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It is a generally accepted fact that the unique dielectric properties of relaxor ferroelectrics are related to the
formation of polar nanoregion (PNRs). Less well recognized is the corollary that, because they are polar and
therefore lack inversion symmetry, PNRs are also piezoelectric at the nanoscale and can therefore behave as
nanoresonators. Using the particular relaxor ferroelectric K1−xLixTaO3 (KLT), we show that, when electrically
excited into oscillation, these piezoelectric nanoresonators can drive macroscopic electromechanical resonances.
Unexpectedly, however, pairs of coupled resonances corresponding to a particular type of oscillation are
observed, with one of the resonance exhibiting a characteristic Fano-like line shape. The complex resonance
spectra can be described equally well by two alternative but complementary models both involving two
resonances coupled through a relaxation: a purely classical one based on two coupled damped harmonic
oscillators and a semiclassical based on two discrete excitations coupled to each other through a continuum.
Together, they provide complementary perspectives on the underlying physics of the system. Both reproduce the
rapid evolution of the resonance spectrum across three wide temperature ranges, including a phase transition
range. In the high-temperature range, the coupling between modes is due to the collective π relaxation of the
lithium ions within PNRs and, in the phase transition range, to “heterophase relaxation” of the surrounding lattice
between its high-temperature cubic and low-temperature tetragonal phases, both coherent effects. The coupling
is suppressed in the intermediate range of the collective π/2 relaxation of the lithium ions. Incidentally, the
measured dielectric spectra are shown to bear a surprising but justifiable resemblance to the optical spectra of
certain atomic vapors exhibiting electromagnetically induced transparency.
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I. INTRODUCTION

K1−xLixTaO3 (KLT), KTa1−xNbxO3 (KTN),
PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT), PbZn1/3Nb2/3

O3-PbTiO3 (PZN-PT), and PbSc1/2Nb1/2O3 (PSN) belong
to the family of relaxor ferroelectrics (RF). RFs are highly
polarizable mixed compounds in which substituted cations
are off-centered already in the paraelectric phase, forming a
dipole that can reorient between several crystallographically
equivalent directions. At lower temperatures, interactions
between off-center ions in the highly polarizable lattice
result in the formation of lower symmetry (i.e., permanent)
polar nanoregions (PNR) [1,2], the size of which can be
estimated from neutron and x-ray elastic diffuse scattering
[3,4]. Although the term polar nanoregions or PNRs is widely
used in the RF literature, it would be preferable in the present
paper to label these polar nanodomains or PNDs [5] so as to
emphasize the long-lived or permanent character of the local
distortion and lower local symmetry of these regions below
a certain temperature, T ∗, both features that are essential in
explaining the results reported here. Because of the general
practice in the RF literature however, we keep here the
PNR label. Due to their mixed composition and resulting
complex structural features, RFs exhibit unique local as well
as lattice dynamics, the most characteristic feature of which
is the strong frequency dispersion of their dielectric constant
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commonly identified as “the relaxor behavior” [6,7]. This
dispersion is due to the relaxation of the PNRs between
different orientations. Simultaneously, when subjected to
relatively small dc electric fields, relaxor ferroelectrics (RF),
exhibit unusual electromechanical resonances (EM) [8] that
are clearly associated with the presence of these PNRs cou-
pling polarization and strain. Similar resonances have also
been observed in nanocomposites [9] and are interesting for
two reasons. First, they provide a sensitive tool to probe
the interplay between local and lattice dynamics which is at
the core of the behavior of these complex solids. Secondly,
they form the basis for the primary applications of RFs in
transducers and actuators [10,11]. In an earlier paper [12],
we reported the first observation of new resonances in KTN
and KLT and interpreted them as evidence for the formation
of permanent polar nanodomains in the “paraelectric” relaxor
phase. In a follow up paper [13], we developed a phenomeno-
logical Debye model involving electrostrictive polarization-
strain coupling to describe this resonance. This two papers
focused on the primary (broad) resonance as a signature of
the PNRs and their electrostrictive properties, as we did not
yet recognize at the time the importance of the secondary
(narrow) resonance, the meaning of its characteristic spec-
tral shape and its relationship to the primary resonance. In
the present paper, we report the results of a comprehensive
and detailed study of these resonances in the relaxor KLT
over a wide range of temperatures and frequencies. Most
importantly, we now identify pairs of coupled resonances
(primary and secondary), uncover their origin and describe
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the coherent coupling mechanism that gives rise to their
characteristic spectral shapes. These spectral shapes are seen
to evolve rapidly with decreasing temperature, first due to
their interaction with the relaxations mentioned above, and
then to the occurrence of a phase transition. In the vicinity
of the phase transition, they provide evidence for the exis-
tence of “heterophase fluctuations” of the system between
its high-temperature cubic and low-temperature tetragonal
phase [14].

In KLT, lithium ions are off-centered from the normal
crystallographic site by almost 1 Å, thus forming electric
dipoles that can reorient among six equivalent cubic directions
[15,16]. At lower temperature, interactions between off-center
lithium ions result in their displacements becoming corre-
lated, leading to a local transition and the appearance of
tetragonal polar nanoregions [4]. PNRs exhibit two distinct
types of local dynamics. First, they can relax between several
crystallographically equivalent orientations via collective 90◦
and 180◦ jumps of the Li dipoles [17,18]. Secondly, being
polar and therefore lacking inversion symmetry, they are
also piezoelectric and can exert a stress on the surrounding
lattice to drive a crystal bar into electromechanical resonance.
Similar resonances have also been observed in KTN and PZN.
Given the common characteristics of relaxor ferroelectrics
(off-center mixed ions and a high polarizability), the results
reported below should be indicative of the behavior of other
RFs as well, and to provide a more complete picture of
the inter-relationship between mesoscopic and macroscopic
dynamics in these compounds. With regards to applications,
these results may also contribute to a better understanding of
the piezoelectric properties of nanocomposites.

In the next Experimental and Results section, we present
the dielectric constant and electromechanical results on the
two crystals studied. In the Analysis section, we fit the reso-
nance spectra with two different theoretical models, provid-
ing complementary perspectives on the underlying physics.
Finally, in the Physical Model and Discussion section, we
describe schematically the underlying physics of the two
models and highlight their special meaning.

II. EXPERIMENTAL DETAILS AND RESULTS

Two KLT single crystals were grown from solution by the
slow cooling method at Oak Ridge National Laboratory. The
nominal lithium concentrations of these two crystals were x =
3.5% and 10%. However, using a formula proposed earlier
to calculate concentrations of lithium based on the transition
temperature [19], we estimate that actual concentrations in our
crystals were respectively 2.6% and 4.7%, both therefore ex-
ceeding the critical concentration of �2%. The crystals were
cut along (100) faces in the form of bars with approximate
dimensions 5×2×1 mm. Metallic electrodes were evaporated
on the two largest parallel surfaces of the samples. In order to
rule out possible electrode-sample interface effects, different
coating/interface conditions, such as sputtered gold, vapor
deposited aluminum and painted silver, were tested to ensure
that the same dielectric results were obtained. Different grades
of surface polish were also tested, from rough to optical grade,
and the same dielectric results were obtained in all cases.

FIG. 1. Imaginary part of the dielectric constant of KLT3.5%
measured at different frequencies. The hatched area marks the tran-
sition region III (see text below). (Inset) Birefringence of a different
KLT3.4% crystal [21].

Ultimately, aluminum electrodes were used. The samples
were held stress-free inside an open cycle cryostat. For the
dielectric relaxation measurements, a small ac electric field
(0.5 V/cm) was applied across the short dimension (thick-
ness) of the crystal sample. The parallel plate capacitance and
the loss tangent were measured with a HP4194A network an-
alyzer, sweeping the frequency from 100 Hz to 10 MHz. The
measured capacitance was converted to a dielectric constant
through the relation ε′ = Cd/Aε0, where C is the capacitance,
d the sample thickness, A the area of the electrode and ε0 the
free space permittivity. The samples were cooled with liquid
helium from room temperature to ∼20 K. The cooling rate
was controlled to be on average 0.2 K/min but the temperature
was equilibrated at each measuring temperature, allowing
sufficient time for the sample to reach thermal equilibrium
before each measurement, as monitored by the stability of the
capacitance value at that temperature.

Figure 1 shows the imaginary part of the dielectric permit-
tivity (absorption) of the K1−xLixTaO3 (KLT) crystal with an
actual concentration of 2.6% Li (nominal 3.5%), measured
upon cooling as a function of temperature and at several
frequencies. Two relaxation peaks are visible. The small
peak at ∼95 K corresponds to the 180◦ reorientation or π

relaxation and the large peak at lower temperature to the
90◦ reorientation or π/2 relaxation of the PNRs under the
effect of the external ac field [16]. The weaker strength of
the π relaxation in KLT3.5% is due to the fact that the
corresponding distortion (or elastic quadrupole) is in principle
the same for both crystallographic orientations (zero or π ) of
the PNRs but for the piezoelectric effect. The transition to the
tetragonal phase is evidenced by several experimental obser-
vations, probably the most direct of which are the sharp drop
in the dielectric constant at Tc ≈ 47 K and a doubling of the
phonon peaks detected in a neutron inelastic scattering study
of KLT3.5% [20]. The inset in Fig. 1 also shows birefringence
results obtained under continuous cooling and warming (no
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FIG. 2. Imaginary part of the dielectric constant of KLT10%
measured at different frequencies. The high-temperature peak corre-
sponds to the π relaxation and the low-temperature peak (interrupted
by the transition), to the π/2 relaxation. The hatched area marks the
transition region III (see text below).

equilibration) in a KLT crystal with nominal 3.4% lithium
[21]. Instead of a single curve, these reveal a narrow thermal
hysteresis loop (see also Ref. [22]), which signals the exis-
tence of a two-phase region around the transition. Fluctuations
between these two phases can therefore be expected in the
vicinity of the transition (see later discussion on heterophase
fluctuations) [23]. In this regard, it is useful to note in Fig. 1
that the width of the thermal hysteresis in the KLT3.4%
crystal is approximately the same as that of the hatched
area on the dielectric curve of the KLT3.5% crystal, which
represents the transition region (Tc ± 4 K) to be examined
below.

For comparison, the corresponding dielectric results ob-
tained on the KLT crystal with an actual x = 4.2% Li con-
centration (nominal 10%) are presented in Fig. 2. For this
higher concentration, the π relaxation peak is much more
prominent than in KLT3.5, possibly due to the larger size of
the polar nanoregions and stronger strain fields. At the lower
frequencies, the π/2 relaxation peak is not fully developed,
being cut off by the intervening transition. Stated otherwise,
the structural transition in KLT10% intervenes at a higher
temperature than that at which the π/2 relaxation peak would
normally be observed if the transition did not occur.

Relaxor ferroelectrics (RFs) also exhibit characteristic res-
onances, precisely in the same temperature region in which
the PNRs are present and undergoing the π/2 and π relax-
ations mentioned above (see also Ref. [12]). For the measure-
ments of these dielectric resonances, the same configuration
was used as for the dielectric relaxation measurements save
for a modest dc electric field (∼370 V/cm) that was applied
to partially align the PNRs and induce a small but nonzero
macroscopic polarization. The frequency of the small measur-
ing ac electric field was then swept through the resonance, the
frequency of which can be calculated from the dimension of
the crystal bar L, the density ρ = 7.02 g/cm3, and the elastic

constant C11 ≈ 4×1012 dynes/cm2, as ν = 1
2L

√
C11
ρ

[12]. The

results are presented in Fig. 3 in the form of the dielectric loss
tangent, D ≡ ε′′/ε′.

The frequencies of both resonances are found to fall within
the same range as for length mode (longitudinal) oscillations,
associated with the longitudinal strain (ε11) of the bar, i.e.,
perpendicular to the direction of the applied electric field (E3),
associated with the C11 elastic modulus and corresponding
to the d311 piezoelectric coefficient. The long dimension of
the crystal bar samples was sufficiently different from the
two others so as to exclude the possibility that the two
resonances observed might correspond to two distinct modes
of vibration (width thickness). The resonance frequencies on
the KLT3.5 sample measured here were also found to be very
close to those measured in KTN samples with similar sample
dimensions. It is important to note that, while the PNRs are
piezoelectric (lack of local inversion symmetry), the rest of
the crystal is not (being cubic and with inversion symmetry).
Hence it is the PNRs that are excited into piezoelectric oscil-
lations, thereafter driving the macroscopic oscillations of the
bar. Unexpectedly, not one but a pair of resonances is observed
starting approximately at 120 K, the temperature at which the
(quasistatic or static) PNRs are known to appear as determined
from independent measurements mentioned above (Raman
[2] and diffuse neutron scattering [4]). The more intense of the
two resonances is broad and symmetric and the less intense
is narrow and presents a characteristic asymmetry. It is im-
portant to note that these resonances are only observed upon
appearance of the PNRs and have been observed reproducibly
in several crystals. They cannot therefore be due to sample
size or electrode effects.

The evolution of the resonances can be divided in three
stages: (i) region I, the π relaxation range, (ii) region II, the
π/2 relaxation range, and (iii) region III, the transition range.
In region I, both resonances appear and grow in amplitude,
with the narrow resonance becoming equal in strength to
the broad resonance. One major difference however is that
the frequency of the narrow resonance remains constant with
changing temperature, while that of the broad resonance
continuously decreases in frequency, (anti)-crosses over the
narrow one at the temperature in the temperature region of
the π relaxation maximum. At their point of closest approach
(T ≈ 96 K in Fig. 3), both resonance peaks are almost equal
in strength and width, suggesting an energy exchange between
them. In region II, the narrow resonance progressively disap-
pears while the frequency of the broad resonance continues
to decrease with decreasing temperature, becoming strongly
damped as it approaches the π/2 relaxation. It is important
to note that, compared to the resonance peaks, the relaxation
peak is much broader and shifts rapidly with temperature.
Consequently, the relaxation peak appears only as a sloped
background within the limited frequency range used to display
the resonances and its slope changes sign between 70 and
58 K as it crosses over the π/2 relaxation. In region III,
approaching the transition and with the π/2 relaxation now
much too slow and therefore no longer active in dampening
the resonances, both reappear and the broad resonance again
increases in frequency and decreases in width. At 44 K, the
two resonances are again close to each other in frequency,
resulting this time in a spectrum that superficially looks like
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FIG. 3. Evolution with temperature of the dielectric loss, D ≡ ε ′′/ε ′, of KLT3.5. As discussed in the text, the spectra shown can be grouped
into four regions: 104–88 K in region I of the π relaxation, 70 K–58 K in region II of the π/2 relaxation, 50–44 K in region III of the transition,
and 42 K below Tc. The broad resonance couples strongly to the narrow one as they are closest to each other just below 96 K. Below 70 K, the
broad resonance peak rides over the π/2 relaxation peak and is strongly damped at 58 K. At 50 K, both the broad and narrow resonance peaks
have reappeared. And below the phase transition region, only the broad resonance is active (see explanation in text).

a broad peak split in the middle. Throughout, the broad reso-
nance shifts in frequency but the narrow resonance remains
at approximately the same frequency. Finally, at 42 K and
below for KLT3.5, only the broad resonance is observed. The
corresponding real parts of the dielectric permittivity are also
shown in Fig. 4 at two temperatures within the transition range
and below. Strikingly, below the transition a single resonance
is observed.

Very similar resonance spectra are observed in the KLT10
(4.7% Li) crystal and are presented in Fig. 5. The evolution
of the resonances is very similar to that in the KLT3.5 (2.6%
Li) crystal, with the same three temperature ranges: (i) the
π relaxation range, (ii) the π/2 relaxation range, and (iii)
the transition range. At this higher concentration, both the π

relaxation and π/2 relaxation peaks are now clearly visible
in Fig. 2 in addition to the resonances. However, for the
reason mentioned in the previous paragraph, in Fig. 5 they
are only seen as a sloped background in the narrow frequency
intervals of the resonance spectra. As the π relaxation crosses
the resonances, between 112 and 105 K, the slope of the

background changes from negative to positive. As explained
below, the fact that the broad resonance (anti)-crosses the
narrow one, and itself becomes equally narrow in this tem-
perature range which also coincides with the π relaxation

FIG. 4. Real part of the dielectric constant of KLT3.5 in the
transition region (hatched area in Fig. 1) and just below.
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FIG. 5. Evolution with temperature of the dielectric loss, D ≡ ε ′′/ε ′, of KLT10. As discussed in the text, the spectra shown can be grouped
into four regions: 135–105 K in region I of the π relaxation, 85–72 K in region II of the π/2 relaxation, 68 K in region III of the transition,
and 50 K below Tc. The broad resonance is seen to strongly couple to the narrow one as they are nearest to each other at 105 K. This
temperature also corresponds approximately to the temperature at which the slope of the background goes from being negative to being
positive vs frequency, i.e., where the π relaxation crosses the resonances, as seen from Fig. 2. Note the anticrossing of the two resonances at
105 K and the antiresonance between 72 and 55 K (latter not shown), indicating the coherent character of the interaction [27].

maximum, suggests that the two resonances are coupled via
the relaxation. A sloped background is also observed in region
II of the π/2 relaxation, but the slope is not seen changing
sign because the relaxation peak is cut short by the inter-
vening transition, now at higher temperature for this higher
concentration crystal. The additional small peaks that are seen
at the lower temperatures in the spectra of Figs. 3 and 5 are not
understood at this time. They are much smaller in amplitude
and do not affect the interpretation of the main features
(broad and narrow peaks) reported here. Figure 6 presents
the resonance spectra (real and imaginary) from KLT10. They
are very similar in shape to those of KLT3.5, but broader
in frequency, which reflects a lower Q factor at this higher
concentration.

The frequency evolution of the broad and narrow reso-
nances is summarized in Figs. 7 and 8 for the KLT3.5 and
KLT10 crystals respectively, together with the temperature
evolution of the real part of the dielectric constant measured
without an external dc field at 50 kHz for KLT3.5 and at
40 and 498 kHz for KLT10. On the high-temperature side,

the broad and narrow resonances (anti)-crosses in the region
of the π relaxation. In the intermediate-temperature range,
the frequency of the broad resonance decreases rapidly and
reaches a minimum at approximately the same temperature as

FIG. 6. Real and imaginary parts of the dielectric constant of
KLT10 in the transition region (hatched area in Fig. 2).
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FIG. 7. Frequencies of the narrow and broad resonances in
KLT3.5 as a function of temperature. Note the anticrossing of the
broad and narrow resonance at T ≈ 95 K, which is also the temper-
ature region of the π relaxation maximum of the imaginary part of
the dielectric constant measured at high frequency in Fig. 1. The π/2
relaxation maximum is also shown here to fall in the temperature
range of the minimum frequency of the broad resonance.

that of the maximum of the π/2 relaxation (when measured
at the same frequency as the resonance). It then increases
rapidly upon approaching the phase transition, where the two
resonances again meet. In the next Analysis section, we show
that the resonance spectra presented above can be described
equally well by two complementary models, each reflecting a
different aspect of the resonance-relaxation dynamics. In the
subsequent Discussion section, we then describe the physical
mechanisms that explain the evolution with temperature of the
dielectric resonance spectra.

FIG. 8. Frequencies of the narrow and broad resonances in
KLT10 as a function of temperature. Note the anticrossing of the
broad and narrow resonance a T ≈ 110 K, in the temperature region
of the π relaxation maximum of the imaginary part of the dielectric
constant in Fig. 2. The π/2 relaxation maximum is also shown here
to fall in the temperature range of the minimum frequency of the
broad resonance.

III. ANALYSIS

In the present section, we show that the observed spectra
in all three separate temperature regions identified above can
be accurately described by either one of two models, the first
one purely classical and phenomenological and the second
one semi-classical, providing complementary perspectives on
the results. Both models are shown to describe equally well
the spectral shapes in regions I and III in terms of two
resonances coupled by a relaxation, the π relaxation in region
I and the heterophase relaxation in region III (see below).
In the intermediate region II, the π/2 relaxation dominates
and dampens the resonances. In what follows, we first es-
tablish the physical basis for the two models, then present
each successively, and finally compare their predictions with
the experimental results. Before proceeding, however, several
qualitative remarks can already be made to inform the in-
terpretation of the results presented above: (1) the fact that
both resonances appear when the PNRs are known to form
[2,4] (breaking local inversion symmetry and locally inducing
piezoelectricity) at approximately 120 K for KLT3.5 and 140
K for KLT10, indicates that the PNRs must be the primary
driver of these resonances, while the surrounding lattice re-
mains cubic; (2) the observation of a pair of resonances rather
than a single one in the frequency range for longitudinal
oscillations of the bar samples suggests the existence of two
distinct vibrational configurations or modes, corresponding
respectively to in-phase and out-of-phase oscillations of the
PNRs with the surrounding lattice or bar (see below); and
(3) the asymmetric shape of the narrow resonance peak does
seem to suggest the existence of a coupling between these two
modes of oscillation. Next, we present each model succes-
sively and show that both describe the experimental spectra
very well across the three temperature regions, quantitatively
confirming the qualitative remarks made above.

A. Purely classical model

The observed resonance spectra can be explained phe-
nomenologically in terms of the dynamics of the well-known
classical system of two damped oscillators coupled to each
other, as described by Eq. (1) [24,25]. In these equations, X1,2

designates the displacements, γ1,2 the damping coefficients
and ω1,2 the radial frequencies of the two oscillators, ν12 the
coupling coefficient between them, a1 the drive amplitude
of the first oscillator and ω the driving frequency. In the
present KLT case, one of the oscillators is the PNRs and
the other the surrounding lattice. The even normal mode of
this coupled system corresponds to the PNRs and surrounding
lattice oscillating in phase (both simultaneously in extension
or contraction) and the odd mode, to them oscillating out-of-
phase relative to each other:

Ẍ1 + γ1Ẋ1 + ω2
1X1 − ν2

12X2 = a1 exp(−iωt ),

Ẍ2 + γ2Ẋ2 + ω2
2X2 − ν2

12X1 = 0. (1)

These two normal modes can be coupled by flipping the
displacement (deformation) vector of one of the two oscil-
lators and correspondingly the relative phase of its motion
by 180◦. Because the surrounding lattice or macroscopic
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bar sample is set into oscillations by the piezoelectric polar
nanodomains, it should be clear that, initially, the ac field can
only excite the even (primary) normal mode with displace-
ment X1. The latter can then couple to the odd (secondary)
mode with displacement X2 through the polarization and
strain reversal of the PNRs, and vice versa (see schematic
representation of the modes in the next section). At the higher
temperature (region I), the two modes are coupled through the
π relaxation or 180◦ polarization reversal of the piezoelec-
tric PNRs, accompanied by a change of sign of their strain
state from expansion to contraction. In the transition range
(region III), they are coupled by the relaxation of the sur-
rounding lattice between its higher temperature cubic and its
lower temperature tetragonal phase (heterophase relaxation),
also accompanied by a change of sign of the strain from
expansion to contraction and vice versa.

The vibrational spectrum of such a well-known system
does in fact reproduce very well the resonance spectra of
KLT3.5 observed in both regions I and III. The experimental
spectra and fits to the solution of Eq. (1) at 98 and 44 K
are shown in Fig. 9 and the fitting parameters are listed in
Table I. The quality of the fits to the experimental curves is
excellent and the variation of the fitted values resulting from
varying the starting values of the parameters is found to be less
than 1%. As seen in Table I, the major differences between
the two temperatures are (i) the much higher damping of the
driven primary oscillator (broader resonance peak) but slightly
lower damping of the secondary oscillator at 44 K than at
98 K and (ii) the smaller frequency separation and therefore
greater overlap of the two resonances at 44 K ≈ 350 Hz than
≈800 Hz at 98 K. Despite the coupling coefficient ν12 being
almost the same at the two temperatures, the fact that the two
resonance peaks overlap significantly at the lower temperature
translates into a higher transition probability between the

FIG. 9. Dielectric loss of KLT3.5 at 98 and 44 K (same data as
in Fig. 3) fitted with the two coupled oscillators model described by
Eq. (1).

TABLE I. Fit parameters from the purely classical model of two
coupled damped harmonic oscillators.

Fit parameters 98 K 44 K

a1 1.44×106 8.71×107

ω1/2π (kHz) 672.69 671.75
ω2/2π (kHz) 671.90 672.09
γ1 340.9 1587.2
γ2 32.1 17.8
ν12 4.2×108 4.4×108

background 0.0095 0.0023

two modes. As explained below, such a higher transition
probability at 44 K can itself be explained by the proximity of
the structural transition and the correspondingly much softer
and deformable lattice.

B. Semiclassical model

As an alternative to the purely classical model above, the
observed spectrum of KLT3.5 can be described equally well
by a semiclassical model, which contributes a complementary
physical perspective on the results. As described by Fano, an
asymmetric line shape such as that of the narrow peak results
from the coherent mixing of a vibrational excitation from a
ground state to a discrete excited state with a parallel excita-
tion to a continuum, itself coupled to the same excited state
[26]. The two coherently coupled parallel excitation paths
lead to an interference. The Fano resonance picture can be
extended to the case of two separate excitations between dis-
crete energy levels which are coupled to each other through a
continuum. In the context of KLT, the two separate excitations
are the even and odd modes and the continuum corresponds to
the relaxation coupling the two. Such a situation was modeled
several years ago by Zawadowski and Ruvalds (ZR) [27] for
the case of two discrete and long-wavelength optical phonons
coupled to each other through pairs of acoustic phonons with
wave vectors +k and −k and thus forming a continuum. The
two-acoustic-phonon Green’s function was taken to be purely
imaginary, which is equivalent to a relaxation in the present
KLT case. Given the one-to-one correspondence between the
vibrational configuration described by ZR and the present
one, we can directly use the spectral function given in Eq.
(12) of their paper to describe the dielectric loss spectra
in KLT:

ρ(ω) = ε′′

ε′ = [Aga/2�a + Bgb/2�b]2

1 + [
g2

a

/
2�a + g2

b

/
2�b

]2 (2)

in which A and B are the oscillator strengths of the two normal
modes, gα their respective coupling coefficients to the relax-
ation and �α ≡ (1 − ω

ωα
) the relative frequency separation

from their resonance frequencies. By contrast with the purely
classical model described earlier by Eq. (1), in the semiclas-
sical ZR model both discrete vibrational normal modes are
assumed to be driven by the same external field instead of
just the even (primary) mode. The fitted spectra of KLT3.5
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are presented in Fig. 10 at 98 K, near the high-temperature
anticrossing point in region I, and close to the transition in
region III at 44 K. Here again, two seemingly very different
spectra are fitted very well by the same model and we estimate
the uncertainty on the fitted parameters to be less than 1%. The
values of the fitting parameters are given in Table II. Unlike
the fitting results obtained with the purely classical model, the
respective frequencies of the two resonances are found here to
be practically the same at 98 and 44 K.

In the present semiclassical model, the main difference
between the spectra in regions I and III is the larger values
of both coupling coefficients or widths of the resonances, ga

and gb, which are twice as large at 44 K as they are at 98 K,
while remaining in the same ratio, 1.3–1.4. This doubling
results in the extensive overlap of the two resonances. This
extensive overlap, and the resulting much larger transition
probability between the two modes, appears to be the essential
common feature of the two models. In the purely classical
model, this overlap stems from a significant increase in the
damping/width of the even (primary) mode and the reduced
frequency separation between the two modes while, in the
semiclassical model, it originates from an equal increase
in the coupling coefficients of both modes to the acoustic
continuum or relaxation. It is also important to note that the
coupling between the two oscillators is taken into account
differently in the two models. In the purely classical model,
the primary (driven) mode is coupled to the secondary (slave)
mode through an implicit continuum (the π or the heterophase
relaxation), with the coupling expressed in the damping coef-
ficient. In the semiclassical model by contrast, both oscillators
are coupled explicitly to a common continuum, each with its
own coupling coefficient.

FIG. 10. Dielectric loss of KLT3.5 at 98 and 44 K (same data as
in Fig. 3), fitted with the ZR model of Eq. (2).

TABLE II. Fit parameters from the semiclassical model of two
discrete transitions coupled via a continuum.

Fit parameters 98 K 44 K

A 0.00169 0.0117
B 0.00106 0.0077
ωa/2π (kHz) 672.51 671.57
ωb/2π (kHz) 671.72 672.30
ga 0.01855 0.04033
gb 0.01451 0.028
background 0.0078 0.0231

IV. PHYSICAL DESCRIPTION AND DISCUSSION

In the present section, we describe a possible physical
model that can explain the experimental results reported and
analyzed in the two preceding section. Although there could
be others, the validity of the proposed model rests on its ability
to explain these results across the three temperature regions,
I, II, and III. In each figure below, the PNRs are assumed
to be aligned, at least partially, by the dc field while the ac
field excites both resonances and relaxation. In region I, at
high temperature, the even (in-phase) and odd (out-of-phase)
normal modes of the PNRs-surrounding lattice system are
coupled via the π relaxation of the lithium ions (red dots in
Fig. 11), which switches the polarization of the PNRs (green
arrows) by 180◦ and, correspondingly, their piezoelectric de-
formation from expansion or dilation to contraction. It should
however be obvious that, initially, the ac field can only excite
the coupled system in its even or in-phase mode since it
is the piezoelectric deformation of the PNRs that initially
drives the surrounding lattice and bar into oscillations. Only
once the system has been set oscillating in the in-phase

FIG. 11. Schematic representation of the modes of oscillations
of the KLT crystal bar with PNRs partially aligned vertically in the
dc electric field; the polarization of individual PNRs is represented
by vertical green arrows and their deformation by horizontal open red
arrows and dashed blue lines. The red dot inside each PND represents
the lithium ions whose cooperative π relaxation is driven by the same
ac electric field that drives the resonances. The position of the red
dots can be seen to be related to the nature of the deformation of
the PND (expansion or contraction). The deformation of the crystal
bar is indicated by horizontal blue arrows. (a) and (b) correspond,
respectively, to the polarized cubic (PC ) and strained cubic (SC )
states, and (c) and (d) to the polarized tetragonal (PT ) and strained
tetragonal (ST ) states.
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mode of vibration can it transition back and forth between
the two modes through a reversal of the PND polarization
and associated piezoelectric deformation triggered by the π

relaxation.
One important aspect of the observed dynamics in region I

is that it is coherent, since the same ac field that excites
the piezoelectric resonance of the PNRs also triggers their
π relaxation and accompanying 180◦ polarization reversal.
Therefore, the π relaxation itself is not just thermally ac-
tivated but assisted by the piezoelectric deformation of the
PNRs, which reduces the potential barrier for the reorientation
of the lithium ions and accompanying reversal of the PNRs
polarization. And this process is clearly more effective for the
in-phase or even mode since the deformations of the PNRs
and surrounding lattice are then both of the same sign [see
evolution from (b) to (c) or (d) in Fig. 11]. A stronger coupling
to the relaxation means a higher damping of the in-phase
mode and a broader resonance peak, as indeed observed.

Region II is the temperature region within which the
π/2 relaxation reaches its maximum amplitude, ωτπ/2 = 1
(see Fig. 1). Unlike in region I, the 90◦ reorientation of
the PNRs in region II does not couple the two oscillation
modes to each other, and the out-of-phase mode (narrow
asymmetric resonance) therefore vanishes (in KLT3.5) or is
strongly suppressed (in KLT10). Additionally, and as seen
in Figs. 3, 7, 5, and 8, the π/2 relaxation crosses over the
frequency of the broad resonance, strongly damping it and
depressing its frequency (as for a damped harmonic oscillator
with increasing damping). The effect of the π/2 relaxation
is illustrated in Fig. 12. This mechanism explains both the
increased damping and associated rapid frequency decrease
of the broad resonance and the total disappearance of the
narrow resonance in KLT3.5 (and partial in KLT10), which
only exists through its coupling to the broad resonance via
the π relaxation. At lower temperatures, the π/2 relaxation
itself slows down and in turn becomes inactive. As a result,
the broad resonance is no longer damped, it recovers an
even larger amplitude than before and its frequency increases
again. The model used here to describe the evolution of the
resonances in region II is therefore fully consistent with the
model used in region I, itself based on the interaction of
the resonance with a relaxation, π in regions I and π/2 in
region II.

In-phase mode-

(a)

eac field

eac field

(b)

FIG. 12. The two half-cycles of PNRs undergoing a π/2 relax-
ation, which broadens the broad resonance and suppresses the narrow
resonance; the features in this figure are the same as in the previous
figure.

In region III, although the π and π/2 relaxations are no
longer active, the two resonances nevertheless reappear, now
strongly overlapping. The fact that the same two models are
able to reproduce the experimental spectra in regions I and
III indicates that a similar generic explanation must apply in
both, in terms of two discrete oscillators (even and odd normal
modes) coupled through a continuum (a relaxation). However,
as already hinted above, the physical nature of the relaxation
coupling the two modes is not the same in both regions. In
region I, the even and odd modes correspond to the in-phase
and out-of-phase oscillations of the PNRs-surrounding lattice
system, coupled to each other through the π relaxation of the
PNRs. However, region III lies well below the peak tempera-
ture of both relaxations, which are therefore inactive. The two
modes must now be coupled through a different kind of relax-
ation, the nature of which is revealed by two observations: (i)
region III straddles the structural transition, as shown by the
hatched area in Fig. 1 and (ii) the thermal hysteresis seen in
the inset of the same figure shows that region III is a region
in which the high- and low-temperature phases are metastable
on some time scale, but can relax from one to the other. These
two observations suggest that the relaxation that is active in
region III is the relaxation of the surrounding lattice between
its high-temperature (cubic) and low-temperature (tetragonal)
phases, otherwise called “heterophase fluctuations.”

Heterophase fluctuations are indeed observed near weakly
first-order transitions, where they are due to the presence
of precursors of a low-temperature phase within a high-
temperature equilibrium phase and vice versa [23,28,29].
Such fluctuations are quite naturally expected to occur in
relaxors since the PNRs do indeed represent stable precur-
sors of the low-temperature phase, already present above the
transition. In the present case however, they are activated or
assisted by the PNRs. Because the PNRs are intrinsically
piezoelectric, modulation of their polarization by the ac field
leads to a modulated stress on the surrounding lattice which,
being already near a structural instability in the vicinity of the
transition, can easily be made to transform (stress-induced)
from the cubic to the tetragonal phase and vice versa. This
stress-assisted transformation is necessarily accompanied by
a phase change in the oscillations of the surrounding lattice
relative to those of the PNRs, or coupling of the even/in-phase
mode and the odd/out-of-phase mode as in region I. Here
however, instead of the 180◦ PNR polarization relaxation
being induced by the stress from the surrounding lattice or
bar, it is now the surrounding lattice relaxation between the
cubic and tetragonal phases that is induced by the piezo-
electric deformation of the PNRs. Moreover, because the
heterophase relaxation between the two phases is induced by
the piezoelectric oscillations of the PNRs, it is also coherent
with the latter. Figure 13 represents an attempt at illustrating
the likely sequence for the resonance-relaxation process in
which the ac field again modulates the polarization of the
PNRs whose deformation drives the heterophase relaxation
of the surrounding lattice and ultimately the macroscopic
bar oscillations. Here, in region III, we should note that the
sequence of the oscillations is (a)-(d)-(c)-(b)-(a) because the
switch from the even to the odd mode is due to the cubic-
tetragonal transformation of the surrounding lattice whereas,
in region I, it was due to the reversal of polarization and
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heterophase relaxa�onIn-phase mode

(a)

(b)

eac field

eac field

Out-of-phase mode

(c)

(d)

eac field

eac field
C

X XX XX

cubic cubic

cubic cubic

tetra

tetratetra

tetra

XX C C X

CX XC CC CC CC

FIG. 13. Normal modes of oscillations of the PNRs and sur-
rounding lattice in the transition region. The color codes are the same
as in the region I representation. At the lower temperature of the
transition however, both the π and π/2 relaxations are inactive and
the PNR polarization remains aligned along the dc field, upward in
the picture. C and X designate contraction and expansion, respec-
tively, and the crystal symmetry of the surrounding lattice is also
indicated. Following the ac field, the system evolves along the path
(a)-(d)-(c)-(b)-(a) or, according to the labels of Fig. 11 from PC to ST ,
PT , SC , and back to PC . Starting from the in-phase mode half-cycle
(a), the surrounding lattice between PNRs is cubic but its contraction
under the opposite deformations of the PNRs and the bar induces a
transition to the tetragonal phase in (d). Similarly, its expansion in
(c) induces a transition back to the cubic phase in (b).

accompanying piezoelectric strain of the PNRs. Hence the two
coupled-mode picture that explains the dynamics in region I
is also valid in region III, although the physical nature of
the relaxation coupling the two modes is different in the two
regions.

Starting with half-cycle (a) and the cubic lattice, the combi-
nation of the dc and ac fields enhances the polarization of the
PNRs which contract (C), resulting in the contraction of the
surrounding lattice and bar sample. The latter contraction then
induces the cubic-to-tetragonal transformation of the lattice in
half-cycle (d), which maintains the bar in contraction while
the ac field has reversed and the PNRs are now expanding. The
PNRs-surrounding lattice system now oscillates in the odd
mode. In half-cycle (c), with the reversal of the ac field but still
in the out-of-phase mode, the PNRs now contract while the
surrounding lattice expands, inducing the reverse tetragonal-
to-cubic transformation of the lattice and coupling the odd
mode back to the even mode in half-cycle (b). Here we note
that the two half-cycles (a) and (b) of the even mode in the
cubic lattice are identical to those in Fig. 11, but that the two
half-cycles (c) and (d) of the odd mode are inverted compared
to the previous ones due to the cubic-tetragonal heterophase
relaxation. The proposed model is again consistent with the
lower frequency and much higher damping coefficient of the
even (in-phase) mode.

We now address the question of the coherence between the
in-phase and out-of-phase oscillations (even and odd modes)
of the system, a coherence that is essential to the efficient
transfer of energy between them. This coherence is evidenced
by the Fano-like asymmetry of the narrow resonance peak at
higher temperature in region I and in the transition region III
by the sharp wedge between the two resonances in Fig. 3

at 48 and 44 K or in Fig. 5 at 72 and 68 K (see circled
anti-resonances, as in Refs. [26,27]). These characteristic
line shapes are signatures of coherent effects and indicate
that the relaxation coupling the in-phase and out-of-phase
oscillations is not simply thermally activated but assisted by
these oscillations, both being excited coherently by the same
ac electric field. In region I, the two modes are coupled to
each other via the 180◦ or π relaxation of the PNRs, which
is facilitated/assisted by the deformation of the surrounding
lattice and bar. In region III, where the π relaxation is no
longer active, the relaxation that couples the two oscillation
modes is now the structural transformation of the surrounding
lattice from cubic to tetragonal, which is stress-induced by the
piezoelectric PNRs. This explains the 4.6 fold increase in the
damping of the driven primary oscillator in the purely clas-
sical model and the doubling of both coupling coefficients in
the semiclassical model. Both are therefore coherent effects.

The necessary condition for the observation of coupled
resonances such as those reported above in KLT is the pres-
ence of piezoelectric polar nanodomains with orientational
degrees of freedom. These are in fact the characteristic fea-
tures of relaxor ferroelectrics. It is therefore not surprising
that similar resonances have also been observed in other re-
laxors, KTa1−xNbxO3 (KTN), PbMg1/3Nb2/3O3 (PMN) [12],
and PbZn1/2Nb1/2O3 (PZN). The present report on the PNR-
related resonances observed in KLT, and their analysis and
interpretation, should therefore contribute broadly to a bet-
ter understanding of the multiscale dynamics in relaxor
ferroelectrics, explaining how their macroscopic properties
emerge from their structural and dynamical properties at the
nanolevel.

Besides their contribution to a better understanding of
relaxor ferroelectrics, the above results may also be of a
general interest in condensed matter physics. Relaxor fer-
roelectrics are but one example of what can be called co-
herent nanocomposites. Such systems are characterized by a
nanometer scale local order that is structurally coherent with
the surrounding lattice, as in relaxor ferroelectrics. Similar
types of phenomena as those described in the present paper are
likely to be observed for instance in nanocomposite magnetic
systems [30]. The resonance phenomena reported here may
also be of interest at a more general physical level. They
are indeed conceptually similar to phenomena observed in
very different fields of physics, and in particular electromag-
netically induced transparency (EIT) in atomic physics. The
dielectric susceptibility spectra reported above in the relaxor
KLT near the phase transition are indeed almost identical to
the optical susceptibility spectra resulting from EIT in atomic
vapors and reproduced here in Fig. 14 for rubidium from
Ref. [31] (compare with the KLT spectra in Figs. 3 and 5).

The physical model used to describe the resonance phe-
nomenon in KLT can in fact also be described semiclassically
by analogy with the formalism of EIT for an atom with three
discrete states [a ground state (1) and two coupled excited
states (2,3)] exhibiting two closely spaced lifetime-broadened
resonances that decay to the same continuum [32] (see also
[33]). In KLT, the ground state corresponds to the polarized
state and the two excited states to the in-phase and out-of-
phase strained states of the PNR-surrounding lattice system.
The energy width of the two excited states is associated with
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FIG. 14. Imaginary (top) and real (bottom) parts of the optical
susceptibility of an atomic rubidium vapor [31]. ωp is the probe
(laser) frequency, ω31 and γ31 the resonant frequency and damping,
respectively, of the primary transition [in KLT, (1) would be the
polarized state and (3) the in-phase strained state of the PNRs-
surrounding lattice system with state (2) corresponding to the out-of-
phase strained state]. The dash curve corresponds to the susceptibility
of a usual two state system (1-3), which does not exhibit EIT.

the damping of the oscillators in the classical model and with
the coupling strength of the two oscillators to the continuum
in the semiclassical model, both contributing to the overlap
between the states and increased coherency between the two
resonances. The correspondence of the coherent dynamics of
KLT and other relaxors with EIT will be further explored in a
subsequent paper.

In conclusion, we have reported the observation and pro-
vided a comprehensive explanation of pairs of coupled res-
onances in the relaxor ferroelectric K1−xLixTaO3 (KLT).
Similar resonances are also observed in other relaxors such
as KTa1−xNbxO3 (KTN) but also PMN and PZN. These
resonances provide a window into the multiscale dynamics of
complex oxides, from the nanometer to the macrometer scale.
They are shown to be associated with two distinct oscillating
configurations or normal modes of the nanocomposite PNRs-
surrounding lattice system, coherently coupled to each other
via a relaxation. The observed spectra exhibit characteristic
Fano lineshapes that evolve rapidly through three temperature
ranges due to the complex interactions between resonances
and relaxations. Despite this rapid evolution, the resonance
spectra are explained and fitted equally well over the entire
temperature range using either one of two models, a purely
classical or a semiclassical model, each highlighting a par-
ticular aspect of the dynamics of the system. Similar spectra
are observed in other relaxors, pointing to the generality of
these results. It may also be worth mentioning that other
types of measurements have also revealed Fano line shapes in
disordered relaxor ferroelectrics, even though these have been
observed in the THz frequency range and may therefore have
different physical origins [34,35]. Finally, and of possibly
broader significance, the spectral line shapes reported and
analyzed in the present study are shown to be identical to those
observed in the optical spectra of atomic vapors as a result
of electromagnetically-induced transparency (EIT) and the
conceptual similarity between the two phenomena is noted.
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