p̂′ − (Jλ)′ cos(2πβ1x̂
′), (13)

an Aubry–André model of parameter β1 with renormalized
potential and hopping terms. The same procedure can then
be repeated with step sizes 1/βk to obtain a renormalization
group treatment of the full spectrum.

The terms J ′, (Jλ)′ entering (13) may be estimated numer-
ically from the scaling of bandwidths over a single step of
the procedure. In the limit of large nk , the scaling of J for
states sufficiently far from E = 0 can be calculated analyti-
cally using the WKB approximation (see Appendix A). These
calculations show that the renormalization of the potential-to-
hopping ratio λ does not depend on energy (and hence the
place of the subband in the spectrum), and is given by (see
Appendix B)

λ′ = 2

(
λ

2

)1/β

. (14)

Iterating this procedure on the emerging quasiperiodic lattices
gives the effective amplitude λ(k) on length scale ≈Nk as

λ(k) = 2

(
λ

2

)1/β...βk−1

� 2

(
λ

2

)Nk

. (15)

For λ < 2, λ > λ′ > λ′′ > . . . : the RG procedure tends to
λ(k) = 0, that is, the quasiperiodic modulation becomes irrele-
vant and hence all eigenstates are extended. On the other hand,
if λ > 2, λ increases upon renormalization: the system flows
to λ(k) → ∞ where hopping is irrelevant, and all eigenstates
are localized. The critical exponent of the reduced tuning
parameter g = log(λ/2) is ν = 1: indeed, according to (5b),
|g| = ξ−1.

III. CRITICAL SCALING NEAR THE
SUPERFLUID–INSULATOR TRANSITION

We performed exact diagonalization on the single-particle
Aubry–André Hamiltonian (1) and extrapolated the behavior
of the truly incommensurate model from the sequence of
rational approximations Mk/Nk of β, all implemented with
periodic boundary conditions.
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The key quantity we considered was the curvature of the
lowest band,

� = 1

2Ja2
0

d2ε(k)

dk2

∣∣∣∣
k=0

= 1

J

h̄2

meffa
2
0

, (16)

where meff is the effective mass of particles near the bottom
of the band and a0 is the lattice spacing. The normalization
is chosen such that � for an unmodulated tight-binding chain
is unity. In an extended phase, the motion of a single particle
becomes ballistic beyond a length scale, therefore, its effective
mass tends to a finite value in the limit of an infinite system.
Bands of a localized model, however, become completely flat,
resulting in an infinite effective mass and thus zero curvature.
As a consequence, the limit limN→∞ �N , where N is the
period of the lattice, can be used as an order parameter in a
quantum localization transition. We approximate the second
derivative using the energy difference over a finite segment of
the lowest band:

� = 1

J

E� − E0

(�/N )2
, (17)

where E� and E0 are the ground state energies of the system
in periodic boundary conditions twisted by � or without twist,
respectively. Equations (16) and (17) are equivalent for � →
0, but in practice, � remains essentially unchanged for signif-
icant fractions of π . In this paper, � = π/20 was normally
used. In interacting many-particle systems, the appropriate
generalization of � gives the superfluid fraction or superfluid
stiffness, which is widely used to analyze superfluid–insulator
transitions [34,43,44].

We note that the curvature of a band is related to its width
�E and therefore can be used to extract the scaling properties
of the bandwidth; in a homogeneous or crystalline system, this
scaling is governed by the dynamical exponent z:

�E ∼ ξ−z. (18)

To elucidate this connection, the typical band structure in
the extended phase is sketched in Fig. 5. On length scales
Nk � ξ , the effective potential is irrelevant compared to the
effective hopping (that is, the renormalized λ(k) � 1) and the
spectrum of any periodic approximation with N � ξ becomes
similar to the spectrum for N ≈ ξ : the effective lowest band is
folded up, largely conserving the continuity of the spectrum.
In particular, the small gaps introduced by the remaining
weak potential do not affect the curvature at k = 0. That is,
regardless of the period Nk � ξ of the lattice, the lowest
dynamical band is ∼π/ξ wide in k-space. Approximating its
dispersion by

ε(k) ∼ −�E

2
cos(ξk),

the band curvature follows as

� ∼ �E

(1/ξ )2
∼ ξ 2−z ∼ |λ − 2|ν(z−2) (19)

by the definition of z and ν: note that ν = 1 for all β in the
Aubry–André model [cf. Eq. (5b)]. We note that the scaling
behavior of the many-particle superfluid fraction is also given
by (19) [45], as expected given its relation to �.

FIG. 5. Cartoon of the extended lowest band of a periodic tight-
binding model of period N � ξ . On length scales Nk above the
correlation length, any effective potential λ(k) is very small, resulting
only in narrow avoided crossings. That is, the band structure is
similar to an uninterrupted band of a model of period ∼ξ , as shown
in the extended Brillouin zone on the right. The effective lowest
band governing quantum critical dynamics is thus ∼2π/ξ wide in
momentum space and its width �E tends to a constant value as
N � ξ : this can be used to estimate � resulting in the scaling relation
(19).

A. Results for the Aubry–André model

The curvature of the lowest band was calculated for the
Aubry–André model (1) near λ = 2 for several different
incommensurate ratios and plotted in Fig. 6. The rational
approximations to β were always chosen such that the pe-
riod of the resulting superlattice was much larger than the
longest correlation length considered, ξmax = 104. In contrast
to homogeneous systems, the order parameter never follows a
power law, even when ξ is on the order of thousands of lattice
sites. This contradicts the conventional notion of a ‘scaling
regime’ where the only relevant length scale is the correlation
length, resulting in power law behavior [33].

The origin of this discrepancy is the emergence of the
arbitrarily large ‘microscopic’ length scales Nk discussed in
Secs. I and II A. Consider a near-critical Hamiltonian with
extended eigenstates of correlation length ξ ≈ Nk: broadly
speaking, its spectrum displays the first k levels of the hier-
archical critical spectrum, but further ones are not resolved
and thus have no effect on � (cf. Figs. 3 and 5). As a result,
its critical scaling at ξ ≈ Nk depends on the kth step of the
renormalization protocol of Sec. II which is in turn governed
by βk . In particular, the slope of the log-log plot in Fig. 6
is determined by the local dynamical exponent zk = z(βk )
defined by

�E(Nk+1)

�E(Nk )
=

(
Nk+1

Nk

)−zk ∼= β
zk

k . (20)

In Fig. 6(a), the continued fraction expansions of all values
of β become periodic with identical periods; this implies that
the sequence {βk} and thus the scaling behavior is identical
from a point on. This is manifest in the identical but shifted
curves in the plot; the difference in overall scaling stems from
the different initial terms in the continued fraction expansion
which result in different Nk’s corresponding to the same βk’s.

In Fig. 6(b), the values of β are very close to each other,
and so their continued fraction expansions start with the same
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FIG. 6. Curvature of the lowest band, �, as a function of the
reduced tuning parameter g = log(λ/2) = ξ−1 for several incom-
mensurate ratios β. Small dots indicate all computed data points,
large symbols appear at g = 1/Nk . Smoothing splines (thin solid
lines) were added to two data sets to guide the eye. The period of
the simulated superlattice for each curve is much greater than ξmax =
104. (a) The continued fraction expansions of the β are identical
except for the first few terms. The sequences {βk} governing the
fine structure of the spectrum are hence the same up to a shift,
resulting in identical line shapes and effective critical exponents. The
marks appear on the same parts of this line shape, indicating that the
deviations from power law behavior are caused by the hierarchical
structure of the spectrum. (b) The three values of β differ by less than
a part in 106; however, their continued fraction expansions diverge
after the eighth term (N8 = 985), resulting in identical scaling up
to |g| � 1/985 (black dots) followed by markedly different critical
behavior for |g| � 1/985.

terms. Since the first few βk differ by very little, the critical
scaling is almost identical for relatively small ξ : This changes
noticeably as further terms in the continued fraction expan-
sions become different, giving rise to completely different
scalings. This behavior demonstrates that while the structure
of quasiperiodic systems described by only slightly different
incommensurate ratios may be very different on sufficiently
long length scales, such differences are immaterial in short
samples. Such unpredictability of the large-scale behavior
of quasiperiodic systems also plays a key role in quantum
complexity theory [13].

We have thus found that the existence of ‘microscopic’
structure on all length scales prevents the formation of a
conventional scaling regime where exact power-law scaling
relations such as (19) would hold. For β’s with periodic
continued fraction expansions, however, the sequence {βk}
itself is periodic and so the scaling behavior repeats itself on

arbitrarily long length scales. In this case, one can combine
all renormalization steps in one period into a discrete RG
protocol where all steps are identical. For such RG schemes, it
is common to find a power-law behavior on average, with log-
periodic oscillations around it [46–50]: indeed, we observe
such oscillations in Fig. 6(a). Nonetheless, a single period of
these oscillations may contain an arbitrarily complex pattern
of the RG steps defined in Sec. II C, and so a description of
the critical behavior in terms of log-periodic oscillations is
not generally practical.

The continued fraction expansions of almost all irrational
numbers are, however, not periodic. For these numbers, the
RG protocol cannot be described in terms of a single, if
complex, step, resulting in a situation more complicated than
the log-periodic oscillations discussed above. In particular,
there is no way to sensibly define single critical exponents
for the Aubry–André model for these values of β. The crit-
ical behavior is only appropriately described by the detailed
dependence of observables on the length scale, an example
of which is the set of local dynamical exponents (20). Using
the analytic RG procedure discussed in Sec. II C, zk can be
calculated for βk � 1 (see Appendix C). To leading order,

zk ≈ 1.166
β−1

k

log
(
β−1

k

) , (21)

meaning that zk → ∞ as βk → 0. Therefore, for an incom-
mensurate ratio β = [0; n1, n2, . . . ] with nk1 < nk2 for all
K < k1 < k2 for some K , the conventional definition of the
dynamical exponent,

z = lim
ξ→∞

log �E

log ξ
, (22)

diverges: we note that these numbers form a dense, uncount-
able subset of [0,1]. This marks a completely novel critical
behavior, one not even approximated by power laws.

B. Ground state universality of quasiperiodic models

In addition to the Aubry–André model, we investigated
a generalized Hamiltonian that also allows for quasiperiodic
modulation of the hopping [18,19,27]:

H =−
∑

n

[
J + Jμ cos

(
2πβ

(
n + 1

2

) + φ
)]

× (a†
nan+1+H.c.)−Jλ

∑
n

cos(2πβn)a†
nan, (23)

where μ is the dimensionless modulation amplitude of
the hopping. Remarkably, (23) still has no mobility edges:
localization transitions occur simultaneously in all eigen-
states, similarly to the simple Aubry–André case [18,19]. The
boundary between extended and localized phases is given by∑

±

√
(λ/2)2 ± λμ cos φ + μ2 = 2 (24)

for φ �= 0, regardless of the value of β [19]. For φ = 0, the
phase diagram consists of an extended (λ < 2; μ < 1), a local-
ized (λ > 2, 2μ), and a critical phase (2μ > 2, λ) [18,19]. As
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FIG. 7. Phase diagram of the generalized Aubry–André model
(23) for φ = 0 (a) and φ = π/2 (b) [19]. For all values of φ, a local-
ization phase transition line appears in the (λ,μ) plane; additionally,
a critical phase dominated by μ appears if φ = 0 precisely. The
dashed lines show the paths (25) along which localization transitions
were considered in Sec. III B.

examples, localization transitions along the following paths
were considered (see Fig. 7):

φ = 0, μ = 1/2, λ ≈ 2; (25a)

φ = π/2, 2μ = λ = �/
√

2, �≈ 2. (25b)

Even though the hopping in these models is no longer uni-
form, � was calculated using the unchanged definition (16): it
is an appropriate order parameter of the localization transition
regardless of normalization.

Further to this generalized Aubry–André model, we con-
sidered the continuum quasiperiodic Hamiltonian

H = p̂2

2m
+ V1 cos2(kx) + V2 cos2(βkx). (26)

Equation (26) reproduces the Aubry–André model in the limit
V1 � Er � V2 where the recoil energy,

Er = h̄2k2

2m
,

is the typical kinetic energy scale of the system. In addition to
this limit, we studied the case of equal absolute lattice depths
V1 = V2 = V Er/2. Periodic approximations to the Hamilto-
nian were implemented in momentum space and the curvature
of the lowest band was calculated by exact diagonalization
using a formula adapted from (17) [43,44]:

� = π2

Er

E� − E0

(�/N )2

∣∣∣∣
�→0

= m

meff
. (27)

A localization transition was observed in the ground state
of this model for all tested values of the incommensurate
ratio β at a β-dependent critical Vc. Unlike the generalized
Aubry–André model, however, its spectrum is unbounded,
and several mobility edges appear in the spectrum of excited
states. Nevertheless, we expect that the structure of the ground
state has a hierarchical structure similar to that discussed in
Sec. I.

To test this hypothesis, the curvature of the lowest band
was computed for several rational approximations of β =
[0; 2] near the transition point of all these models. Since
this continued fraction expansion is periodic, effective critical

FIG. 8. Finite-size scaling of � at the localization transition of
the Aubry–André (AA) model, the generalized Aubry–André (GAA)
model with parameters (25) (bottom left axes), and the continuum
model (26) with V1 = V2 (top right axes) for β = √

2 − 1 = [0; 2].
The scaling parameters for tight-binding models are ηAA = ζAA = 1;
ηa ≈ 1.155, ζa ≈ 1.233; ηb ≈ 1.408, ζb ≈ 1.203. All models share
critical exponents and the data collapse onto the same scaling curve,
suggesting they belong to the same universality class.

exponents ν and z exist and can be determined using a finite-
size scaling method [35,51]. For a homogeneous system near
a localization transition, the finite-size scaling hypothesis can
be applied to (19) to give

� = Lz−2�(L1/νδ), (28)

where L is the size of the finite system, δ is the distance
from the transition point [e.g., (λ − 2) for the Aubry–André
model], and �(x) is a scaling function determined by the
universality class [35,51]. In such systems, all sufficiently
large length scales are equivalent: taking �(δ) for several
different system sizes, critical exponents can be found accu-
rately as the ones resulting in the best collapse of the scaled
curves on each other [51,52]. For quasiperiodic models, (28)
does not hold in general, but for β’s with periodic continued
fraction expansions, Nk’s separated by a full period of the
expansion correspond to the same βk and thus display the
same emergent structure. Using these values of Nk as system
sizes or period lengths, (28) applies and fitting to it yields the
average dynamical exponent discussed in Sec. III A.

The result of such a fit is shown in Fig. 8 for the Aubry–
André model, the generalized models (23, 25) and the con-
tinuum model (26) with β = [0; 2]. The resulting critical
exponents are the same as are the scaling curves apart from
overall rescaling. This suggests strongly that both the general-
ized Aubry–André transitions and the continuum quasicrystal
belong to the same ground state universality class as the
Aubry–André model.

For general β, however, the Aubry–André phase transition
has no well-defined critical exponents, and so the critical be-
havior depends qualitatively on the correlation length. There-
fore, such a universality class cannot be described in terms
of critical exponents and finite-size scaling functions, only
through the detailed dependence of observables on the length
scale. To illustrate such universality, the curvature of the
lowest band in all models was plotted in Fig. 9 as a function
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FIG. 9. Curvature of the lowest band in the Aubry–André model,
the generalized Aubry–André model with parameters (25) (bottom
left axes), and the continuum model (26) with V1 = V2 (top right
axes) as a function of the reduced tuning parameter λ − 2 and V −
Vc, respectively, for β = [0; 2, . . . , 2, 6]. The scaling parameters η

and ζ are the same as in Fig. 8. Apart from overall rescaling,
the scaling behavior of all models are equivalent, suggesting they
belong to the same universality class which, however, is not properly
described by power-law scaling.

of the distance from the transition point. The curves can be
collapsed on top of each other: points mapped onto each other
correspond to an equivalent correlation length. This notion of
universality is markedly different from the conventional one
based on the existence of a scaling regime in which the only
effect of microscopic structure is to set critical exponents.

IV. MULTIFRACTAL ANALYSIS

The ground state dynamical exponent considered in Sec. III
is a key quantity in quantum phase transitions, since at zero
temperature, only the behavior of the ground state is relevant.
Unlike most quantum phase transitions, however, localization
transitions in the Aubry–André model and its generalization
(23) occur at the same point for all eigenstates [18–20],
resulting in a fully singular continuous spectrum. A probe of
the entire spectrum, as opposed to the ground state only, is also
more relevant to experiments on Anderson and many-body
localization.

To explore the overall behavior of the spectrum, we em-
ployed a multifractal scaling technique which yields statistics
describing differences in the scaling behavior at different parts
of the spectrum. Furthermore, we demonstrate the connec-
tion between the structure of the spectrum and the resulting
quantum dynamics by analyzing the anomalous diffusion
dynamics, a key experimental diagnostic, of the same models
at criticality.

A. Formulation

Consider a periodic approximation β = Mk/Nk of the
incommensurate Hamiltonian. The singularity strength αi of
the ith subband is defined by

�i ∼ N
−1/αi

k , (29)

where �i is the width of the subband; by comparison to
(18), the ground state dynamical exponent is 1/α for the
lowest subband. For an incommensurate ratio with periodic
continued fraction expansion, and hence a uniform scaling
behavior over different length scales, it is expected that the
subbands of given singularity strength form a fully self-similar
structure, the fractal dimension f (α) of which is given by
[37,53]

�(α) ∼ 〈�〉−f (α), (30)

where �(α)dα is the number of subbands with singularity
strength between α and α + dα and 〈�〉 = N

−1/α

k is a typical
bandwidth of singularity strength α. The function f (α) con-
tains complete information about the scaling behavior of the
spectrum and is routinely used to characterize critical spectra
of various systems [18,37,54]. We note that the Hausdorff
dimension of the entire spectrum is the maximum value of
f (α) [37].

To accurately find f (α) numerically, we considered the
scaling exponents τq defined through [37]

Nk∑
i=1

�
−τq

i ∼ N
q

k . (31)

This set of dimensions gives f (α) through the Legendre
transform [37,53]

α = dτq

dq
; (32a)

f (α) = qα − τq. (32b)

It is now straightforward to show (see Appendix D) that the
slope of a straight line fit to

ℵ(Nk; τ ) = −
∑

i

μ
(τ )
i log �i (33a)

and

φ(Nk; τ ) = −
∑

i

μ
(τ )
i log μ

(τ )
i , (33b)

respectively, as a function of log Nk , where

μ
(τ )
i = �−τ

i∑
j �−τ

j

, (33c)

gives α−1 and f/α corresponding to a particular value of τ ;
from this, the f (α) curve can be obtained parametrically.

B. Results, universal multifractality

Multifractal analysis using the above formalism was car-
ried out for β = [0; n] (n = 2, 6, 10): the resulting f (α)
curves for the Aubry–André model are shown in Fig. 10.
f (α) is only defined on an interval αmin � α � αmax and
f (αmin) = f (αmax) = 0: αmin,max give the scaling exponents
of the smallest and largest bandwidths of the system, respec-
tively, but these represent a vanishing minority of all bands.
In fact, α−1

min equals the ground state dynamical exponent (18)
in all cases we considered. This suggests that the narrowest
bands of the spectrum are near the bottom (and the top) of it
and their scaling behavior is atypical for the spectrum.
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FIG. 10. Multifractal dimensions f (α) for β = [0; n] (n =
2, 6, 10) at the critical point of the Aubry–André model. The smallest
α in the spectrum coincides with the inverse of the ground state
dynamical exponent, indicating the narrowest bands of the spectrum
occur near the ground state. Symbols denote the peak of each
curve: the most probable α is approximately 0.5 for small continued
fraction terms, but significantly more for n = 10. The f (α) curves
of the critical generalized Aubry–André Hamiltonian (23, 25) are
indistinguishably close to the ones plotted here.

Localization transitions in the generalized Aubry–André
model (23) were also observed to occur simultaneously in
all eigenstates [18,19], giving rise to fully critical spectra at
transitions. The multifractal dimensions f (α) at the transition
points (25) were thus obtained using the same method. The
f (α) curves for the simple and generalized Aubry–André
models are identical for a given β: this directly shows that the
universality observed in the ground state also applies to the
entire spectrum. For β = [0; 1], the golden mean, and φ = 0,
this behavior was already known [18]. In this particular case,
singular continuous spectra appear away from the localiza-
tion transition line as well (cf. Fig. 7): in accordance with
Ref. [18], we found that the multifractal structure of these
critical spectra is markedly different from the ones on the
transition line (not shown). However, the existence of a critical
region appears to be a peculiarity of the φ = 0 phase diagram
[19], thus no universal features are expected of it.

It has been conjectured that the peak of the f (α) curve
is at α∗ = 1/2 for all β, that is, the Hausdorff measure of
the spectrum is dominated by bands scaling as � ∼ N−2

[37]. While this appears to be the case for β = [0; 2] and
maybe for [0; 6], it is certainly not for [0; 10] where α∗ ≈
0.515 (the numerical error of α is at most ≈0.005). Lower
quality evidence for [0; n] with large n suggests α increases
further with n: the observation of Ref. [37] appears to be a
consequence of only using (more easily accessible) β’s with
small continued fraction terms.

C. Expansion of a wave packet

The multifractal dimensions f (α) contain full information
on the scaling behavior of the spectrum, and since the dy-
namics of a quantum system depends on differences between
its energy levels, they capture the dynamical behavior of the
critical system. A straightforward example is the diffusion

dynamics of an initially site-localized particle after a sudden
quench onto the Aubry–André Hamiltonian (23). This expan-
sion can be characterized through the evolution of the pth
moment of the resulting quantum state:

μp = 〈|x − x0|p〉; 	p = μ1/p
p , (34)

where x0 is the position where the wave function is initially
localized and p is an arbitrary positive real number. In a
conventional critical system, 	p ∼ t1/z because t is a char-
acteristic time scale corresponding to the length scale 	p(t )
[55]. In this context, σ = 1/z is commonly referred to as the
anomalous diffusion exponent.

Using exact diagonalization, the time evolution of the
initial state can be obtained directly from

|ψ (t )〉 =
∑

n

|n〉e−iEnt 〈n|ψ (0)〉, (35)

where |n〉 are the eigenstates of the Hamiltonian with energy
En: given |ψ (t )〉, μp can be calculated straightforwardly.
As the details of the expansion dynamics will depend on
the choice of initial state [56], we show in Fig. 11(a) the
evolution of the rms width 	2 averaged over all initial sites
x0 for periodic approximations of β = [0; n] (n = 2, 6, 10)
in the Aubry–André model. Apart from finite size effects,
each expansion follows an approximate power law: fitting
a power law to each plot resulted in a diffusion exponent
σ ≈ 0.5 within the error of the fit. Similar behavior has
previously been found for other values of β as well [57]. On
the other hand, σ for a fixed value of β does depend on p,
as shown in Fig. 11(c) for β = [0; 6] and p = 1, 2, 4. This
unusual behavior is readily accessible by measuring higher
moments of the diffused density distribution in typical sudden
expansion experiments [58–60].

In addition to the Aubry–André model, 	p(t ) was calcu-
lated by the same method for the critical point λ = 2, μ =
1/2, φ = 0 of the generalized Aubry–André Hamiltonian: 	2

for β = [0; 10] was plotted in the inset of Fig. 11(a) together
with 	2 for the simple Aubry–André model. The exponents
of the approximate power laws were found to match, together
with the structure of oscillations around it:

	GAA
2 (t ) = 	AA

2 (0.867t )

holds accurately for all but the shortest time scales.

D. Connection between expansion dynamics
and spectrum multifractality

In order to connect the expansion dynamics in a criti-
cal tight-binding model to the multifractal properties of the
spectrum, consider the Aubry–André model with an arbitrary
value of β with periodic continued fraction expansion. Since
the only natural length and time scales of the problem are the
lattice spacing a0 and the ‘hopping time’ h̄/J , μp depends on
these scales as

μp(t ; x0, β, λ) = a
p

0 mp(J t ; x0, β, λ), (36)

where mp is now a dimensionless function of dimensionless
variables. To get an overall description of the critical dy-
namics, we set λ = 2 and average over the position of the
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FIG. 11. (a) RMS wave function width 	2 in the critical Aubry–
André model for rational approximations of β = [0; n] (n = 2, 6, 10)
as a function of time for a state initially localized on a single site,
averaged over the initial site (solid lines). For all values of β, the
expansion is well described by the power law 	2 ∝ t1/2 (dashed and
dotted lines). Convergence to a constant value at long times is a
finite size effect. Inset: comparison of 	2(t ) for the simple (λ =
2: AA, bottom time axis) and generalized [(λ,μ, φ) = (2, 1/2, 0):
GAA, top time axis] Aubry–André models with β = [0; 10]. Except
for very short times, the two curves are related by time dilation:
	GAA

2 (t ) = 	AA
2 (0.867t ). (b) 	2/t1/2 for the same expansions. As

before, this ratio tends to a constant at long times, and the initial
oscillations around this limit decay in time. (c) 	p for β = [0; 6]
and p = 1, 2, 4 in the same setup. For each p, 	p increases as a
power law, however, the critical exponents σp depend on p [σ1 =
0.4616(12), σ2 = 1/2, σ4 = 0.5500(4)]. Inset: comparison of σp

calculated from the multifractal spectrum using (42) (solid line) to
the exponents obtained numerically (colored crosses).

initial site:

mp(J t ; β ) = lim
N→∞

1

2N + 1

N∑
x0=−N

mp(J t ; x0, β, λ = 2).

(37)

Consider now the kth step of the renormalization process
outlined in Sec. II C: the spectrum consists of Nk critical
subbands with incommensurate ratio βk; let the effective
hopping term in each be Ji (1 � i � Nk ). Provided the time
t is longer than the time scales corresponding to typical band
gaps, interference between bands averages out, leaving

mp(J t ; x0, β ) �
Nk∑
i=1

∣∣〈x (i)
0

∣∣x0
〉∣∣2

N
p

k mp

(
Jit ; x

(i)
0 , βk

)
, (38)

where |x (i)
0 〉 is the Wannier state of the ith subband living

(among others) on site x0; the factor N
p

k is due to the renor-
malization of the lattice spacing. To average (38) over lattice
sites, we note that each renormalized band has one Wannier
state per Nk lattice sites and the sum of the overlap integrals
|〈x (i)

0 |x0〉|2 over all x0 is 1 since the |x0〉 form a basis. As
a result, the overlap integrals average to 1/Nk for all lattice
sites, and hence

mp(J t ; β ) � N
p−1
k

Nk∑
i=1

mp(Jit ; βk ). (39)

Now, consider those k that correspond to full periods of the
continued fraction expansion, that is, βk = β. Assuming that
the expansion is governed by a power law at long times,

mp(J t ; β ) ∝ (J t )pσp (J t → ∞), (40)

Eq. (39) gives

N
p−1
k

Nk∑
i=1

(Jit )pσp � (J t )pσp

Nk∑
i=1

J
pσp

i ∝
Nk∑
i=1

�
pσp

i ∝ N
1−p

k , (41)

where �i is the width of the ith subband for β = Mk/Nk ,
4Ji in the unmodulated tight-binding approximation. In terms
of the multifractal dimensions introduced in Sec. IV A, the
anomalous diffusion exponents σp are given by

σp = −τ1−p

p
. (42)

In contrast to conventional diffusion dynamics, σp now de-
pends on p and is not equal to the inverse of the ground state
critical exponent. The only crucial assumption in deriving (42)
is the self-similarity of the spectrum, therefore, we expect it
to hold for the dynamics of other singular continuous spectra,
e.g., the Fibonacci quasicrystal [61–63]. In particular, as the
spectra of all generalized Aubry–André transition points are
described by the same multifractal exponents, the σp are
universal too. The differences seen at very short times can be
attributed to initial renormalization steps required to attain a
fixed point.

An interesting special case is that of p = 2. There is strong
numerical and analytical evidence [36,64–66] suggesting that
for the Aubry–André Hamiltonian with rational β = M/N ,
the sum of bandwidths scales as

lim
N→∞

N

N∑
i=1

�i ≈ 9.3299 (43)

regardless of M . This implies that τ−1 = −1 for any β: com-
paring with (42), we find that σ2 = 1/2, as seen numerically
in Fig. 11(a). Unlike diffusive systems, however, σ = 1/2
here cannot be regarded as the consequence of a random walk
between scatterers since σp �= 1/2 in general.

In Fig. 11(b), we note that oscillations around the approx-
imate power law scaling of 	p(t ) decrease with time and
become unnoticeable for sufficiently long times. The origin
of this behavior is clear from (39): for J t � 1, the expansion
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dynamics can be regarded as a superposition of the same
dynamics at earlier times Jit . Since these Ji range over several
orders of magnitude for sufficiently large Nk , m(Jit ) probes
any short-time oscillations over several periods, thus averag-
ing them out. That is, expansion length scales in different
subbands can be very different, of which 	p is only an average.
This distinction becomes manifest in the expansion dynamics
for β’s with aperiodic continued fraction expansions: while
expansion dynamics at different length scales is different, at
any particular time, these are averaged out, preventing the
formation of clean crossovers similar to those seen in Fig. 6
for a single sequence of subbands (namely, the ground state).

V. CONCLUSION

We have investigated the critical behavior of the Aubry–
André model and other one-dimensional quasiperiodic sys-
tems near their localization transitions. In particular, we con-
sidered the dependence of energy scales near the ground state,
�E, on the correlation length ξ . While the standard theory of
phase transitions dictates that for large ξ , the system attains
a scaling regime in which �E ∝ ξ−z, we found that the
critical behavior is not described accurately by a power law
on arbitrarily large length scales.

This is caused by the hierarchical structure of the crit-
ical spectrum of quasiperiodic models, captured by the
continued fraction expansion of the irrational number β =
[0; n1, n2, . . . ] describing their incommensurability. Each
continued fraction term nk has associated with it a length
scale Nk: scaling properties of the critical spectrum near this
length scale were found to be fully determined by nk . Since
the spectrum of a system near a phase transition is sensitive to
spatial features on length scales up to the correlation length
ξ , the critical behavior of quasiperiodic models at ξ ≈ Nk

will also be governed by nk . As the sequence of these nk

can be arbitrary and is controlled by the precise value of β,
the dynamical exponent z can typically not be defined for
quasiperiodic models. As an example, we found that for a
wide class of β’s, �E tends to zero faster than any power
of ξ , heralding critical behavior qualitatively different from
any conventional system. Furthermore, the dependence of
the critical behavior on the incommensurate ratio is unusual:
arbitrarily close values of β can result in qualitatively different
asymptotic behaviours very near the transition, as their contin-
ued fraction expansions eventually start to deviate.

Even though the localization transition of one-dimensional
quasiperiodic models cannot be described by power law
relations, we find numerically that transitions in different
models sharing the same value of β display universal features.
Instead of critical exponents, such universality classes are
described by the detailed dependence of observables such
as �E on the correlation length. For models belonging to
the same universality class, such functions can be scaled
onto each other, similarly to finite-size scaling techniques for
conventional phase transitions. The origin of such universality
remains the identical behavior under the renormalization of
length scales; the key difference is that quasiperiodic systems
only admit a single sequence of discrete renormalization steps
that themselves depend on the length scale.

To complement studies of the ground state, we considered
scaling properties of the entire spectrum on different length
scales. For β’s with a periodic continued fraction expansion,
the spectrum is expected to be self-similar at the Aubry–André
critical point: its structure was found to be a multifractal, and
multifractal dimensions were calculated for several values of
β. We also investigated the expansion dynamics of a localized
wave packet and found that the evolution of the spread 〈rp〉1/p

of the wave function is described by a power law the exponent
of which depends on p and β. This is at odds with the behavior
of diffusive systems, where this exponent is 1/2 for all p. Sim-
ilarly to ground state properties, we again found universality
between transition points of different quasiperiodic models in
both their multifractal spectrum and expansion dynamics.

For the Aubry–André model, we used a discrete renormal-
ization group protocol [21] to construct the critical spectrum
and thus explicitly calculate the scaling of �E with ξ ; non-
power-law universality classes could be understood through
the renormalization behavior of other types of quasiperiodic
models near phase transitions.

Quasiperiodicity in higher dimensions leads to the emer-
gence of arbitrarily large ‘microscopic’ length scales the same
way as in one dimension: this discrete large-scale structure is
manifest in sharp diffraction peaks at progressively smaller
momenta [3,67,68]. Therefore, it is reasonable to expect that
phase transitions in such systems (including material qua-
sicrystals) also display non-power-law behavior. In general,
quasiperiodic systems open the door to more complex large-
scale behaviors, especially with interactions, which can show
up, for instance, in increased quantum complexities [13], as
novel universality classes for the many-body localization tran-
sition [69], and in conjunction with their inherited topological
features [70,71].
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APPENDIX A: WKB THEORY OF
TIGHT-BINDING MODELS

In this appendix, we develop a semiclassical theory of
tight-binding lattices with potentials slowly varying compared
to the lattice spacing. The derivations presented here follow
closely the standard derivations of WKB theory for an ordi-
nary, quadratic dispersion relation [72,73]. Since the period
of the incommensurate modulation, β−1 is large, this theory
is applicable to the Aubry–André model for the class of
β’s considered, and can be used to accurately estimate the
renormalized hopping and thus the critical exponents ν and
z [21].

1. Construction of the wave function

We assume that the period of the modulating potential is
very much larger than the lattice spacing. In this case, the
discreteness of the wave function becomes irrelevant, and the
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Hamiltonian can be written as (the unit of length is the lattice
spacing, h̄ = 1)

H = −2J cos p̂ + V (x̂), (A1)

where the nonquadratic dependence on p̂ follows from the
tight-binding dispersion relation. Due to this nonquadratic
dispersion relation, the quasiclassical wave numbers depend
differently on energy:

k(x) = arccos

(
V (x) − E

2J

)
; (A2)

κ (x) = ik(x) = arcosh

∣∣∣∣E − V (x)

2J

∣∣∣∣. (A3)

Using k(x), the Schrödinger’s equation (A1) and the WKB
ansatz can be written as

0 = −(cos p̂)ψ (x) + cos k(x)ψ (x) (A4)

ψ (x) ≈ A(x) exp

(
±i

∫ x

k(x ′)dx ′
)

= A(x)φ(x), (A5)

where both A(x) and k(x) are assumed to vary slowly. Due to
this slow variation, considering terms with a different number
of derivatives amounts to separation of scales: in first order
WKB approximation, only terms with zero or one derivatives
are retained. The nth derivative of ψ (x) is given by

ψ (n)(x) = Aφ(n) + nA′φ(n−1) + O(A′′) where (A6)

φ′(x) = ±ikφ

φ′′(x) = (±ik)2φ ± ik′φ

φ′′′(x) = (±ik)3φ + 3(±i)2kk′φ ± ik′′φ

∴ φ(n)(x) = (±ik)nφ +
(

n

2

)
(±i)n−1kn−2k′φ + O(k′′);

(A7)

Eq. (A7) can be proved by induction. Combining (A6) and
(A7) gives ψ (n) and p̂nψ as

ψ (n) = (±ik)nAφ +
(

n

2

)
(±ik)n−2(±ik′)Aφ

+ n(±ik)n−1A′φ; (A8)

p̂nψ = (±k)nAφ − i(±1)n−1

(
n

2

)
kn−2k′Aφ

− in(±k)n−1A′φ. (A9)

Writing cos p̂ as a Taylor series, we finally obtain

(cos p̂)ψ =
∞∑

n=0

(−1)n
p̂2nψ

(2n)!
=

∞∑
n=0

{
(−1)n

k2n

(2n)!
ψ∓

i

[
(−1)n

2

k2n−2

(2n−2)!
k′Aφ + (−1)n

k2n−1

(2n−1)!
A′φ

]}

= cos k×ψ ± i
(

1
2 cos(k)k′A−sin(k)A′)φ. (A10)

Writing this into (A4) yields

1

2
cos(k)k′A − sin(k)A′ = 0

A(x) ∝ 1√
sin k(x)

. (A11)

Noting that the velocity of a classical particle moving under
this Hamiltonian would be

v = ẋ = ∂H

∂p
= 2J sin p, (A12)

A(x) can be interpreted as reproducing the classical probabil-
ity of the particle being found at x, similarly to the amplitude
in standard WKB theory [72].

The derivation above does not depend on k(x) being real.
At points with too large potentials, k = iκ with κ defined in
(A3), and the wave function (A5) becomes

ψ (x) ∝ 1√
sinh κ (x)

exp

(
−

∫ x

x0

κ (x ′)dx ′
)

, (A13)

where the classical turning point x0 is given by E = V (x0) −
2. At this turning point, k = 0, and so the cosine disper-
sion may be replaced with a quadratic one: as a result, the
Schrödinger’s equation near the turning point reduces to the
Airy equation. Solving this equation gives connection formu-
las equivalent to those in standard WKB theory:

C

2
√

sinh κ
exp

(
−

∫ x

x0

κdx ′
)

←→ C√
sin k

cos

(∫ x

x0

kdx − π

4

)
. (A14)

The similarity of the connection formulas to standard WKB
also means that the Bohr–Sommerfeld quantization condition
holds for this dispersion relation too:∫ x1

x0

k(x)dx =
(

n + 1

2

)
π. (A15)

We note that the region E > V (x) + 2 is also inaccessi-
ble classically. There, k(x) = iκ (x) + π , corresponding to
an exponentially decaying wave function changing signs at
every lattice site. Eqs. (A13), (A14), and (A15) generalize
straightforwardly; we shall not discuss them in detail as
they only become relevant near the top of the Aubry–André
spectrum.

Finally, we find the normalization constant C for a wave
function living in a single potential minimum. Ignoring the
exponentially decaying part, the normalization requirement
is

1 =
∫ x1

x0

C2

sin p
cos2 φ(x)dx ≈

∫ x1

x0

C2

sin p

1

2

= C2

2

∫ x1

x0

2J

v
dx = JC2

∫ x1

x=x0

dt = JC2 T

2
= C2 Jπ

ω

C =
√

ω

Jπ
, (A16)

where ω is the frequency of classical oscillations in the well.
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2. Hopping between neighboring wells

Consider a potential consisting of identical, centrosymmet-
ric wells centered on x = na, n ∈ Z. If a is large compared
to the classically allowed region near the minimum of the
potential, there is only appreciable hopping between neigh-
boring minima, and its value can accurately be estimated
using WKB approximation. This calculation follows that of
Ref. [73] (§55, Problem 3) which solves the same problem for
a quadratic dispersion.

Assuming that the overlap between wave functions �(x −
an) living in neighboring wells is small, each one can be
treated as a Wannier function, that is, Bloch states are of the
form

ψk (x) = C

∞∑
n=−∞

eikan�(x − an). (A17)

The Schrödinger’s equation for a single well and for the Bloch
state are then

−Jψk (x − 1) − Jψk (x + 1) + [V (x) − εk]ψk (x) = 0

(A18a)

−J�(x − 1) − J�(x + 1) + [V (x) − ε]�(x) = 0,

(A18b)

where ε is the energy of a well state in isolation and εk is the
dispersion of the resulting band. Multiplying (A18a) by �(x),
(A18b) by ψk (x), subtracting and integrating from x = −a/2
to a/2 gives

(εk − ε)ψk (x)�(x) + J [ψk (x − 1)�(x) + ψk (x + 1)�(x) − ψk (x)�(x − 1) − ψk (x)�(x + 1)] = 0

(εk − ε)C = −J

[(∫ a/2

a/2−1
−

∫ −a/2

−a/2−1

)
�(x)ψk (x + 1)dx +

(∫ −a/2+1

−a/2
−

∫ a/2+1

a/2

)
�(x)ψk (x − 1)dx

]
(A19)

= −J

[∫ α+1/2

α−1/2

{
�

(
x − 1

2

)
ψk

(
x + 1

2

)
− �

(
x + 1

2

)
ψk

(
x − 1

2

)}]a/2

α=−a/2

.

Consider the integral in brackets. At α = a/2, only the n = 0 and n = 1 terms are relevant in (A17):

ψk (x) = C
(
�(x) ± �(a − x)eika

)
,

where the sign depends on whether the well eigenstate in question is even or odd. Substituting this form in the integral of (A19)
gives ∫ (a+1)/2

(a−1)/2
· · · dx = C

∫ (a+1)/2

(a−1)/2

[
�

(
x − 1

2

)
�

(
x + 1

2

)
± �

(
x − 1

2

)
�

(
a − 1

2
− x

)
eika

−�

(
x + 1

2

)
�

(
x − 1

2

)
∓ �

(
x + 1

2

)
�

(
a + 1

2
− x

)
eika

]
dx

= ∓Ceika

∫ 1/2

−1/2

[
�

(
a + 1

2
+ x

)
�

(
a + 1

2
− x

)
− �

(
a − 1

2
+ x

)
�

(
a − 1

2
− x

)]
dx.

Similarly, for α = −a/2, the n = 0 and n = −1 terms yield∫ −(a−1)/2

−(a+1)/2
· · · dx = ±Ce−ika

∫ 1/2

−1/2

[
�

(
a + 1

2
+ x

)
�

(
a + 1

2
− x

)
− �

(
a − 1

2
+ x

)
�

(
a − 1

2
− x

)]
dx,

and hence by (A19),

εk − ε = ±2J cos ka

∫ 1/2

−1/2

[
�

(
a + 1

2
+ x

)
�

(
a + 1

2
− x

)
− �

(
a − 1

2
+ x

)
�

(
a − 1

2
− x

)]
dx. (A20)

To evaluate each term of the integral in (A20), we employ a saddle point approximation to (A13): writing

ln sinh κ (α + x) = ln sinh κ (α) + rx + sx2 + O(x3),

we obtain∫ 1/2

−1/2
�(α + x)�(α − x)dx ≈ �(α)2

∫ 1/2

−1/2
exp

(
−κx − κ ′

2
x2 + r

2
x + s

2
x2

)
exp

(
+κx − κ ′

2
x2 − r

2
x + s

2
x2

)
dx

= �(α)2
∫ 1/2

−1/2
e−(κ ′−s)x2

dx. (A21)
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The Gaussian integral is only significantly different from 1 if the factor multiplying x2 is O(1); however, under the WKB
approximation, κ changes very slowly and so κ ′, s ∝ κ ′′ � 1. That is, (A20) can be written as

εk − ε ≈ ±2J cos ka

[
�2

(
a + 1

2

)
− �2

(
a − 1

2

)]
≈ ±2J cos ka · �2

(a

2

)
(e−κ − eκ ) = ∓4J cos ka · �2

(a

2

)
sinh κ,

where only the dominant variation in �(x) due to exponential decay was retained. Finally, substituting the wave function
[(A13), (A14), (A16)] yields

εk − ε ≈ ∓ω

π
exp

(
−2

∫ a/2

x0

κ (x)dx

)
cos ka. (A22)

That is, each well eigenstate broadens into a tight-binding type band with effective hopping term

J ′ = ± ω

2π
exp

(
−2

∫ a/2

x0

κ (x)dx

)
. (A23)

APPENDIX B: RENORMALIZATION OF λ

From (11), the renormalized hopping is given by

λ′ = λ
J ′(4/λ, 2E0/λ; β )

J ′(λ,E0; β )
, (B1)

where J ′(λ,E; β ) is the hopping term (A23) for a band at
energy E in an Aubry–André model with parameters λ and β.
Substituting (A23) gives

λ′ = λ
T

T ′ exp

(
2

∫ 1/(2β )

x0

κ (x)dx − 2
∫ 1/(2β )

x ′
0

κ ′(x)dx

)
,

(B2)

where T is the classical period of oscillation around the
minimum and κ (x) is the imaginary wave vector (A3); primes
denote quantities of the dual model. For brevity, we write
ε = −E/J .

1. Relation of T and T ′

From the classical velocity–momentum relation (A12),

T =
∮

dx

ẋ
= 4

∫ x0

0

dx

2J sin k(x)

= 4

J

∫ x0

0

dx√
4 − (

ε − λ cos(2πβx)
)2

= 4

2Jπβ

∫ α0

0

dα√
4 − (ε − λ cos α)2

= 4

2Jπβ

∫ λ

ε−2

dy√
λ2 − y2

√
4 − (ε − y)2

, (B3)

where α = 2πβx is the phase of the modulating potential and
y = λ cos α. Very similarly, the classical period of the dual is

T ′ = 4

2Jπβ

∫ α′
0

0

dα√
4 − (

2
λ
ε − 4

λ
cos α

)2

= 2λ

2Jπβ

∫ 2

ε−λ

dy√
4 − y2

√
λ2 − (ε − y)2

,

where now y = 2 cos α. The two integrals can be turned into
each other by changing y into y ′ = ε − y, therefore they are

equal: (B2) becomes

λ′ = 2 exp

(
2

∫ 1/2β

x0

κ (x)dx − 2
∫ 1/2β

x ′
0

κ ′(x)dx

)
. (B4)

2. Evaluating the integrals
∫

κ dx

To evaluate (B4), we first rewrite the integrals in terms of
the phase α = 2πβx:

λ′ = 2 exp

(
2

2πβ

∫ π

α0

κ (α)dα − 2

2πβ

∫ π

α′
0

κ ′(α)dα

)

= 2 exp

(
I − I ′

πβ

)
, (B5)

where I, I ′ are integrals independent of β, defined as

I =
∫ π

α0

arcosh

(
ε − λ cos α

2

)
dα α0 = arccos

(
ε − 2

λ

)
(B6a)

I ′ =
∫ π

α′
0

arcosh

(
ε − 2 cos α

λ

)
dα α′

0 = arccos

(
ε − λ

2

)
.

(B6b)

These integrals can be thought of as the area in (α, κ ) space
bounded by 2 cosh κ + λ cos α = ε and λ cosh κ + 2 cos α =
ε, respectively. Introducing the variables a = cos α, k =
cosh κ , the area integrals can be rewritten as

I, I ′ =
∫∫

da dk√
(1 − a2)(k2 − 1)

; (B7)

the integration areas are bounded by the lines a = −1, k = 1,
and 2k + λa = ε (for I ) or λk + 2a = ε (for I ′; see Fig. 12).
It follows that I − I ′ entering (B5) is the integral of the same
integrand over the difference of the two domains. Since for
λ < 2,

A′ = ε − λ

2
>

ε − 2

λ
= A; K ′ = ε + 2

λ
>

ε + λ

2
= K

(and vice versa for λ < 2), this area difference is a quadri-
lateral bounded by all four lines bounding the triangles (see
Fig. 12).
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FIG. 12. The integration domain of (B6a) and (B7) after the
change of variables a = cos α, k = cosh κ for λ < 2. In the latter
case, the integration domains of I (gray) and I ′ (striped and gray)
are both right triangles and since A < A′, K < K ′, the integration
domain of I − I ′ (striped) is a convex quadrilateral.

For simplicity, we assume that λ is infinitesimally close to
2: λ = 2 + η, |η| � 1. In this case, the difference quadrilat-
eral is infinitesimally thin: slicing it along lines of constant a

gives the integral

I − I ′ �
∫ A0

−1

da[k(a) − k′(a)]√
1 − a2

√
k0(a)2 − 1

. (B8)

In writing (B8), we have ignored the variation of k across
one slice in the denominator, and replaced it with k0(a)
corresponding to λ = 2: this introduces first order corrections
to the denominator which, since k − k′ is first order in η, can
be ignored. Now,

k(a) − k(a′) = ε − λa

2
− ε − 2a

λ
�

(ε

4
− a

)
η

∴ I − I ′ � η

∫ (ε−2)/2

−1

da
(

ε
4 − a

)
√

1 − a2
√(

ε
2 − a

)2 − 1

= η

∫ e+1

−e+1

x dx√(
1 − (e − x)2

)(
(e + x)2 − 1

)
= η

2

∫ (1+e)2

(1−e)2

d(x2)√
4e2 − (

x2 − (1 + e2)
)2

I − I ′ � πη

2
. (B9)

Writing this into (B8) gives

λ′ � 2eη/(2β ) � 2 + η

β
; (B10)

that is, the reduced tuning parameter λ − 2 increases by a
factor of β−1 on rescaling.

It is possible to evaluate I − I ′ for an arbitrary value of λ.
We omit the derivation due to its length and report that

I − I ′ = π log
λ

2
⇒ λ′ = 2

(
λ

2

)1/β

(B11)

as stated in Sec. II C.

APPENDIX C: RENORMALIZATION OF THE HOPPING,
THE DYNAMICAL EXPONENT

To estimate the ground state dynamical exponent corre-
sponding to a particular length scale, we consider the defi-
nition (20),

zk = log(�E(Nk+1)/�E(Nk ))

log βk

≈ log(Jk+1/Jk )

log βk

, (C1)

at λ = 2; since the renormalization of J in one RG step only
depends on β in that step, we anticipate that zk only depends
on βk . We first consider the Bohr–Sommerfeld quantization
condition (A15) for β � 1: in terms of the phase α = 2πβx,∮

k(α)dα = 2(2n + 1)π2β, (C2)

where the integrand is given by 2 cos k + 2 cos α = −E/J =
ε. For small values of k and α, both cosines can be approxi-
mated as quadratics: the contour of the area integral becomes
approximately a circle, and thus∮

k(α)dα � πα2
0 � π (4 − ε)

εn � 4 − 2(2n + 1)πβ. (C3)

In particular, n = 0 in the ground state, and so ε0 � 4 − 2πβ.
The most important consequence of this is that the ground
state energy in the limit β � 1 is close to −4J and thus most
of the distance between two neighboring minima is classically
unaccessible.

Consider now the expression (A23) of the renormalized
hopping. By the quadratic approximation introduced above,
the classical motion around a minimum can be treated as
harmonic; the frequency follows from the coefficients of p2

and x2 as ω � 4Jπβ. Similarly to (B5), J ′ can now be written
as

J ′ � 2Jβ exp

(
− I

πβ

)
(C4)

∴ z(β ) � 1 + I

πβ| log β| , (C5)

where I is given by (B6a); it also depends on β through the
ground state energy. Since ε ≈ 4 for any small β, the leading
order term in z(β ) can be obtained by assuming ε = 4 and
thus α0 = 0:

I �
∫ π

0
arcosh(2 − cos α)dα ≈ 3.6639 (C6)

z(β ) � 1.1662
β−1

log(β−1)
. (C7)

That is, the ground state dynamical exponent diverges as
βk → 0, as discussed in Sec. III. More accurate estimates can
be obtained by numerically solving (C2) for ε and evaluating
(A23) directly.

To provide a numerical check on this result, the ground
state dynamical exponent was obtained by the finite-size
scaling method outlined in Sec. III B for βn = [0; n], 2 �
n � 10. For these numbers, βk = β for all k, and so the
average dynamical exponent yielded by the finite-size scaling
procedure equals z(β ). In addition, z(1/n) was estimated by
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FIG. 13. Comparison of effective dynamical exponents given by
WKB theory with exact diagonalization results for β = [0; n] and
β = 1/n. For β = [0; n], βn = β at all RG steps and hence the
dynamical exponent given by finite-size scaling is applicable to all
steps. For β = 1/n, the renormalization of J in a single RG step was
obtained from the width of the lowest band.

calculating the lowest bandwidth for β = 1/n and equating
it to 4J ′ in the first and only step of the RG procedure.
The resulting critical exponents are plotted against β−1 in
Fig. 13 together with the z(β ) curve predicted by WKB theory.
The correspondence between numerical and analytic results
improves with decreasing βn, as expected from the underlying
assumptions of the analytic theory.

APPENDIX D: NUMERICAL COMPUTATION OF f (α)

Due to its definition (31), it is more straightforward to
obtain q for a given value of τ than the other way around.
Therefore, we consider the alternative Legendre transform

α−1 = dq

dτ
; (D1a)

f ′ = f (α)/α = q − τα−1. (D1b)

In principle, this Legendre transform could now be obtained
from q(τ ), given by power law fitting to (31), numerically:
however, taking derivatives numerically tends to introduce
significant noise. To mitigate this, we perform the Legendre
transform before power law fitting, as suggested by Ref. [74].
Equation (31) is equivalent to

q = lim
Nk→∞

log
(∑

i �
−τ
i

)
log Nk

; (D2)

writing this into (D1) gives

α−1(τ ) = d

dτ
lim

Nk→∞
log

( ∑
i �

−τ
i

)
log Nk

= lim
Nk→∞

1

log Nk

d

dτ
log

(∑
i

�−τ
i

)

= − lim
Nk→∞

1

log Nk

∑
i

�−τ
i log �i∑

j �−τ
j

;

f ′(τ )=q − τα−1

=− lim
Nk→∞

1

log Nk

[∑
i

�−τ
i log �−τ

i∑
j �−τ

j

− log

(∑
i

�−τ
i

)]

= − lim
Nk→∞

1

log Nk

∑
i

�−τ
i∑

j �−τ
j

log
�−τ

i∑
j �−τ

j

.

That is, α−1(τ ) and f ′(τ ) are given by fitting a straight line to

ℵ(Nk; τ ) = −
∑

i

μ
(τ )
i log �i , (D3a)

φ(Nk; τ ) = −
∑

i

μ
(τ )
i log μ

(τ )
i , (D3b)

respectively, as a function of log Nk , where

μ
(τ )
i = �−τ

i∑
j �−τ

j

, (D3c)

as stated in Sec. IV A.
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