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Ab initio calculations of carbon and boron nitride allotropes and their structural phase transitions
using periodic coupled cluster theory
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We present an ab initio study of boron nitride as well as carbon allotropes. Their relative thermodynamic sta-
bilities and structural phase transitions from low- to high-density phases are investigated. Pressure-temperature
phase diagrams are calculated and compared to experimental findings. The calculations are performed using
quantum chemical wave-function-based as well as density functional theories. Our findings reveal that predicted
energy differences often depend significantly on the choice of the employed method. Comparison between
calculated and experimental results allows for benchmarking the accuracy of various levels of theory. The
produced results show that quantum chemical wave-function-based theories allow for achieving systematically
improvable estimates. We find that on the level of coupled cluster theories the low- and high-density phases
of boron nitride become thermodynamically degenerate at 0 K. This is in agreement with recent experimental
findings, indicating that cubic boron nitride is not the thermodynamically stable allotrope at ambient conditions.
Furthermore, we employ the calculated results to assess transition probabilities from graphitic low-density to
diamondlike high-density phases in an approximate manner. We conclude that the stacking order of the parent
graphitic material is crucial for the possible formation of metastable wurtzite boron nitride and hexagonal carbon
diamond also known as lonsdaleite.
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I. INTRODUCTION

The pressure-temperature phase diagrams of carbon and
boron nitride reflect a delicate balance between weak and
strong interatomic interactions. Although covalent bonds are
the main source of their large cohesive energies, the ac-
cumulation of weak van der Waals interactions contributes
significantly to the relative stability of their low- and high-
density phases. Furthermore, vibrational effects play a crucial
role in the temperature dependence of the equilibrium phase
boundary. Altogether, this makes the prediction of phase dia-
grams and structural phase transition pathways a challenging
task for modern electronic structure theories. In this work, we
seek to investigate boron nitride as well as carbon allotropes
using various approximate electronic structure theories and
compare theoretical with experimental findings. The aim is to
benchmark their accuracy and help interpreting experimental
results better if possible. To this end, we employ a range of
approximate density functional theories (DFT) and quantum
chemical wave-function-based methods.

During the last decades, approximate exchange and corre-
lation (XC) density functionals have made significant progress
in becoming more accurate and predictive for the descrip-
tion of interatomic interactions while keeping a high level
of computational efficiency that allows for studying systems
containing several hundreds of atoms routinely. The so-called
Jacob’s ladder describes a ladder of approximations for the
XC energy using increasingly complex as well as in general
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more accurate methods [1]. These rungs include functionals
based on the local density approximation (LDA) [2,3], the
generalized gradient approximation (GGA) [4], the meta-
generalized gradient approximation (mGGA) [5], and hybrid
functionals [6–9]. The latter include a fraction of (screened)
exact exchange energies and have a computational cost that
is comparable to Hartree-Fock theory. However, all the func-
tionals mentioned above suffer from shortcomings that are
despite many efforts difficult to remedy [10]. In the context of
the present work, a significant shortcoming is the inaccurate
description of long-range van der Waals interactions. In order
to describe van der Waals and related interatomic interactions
more accurately in the framework of approximate XC density
functionals, a wide variety of dispersion corrections has been
developed. As a consequence of the large number of avail-
able density functionals and corrections, there are numerous
ground state energy functionals that could be considered in the
present work, of which we have only chosen a small selection.

As a complement to the treatment of exchange and corre-
lation on the level approximate density functionals, the com-
putationally significantly more expensive quantum chemical
wave-function-based theories are becoming more popular for
the study of periodic systems [11–29]. This can partly be
attributed to the increase in their computational efficiency,
due to methodological developments, and to their ability to
predict exchange and correlation energies in a systematically
improvable manner. Quantum chemical methods constitute
a hierarchy, which starting from the one-particle Hartree-
Fock (HF) approximation, allows for a systematic treatment
of the quantum many-body effects. The simplest form of
such correlated methods is the second-order Møller-Plesset
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(MP2) perturbation theory [30]. The next level of theory that
achieves a significantly improved trade-off between accu-
racy and computational cost is based on the coupled cluster
ansatz for the many-electron wave function [31]. Coupled
cluster singles and doubles theory provides a compelling
framework of infinite-order approximations in the form of
an exponential of cluster operators [32]. The coupled-cluster
singles and doubles (CCSD) method where the triples are
treated in a perturbative way, termed as CCSD(T), achieves
chemical accuracy in the description of many molecular
properties and is sometimes referred to as the gold standard
method [33].

In this work, we seek to investigate the accuracy of the
electronic structure theories mentioned above for carbon and
boron nitride allotropes. To this end, we compare predicted
ground-state energy differences as well as calculated phase
diagrams to experimental findings. Experimentally, several
phases have been synthesized as single crystals [34–38] or
as powder [39,40]. Single crystals are usually synthesized
in a closed chamber over a longer time period crystallizing
from a solution. For synthesizing metastable structures, the
samples are put under static pressure and heated electrically
or by laser [41–45]. Another way of transforming samples
into metastable phases is shock wave synthesis [46,47]. With
these materials, thermodynamic characterization can be per-
formed [48–53] by determining relative enthalpy, entropy,
and heat capacity. These properties can be used to compare
with the calculated energy differences and construct phase
diagrams. Furthermore, the phase diagrams can also be ob-
tained by observing phase transitions directly [54–61]. In the
present work, we also investigate pressure-driven concerted
phase transition pathways. In particular, we study activation
barrier heights for the transformation from low-density to
high-density systems considering small unit cells that contain
a few atoms at most. These models are far from realistic
conditions under which phase transitions occur in experiment.
Temperature-driven kinetic effects and catalysts are needed in
practice to observe phase transitions close to the equilibrium
phase boundary [62–65]. Hot liquid metals can be used to
dissolve graphite and diamond will precipitate at the cooler
region. However, the aim of the current work is to explore the
accuracy of various electronic structure theories for transition
states occurring in these phase transitions and provide a
qualitative description of the various possible phase transition
mechanisms. We believe that the small supercells considered
are sufficient to describe these effects qualitatively correct.

This paper is organized as follows. Section II provides a
description of the considered stable and metastable structures
followed by an overview of the considered phase transition
pathways. The employed structures can also be found in
Ref. [66]. Section IV summarizes the calculated ground-state
energy differences of the (meta-)stable structures and their
activation energies at 0 K for the investigated phase transi-
tion pathways. By calculating the Gibbs energies, pressure-
temperature phase diagrams are predicted and compared to
experiment. Furthermore, we assess the temperature and pres-
sure dependence of the activation energies. Based on these
results, the experimentally observed phase transitions will be
reviewed. Furthermore, the existence of the wurtzite structure
of carbon and boron nitride will be discussed. In the course of

(a) AA’ (b) AB

(c) ABC (d) AD

(e) c-BN (f) w-BN

FIG. 1. View along c axis with different stacking order. A′ is
rotated by 60◦ compared to A. Translating A by the red arrows
creates the B, C, and D layers. Blue arrow translates the D to a B
layer. (a) shows the lattice vectors of the eight-atoms orthorhombic
unit cell employed in Table I. The crystal structures for carbon can
easily be derived from boron nitride by substituting all B and N atoms
by C atoms.

the discussion of these results, we will assess the accuracy of
the various approximate electronic structure theories.

II. CRYSTAL STRUCTURES AND PHASE TRANSITION
PATHWAYS FOR CARBON AND BORON NITRIDE

A. (Meta-)stable structures

In this work, we consider the most abundant crystal struc-
tures of carbon and boron nitride: the graphitic and diamond-
like phases. Figure 1 illustrates the corresponding structures.
The low-density phases are graphitic with all atoms being sp2

bonded and arranged in the planar honeycomb lattice with
different stackings: AA, AB, and ABC as depicted in Fig. 1.
The G-AB and G-ABC have been observed experimentally for
carbon and can be transformed into each other by translation
of the layers. For boron nitride, the stable low-density phase
is (hexagonal) h-BN. h-BN exhibits an AA′ stacking order,
indicating the other atom types for lattice sites on top of each
other in the direction of stacking as shown in Fig. 1(a). We
note that the AA (G-AA) stacking is unstable for carbon.
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The high-density phases of carbon and boron nitride are
diamondlike. All atoms in the considered diamondlike phases
can be assigned to chair or boat conformations of six-
membered rings and two different stacking orders. For carbon
and boron nitride the most stable high-pressure phases are
cubic diamond (c-D) and zinc blende (c-BN), respectively.
c-D and c-BN consist of six-membered rings of sp3 bonded
atoms in the chair conformation with an ABC stacking order
as shown in Fig. 1(e). There is a second high-density phase
that is referred to as wurtzite for boron nitride and hexagonal
diamond (h-D) for carbon with AA stacking order, exhibiting
chair and boat conformations as illustrated in Fig. 1(f). The
mirror image of A is A, with the mirror parallel to the layer.
The chair and boat conformations are parallel and perpen-
dicular to the stacking, respectively. h-D is also known as
lonsdaleite and serves as marker for shock impact events.

The crystal structures for C can easily be derived from BN,
by substituting all B and N atoms with C atoms. This makes
(rhombohedral) r-BN [Fig. 1(c)], c-BN [Fig. 1(e)], and w-BN
[Fig. 1(f)] equivalent to G-ABC, c-D, and h-D, respectively.

Experimentally, single crystals have been reported for h-
BN [34,35], c-BN [36], G-AB [37], and for c-D [38]. There
exist no single crystals for w-BN, but the XRD measurements
show no sign of c-BN in the samples and a small amount
(<2%) of the starting material h-BN [39]. The synthesis of
r-BN results in fibrous microcrystals, but show no mixture
with h-BN [40]. The h-D phase has been investigated in
a number of theoretical as well as experimental studies in
the past [54,67–69]. However, recent experimental studies
indicate that the previously believed samples of h-D are in
fact c-D crystals that contain a large number of twins and
stacking faults, creating x-ray diffraction patterns similar to
the hypothetical h-D [70].

B. Structural phase transition pathways

We now discuss the investigated structural phase transition
pathways. For the present study, we keep the computational
cost of the coupled cluster theory calculations low by re-
stricting ourselves to transition state geometries that contain
at most four atoms in the unit cell. Similar transition states
have already been investigated in Refs. [67–69,71–74]. To
drive a transition from the low-density graphitic phases to the
high-density diamondlike phases the application of pressure
is needed. Under pressure, the c axis of the graphitic phase
experiences a much larger compression than the other axes
and will therefore be referred to as the compression axis.
At high pressures the planar structure of graphite splits. Fig-
ure 2 depicts two basic mechanisms by which the splitting
of the planar six-membered rings present in the honeycomb
lattice occurs. The mechanisms are referred to as buckling
or puckering. Buckling and puckering creates the boat and
chair conformation of six-membered rings, respectively. We
employ the following naming convention for transition states.
The first letter refers to the puckering (p) or buckling (b)
mechanism and the second letter refers to the cubic (c) or
wurtzite (w) structure corresponding to the final state of the
considered transition.

pc-TS is the transition state in the G-ABC to c-D transition
via the puckering mechanism. We note that the cubic phase

(a) (b)

(c) (d)

FIG. 2. Transformation from planar rings via
puckering−−−−→ (b) to

form the chair conformation or via (c)
buckling−−−−→ (d) to form the boat

conformation.

contains only six-membered rings in the chair conformation.
Therefore it is reasonable to consider this one transition state
[Fig. 3(b)] only.

The wurtzite structure contains six-membered rings in the
chair and boat conformation. In the pw-TS the chair confor-
mation is perpendicular and the boat conformation is parallel
to the compression axis [Fig. 4(b)], whereas in the bw-TS the
orientations are switched [Fig. 5(b)]. By comparing the result-
ing structures from the corresponding transition pathways one
can see that the c axis of w-BN is rotated by 90◦ [Figs. 4(c)
and 5(c)].

We also consider the transition from w-BN to c-BN, which
occurs in a stepwise layer-to-layer rearrangement through 4H
intermediate structures and will be referred to as l-pc-TS in
this work [43]. During this transformation the boat confor-
mation along the c axis of the w-BN structure transforms
into the chair conformation, while the six-membered rings
perpendicular to the c axis break apart (e.g., atoms 3+8
bottom layers) and rebond differently (e.g., atom 4+7 bottom

layers) [Fig. 6(a)
6b−→ 6(c) with plane (001)w ‖ (111)c and

direction [1010]w ‖ [112]c].
In total, we consider four different transition states includ-

ing pc-TS, pw-TS, bw-TS, and l-pc-TS for carbon and boron
nitride allotropes. In the case of carbon, all lattice sites are
occupied by the same atomic species.

(a) r-BN (b) pc-TS (c) c-BN

FIG. 3. (a)
(b)pc-TS−−−−→ (c) (BN: [72]; C: [67]). Red arrows indicate

the atomic displacements and support together with the atom num-
bers the assignment during the phase transition. Dotted lines show
new bonds to be formed and red lines represent strong interaction
during the transition state.
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(a) h-BN (b) pw-TS (c) w-BN

FIG. 4. (a)
(b)pw-TS−−−−→ (c) (BN: [72]; C: [68]). Red arrows indicate

the atomic displacements and support together with the atom num-
bers the assignment during the phase transition. Dotted lines show
new bonds to be formed and red lines represent strong interaction
during the transition state.

The geometries of the transition states have been deter-
mined as follows. For the four atomic unit cells of the pc-TS
and pw-TS three degrees of freedom were considered: the
intra- and interlayer bond distances and the angle in between.
The first-order saddle point on the corresponding potential
energy surface defines the transition state geometry as well
as its energy. Due to the small number of considered degrees
of freedom, a sweeping algorithm was sufficient to determine
the pc-TS and pw-TS. Determining the bw-TS and l-pc-TS is
slightly more complicated due to the larger number of degrees
of freedom. For bw-TS, the z coordinate of the interlayer
bond distance R, the horizontal lattice vectors in Fig. 5(b), the
out-of-plane displacement of the atoms and the in-plane co-
ordinates of all atoms were considered as degrees of freedom.
The bw-TS was obtained applying a sweeping algorithm to all
degrees of freedom except for the in-plane coordinates of all
atoms and the lattice vectors that were optimized by relaxing
the structures accordingly for a given unit cell. The l-pc-TS
was obtained in a similar manner. A sweeping algorithm was
employed to calculate energies for all coordinates and cell
parameters interpolated linearly between the initial (w-BN)
and the final (c-BN) structure. For each interpolated structure,
all cell parameters and atomic positions were allowed to relax
while keeping only the vertical-coordinate of the atoms in
Fig. 6(a) frozen.

(a) BN-AB (b) bw-TS (c) w-BN

FIG. 5. (b)
(f)bw-TS−−−−→ (j) (BN: [44] for r-BN → w-BN; C: [69]).

Red arrows indicate the atomic displacements and support together
with the atom numbers the assignment during the phase transition.
Dotted lines show new bonds to be formed and red lines represent
strong interaction during the transition state.

(a) w-BN (b) l-pc-TS (c) c-BN

FIG. 6. Red arrows indicate the atomic displacements and sup-
port together with the atom numbers the assignment during the phase
transition. Dotted lines show new bonds to be formed and red lines
represent strong interaction during the transition state.

C. Crystal lattice parameters

Table I summarizes the lattice parameters of the employed
geometries for the low- and high-density phases and tran-
sition states for carbon and boron nitride allotropes. These
parameters have been optimized using DFT in the LDA. This
is necessary because forces are not yet implemented in the
employed coupled cluster theory code. We believe that the
LDA provides sufficiently accurate structures compared to
experiment that allow for an unbiased comparison between
the employed electronic structure theories and to experiment.
We note that the LDA lattice parameters deviate by about 1%
only from experiment even for the lattice vector |�c| parallel
to the compression axis as summarized in Table II. The only
exception is h-BN, where the deviation is slightly larger. To
allow for a direct comparison between the lattice parameters
of the (meta-)stable structures as well as transition states
we consider an eight-atoms unit cell with monoclinic lattice
vectors �a, �b, and �c such that |�a| �= |�b| �= |�c|, β = γ = 90◦ and
α can also be 90◦. The �a�b plane can be seen in Fig. 1(d). The
length of �a corresponds to the width of a honeycomb ring and
the vector points out of plane in Figs. 3–6. �b points from left
to right and �c from bottom to top and spans across two layers.
The ratio |�a| : |�b| is 1 :

√
3 for all structures except for bw-TS

and l-pc-TS. In these cases the ratio is larger by up to 3%.
We point out that in l-pc-TS R is much larger compared to the
other transition states. However, R refers to all bonds between
the layers in the other transition states, whereas this not the
case for l-pc-TS. In l-pc-TS additional interlayer bonds exist
with a bond length of 1.654 Å [1+6 or 2+5 in Fig. 6(b)].
For carbon (BN), the average of these two bond lengths is
2.063 Å (2.050 Å), respectively and comparable to R of the
other transitions states. The employed structures can be found
in Ref. [66].

III. METHODS

A. Density functional and Hartree-Fock theory

All electronic structure calculations have been performed
using the projector augmented wave (PAW) method [79]
as implemented in the Vienna ab initio simulation pack-
age (VASP) [80,81]. We present results obtained using some
of the most widely-used ab initio methods to approxi-
mate the exchange and correlation energy in the frame-
work of DFT. These methods include the LDA functional as
parametrized by Perdew-Zunger [2,3], the GGA functional
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TABLE I. Structural parameters of the eight-atoms monoclinic type unit cell (β = γ = 90◦) including interlayer distance d , the forming
bond distance R marked red in the transition state of Figs. 3–6 and its corresponding bond length in the other structures, atomic volume V and
density ρ. See text for further details.

Carbon G-ABC G-AB G-AA pc-TS pw-TS bw-TS l-pc-TS c-D h-D

|�a| (Å) 2.446 2.446 2.445 2.465 2.461 2.471 2.456 2.498 2.484
|�b| (Å) 4.236 4.236 4.236 4.270 4.263 4.164 4.229 4.326 4.302
|�c| (Å) 6.735 6.590 7.171 4.899 4.780 4.835 4.705 4.326 4.137
α 77.9 90.0 90.0 73.1 90.0 90.0 80.3 70.5 90.0
d (Å) 3.292 3.295 3.585 2.344 2.390 2.418 2.319 2.039 2.069
R (Å) 3.292 3.295 3.585 2.058 2.108 2.100 2.472 1.530 1.549

V [Å
3

atom−1] 8.528 8.535 9.285 6.167 6.268 6.220 6.021 5.510 5.526
ρ [g cm−3] 2.417 2.415 2.220 3.343 3.289 3.315 3.424 3.742 3.731

Boron nitride r-BN BN-AB h-BN pc-TS pw-TS bw-TS l-pc-TS c-BN w-BN
|�a| (Å) 2.488 2.488 2.488 2.506 2.506 2.511 2.513 2.532 2.524
|�b| (Å) 4.309 4.309 4.310 4.341 4.341 4.219 4.282 4.386 4.371
|�c| (Å) 7.069 6.458 6.491 4.932 4.742 4.900 4.707 4.386 4.176
α 77.5 90 90 72.9 90 90 79.5 70.5 90
d (Å) 3.229 3.229 3.246 2.357 2.371 2.450 2.315 2.068 2.088
R (Å) 3.229 3.229 3.246 2.088 2.102 2.128 2.447 1.551 1.564

V (Å
3
) 9.246 8.653 8.700 6.411 6.448 6.489 6.227 5.742 5.759

ρ (g cm−3) 2.230 2.382 2.370 3.216 3.197 3.177 3.311 3.590 3.580

as parametrized by Perdew-Burke-Ernzerhof (PBE) [4], the
dispersion corrected PBE functional using the many-body
dispersion energy method (PBE+MBD) [82,83], the meta-
GGA as parametrized for the SCAN functional [5], and
the hybrid density functionals PBE0 [6], Becke-3-parameter-
Lee-Yang-Parr (B3LYP) [7], and Heyd-Scuseria-Ernzerhof
(HSE06) [8,9]. We note that we have chosen only a small
selection of functionals that could be considered.

The B 2s22p1, N 2s22p3, and C 2s22p2 states have been
treated as valence states in all calculations. The geometries
have been relaxed until the forces on all atoms are smaller
than 10−5 eV Å

−1
. The total energies have been converged

using the self-consistent field approach to within 10−8 eV.
For all DFT and HF calculations we employed a 16 atom
supercell and a 4 × 4 × 4 Monkhorst-Pack k-point mesh.
The corresponding supercell structures are summarized in
the supplementary informations. The kinetic energy cutoff
for the plane wave basis set was set to 1000 eV. We note
that smaller kinetic energy cutoffs would have sufficed but
these calculations do not constitute a computational bottle
neck compared to the more expensive coupled cluster theory
calculations.

The phonon calculations have been performed using the
PHONOPY code [84], creating the displacements within a 2 ×
2 × 2 supercell of the 16 atom cell. The forces are calculated
using VASP and the LDA. These calculations employed a
kinetic energy cutoff of 800 eV and a 2 × 2 × 2 k mesh.

B. Quantum chemical wave-function theories

Results obtained using post-Hartree–Fock methods have
been converged with respect to several computational param-
eters including energy cutoffs defining the plane wave basis
sets, the number of virtual orbitals and the k mesh. We have
employed kinetic energy cutoffs of 500 eV for definining the
orbital plane wave basis set and 300 eV for definining an
auxiliary basis set that is used in the calculation of electron
repulsion integrals required in post-HF methods. For the twist
averaging technique we have employed a 4 × 4 × 4 k mesh.
Furthermore 14 unoccupied orbitals have been used per atom.
These parameters ensure a convergence of the energy differ-
ence between graphite and diamond to within a few meV per
atom. The same parameters have been employed in Ref. [85].
For the virtual orbital space we employ MP2 natural orbitals
that are obtained using a procedure outlined in Ref. [14].
Our estimates of the remaining basis set incompleteness error
indicate that the energy difference between carbon diamond
and graphite should be converged to within approximately
4 meV atom−1 as shown in Fig. 2 of Ref. [85]. A similar level
of accuracy is expected for the other energy differences.

1. Finite size errors

We stress that the convergence of ground state energies
obtained using post-HF methods such as MP2 theory with
respect to the employed k mesh or supercell size is slower than

TABLE II. Relative difference to experimental values [39,75–78] of lattice vectors |�a| and |�c| for stable structures of carbon an BN. In the
case of w-BN, h-BN, h-D, and G-AB, we compare to a range of experimental values.

c-BN w-BN h-BN c-D h-D G-AB

|�a| (%) 0.94 1.03 to 1.04 0.47 to 0.63 0.97 1.04 to 0.96 0.58 to 0.62
|�c| (%) 0.63 to 1.21 2.53 to 2.55 −0.62 to 1.10 0.78 to 1.75

134108-5



THOMAS GRUBER AND ANDREAS GRÜNEIS PHYSICAL REVIEW B 98, 134108 (2018)

for their DFT counterparts. Wave-function-based methods
account for nonlocal electronic correlation effects explicitly
and therefore the observed interatomic interactions such as
van der Waals forces lead to a slower rate of convergence with
respect to the employed k mesh. Recently we have introduced
a finite size correction scheme that allows for accelerating
the rate of convergence for periodic systems. We refer to
results obtained using the finite size correction scheme by
employing the following naming convention. Corrected MP2
and CCSD results are referred to as MP2-TA-FS and CCSD-
TA-FS, respectively. TA and FS stand for twist averaging
and an interpolation method, respectively. For the perturbative
triples (T) correction on top of CCSD-TA-FS, we employ
the twist averaging technique only. As such CCSD(T)-TA
refers to CCSD-TA-FS plus the (T)-TA contribution. The
improved k-mesh and supercell size convergence of CCSD-
TA-FS was demonstrated and discussed in Ref. [85]. If not
stated otherwise, all MP2, CCSD and CCSD(T) results in this
work include the finite size corrections.

In the present work, we employ box plots to depict finite
size errors in Figs. 8–13. The box plots show the distribution
of the obtained results for a set of different k-meshes. We
stress that finite size errors must not be confused with stochas-
tic errors. However, small error bars indicate that results are
not affected significantly by the size of the employed k mesh
and can therefore be considered converged with respect to
the k-mesh density. The employed box plots mark the largest
and lowest value, the second and third quartile as well as the
mean value. The bars in Figs. 8–13 mark the value with the
largest k-point mesh. Some results for certain k-meshes differ
significantly from the other k meshes and were marked as
outlier with a “+.” We find that very anisotropic Brillouin
zone sampling using k meshes with one k point along one
direction only yields results that are considered outliers.

For the results depicted in Figs. 8 and 11, we employ
two-atomic unit cells and the following k meshes: 2 × 2 × 2,
2 × 2 × 4, 3 × 3 × 2, and 3 × 3 × 3. For the calculations of
the barrier heights shown in Figs. 9, 10, 12, and 13, we have
employed four and eight-atoms unit cells. The following k

meshes were employed to sample the Brillouin zone of the
four atomic unit cells G-ABC/h-BN, pc-TS, pw-TS (bw-TS
and l-pc-TS in parentheses): 2 × 2 × 2 (1 × 2 × 4), 3 × 3 × 1
(1 × 3 × 3) and 3 × 3 × 2 (2 × 3 × 3). We note that two tran-
sition states (bw-TS and l-pc-TS) need four atoms per layer to
be described correctly and have only one layer. Therefore the
c axis is just half as long and the a axis is doubled compared
to the other cells. Consequently, the k mesh was adjusted
appropriately. For the eight-atoms unit cell, we have employed
a 1 × 3 × 2 k mesh.

C. Thermodynamic properties

For the calculation of pressure-temperature phase diagrams
we need to compute the Gibbs energies (G) of all phases. G

is defined as the sum of the ground state energy, as obtained
from DFT or a similar approach (Etot), all entropic contri-
butions and the pV term. The vibrational (Fvib) contribution
is the largest entropy related contribution. Using the finite
displacement method, a phonon density of state [D(ω)] has
been obtained for the frequency range (ω). This phonon

density of state contains the vibrational information for a
specific volume (V ) and can be used to calculate Fvib at any
temperature (T ) with the Planck (h) and Boltzmann constant
(kb) such that

G = Etot (V ) + Fvib(ω(V ), T ) + pV, (1)

Fvib = kBT

∫
ω

dωD(ω) ln

[
2 sinh

(
hω

4πkBT

)]
. (2)

To account for volume expansion during temperature in-
crease, the quasiharmonic approximation is used. For the
diamondlike phases, an isotropic expansion is assumed. The
Gibbs energy is calculated for at least five different volumes.
The universal equation of state (EOS) [86] has been used to
find the minimum of G with respect to the volume for a given
temperature and pressure. For all graphitelike phases and tran-
sition states, anisotropic expansion along the c axis has been
included. One parameter changes the unit cell isotropically
and a second one changes only the c axis. A fourth-order
polynomial fit is used to interpolate the EOS between the
sampling points. This increases the number of data points and
also the accuracy. Using the procedure described above we
have calculated the Gibbs energies employing the LDA for a
wide range of pressures and temperatures. However, due to
the computational cost involved it is currently not possible to
perform the same calculations on the level of CCSD(T). The
CCSD(T) Gibbs energies have therefore been approximated
using the following expression:

GCCSD(T)(V, T )≈GLDA(V, T )−ELDA
tot (V0) + E

CCSD(T)
tot (V0),

(3)

where V0 corresponds to the LDA (equilibrium) volume of the
(meta-)stable allotropes and the transition state geometries.
As such, the volume and temperature dependence of the
CCSD(T) Gibbs energy is approximated using LDA, which
achieves sufficiently accurate descriptions of the phonons and
bulk moduli for the purpose of the present study.

D. Phase transition probability

In this work, we will approximate the probability that a
phase transition occurs using the activation energy only and
disregard kinetic effects. The activation energy (�G) is the
difference between the Gibbs energies of the transition and
initial states. The Gibbs energy can be calculated as described
in the previous subsection. Close to the equilibrium phase
boundary the back and forward reaction has to be taken into
account and the probability f depends exponentially on �G,

f = exp

(−�Gforward

RT

)
− exp

(−�Gback

RT

)
(4)

with R as the gas constant. A comparable ansatz was pub-
lished in Refs. [87,88].

Figures 7(a) to 7(f) shows the calculated CCSD(T) phase
transition probabilities and activation energies for carbon and
a selection of transition states. We note that the behavior of
the transition probabilities at low temperatures mostly arises
from the explicit dependence of f on the temperature in the
exponent rather than the temperature dependence of �Gforward
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(a) GG−ABC − Gpc-TS

0 1000 2000 3000 4000
T [K]

0

5

10

15

20

25

P
[G

Pa
]

0.1

0.2

0.3

0.4

0.5

0.6

(b) GG−AB − Gbw-TS
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(c) GG−AB − Gl-pc-TS
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(e) Gh-D − Gl-pc-TS
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FIG. 7. Gibbs energy differences (activation energies) and probability (f ) of phase transition for carbon. Starting with graphite (a) produces
c-D with the rate shown in (d). (b) and (c) depict the activation energies to produce h-D and c-D, respectively. (e) refers to the transition from
h-D to c-D with the rate shown in (f). The solid lines in (d) and (f) refer to Eq. (4), whereas the dashed lines exclude the backward reaction
[second term in Eq. (4)].

or �Gback. Section IV D provides a more detailed discussion
of the obtained results.

IV. RESULTS AND DISCUSSION

We now turn to the discussion of the obtained DFT, HF,
and post-HF results. The following section is organized as
follows. We first summarize the energy differences obtained
using different methods for carbon (Sec. IV A) and boron
nitride (Sec. IV B) allotropes, respectively. Subsequently, a
comparison between results obtained for carbon and boron
nitride will be drawn in Sec. IV C. Section IV D employs
the calculated ground state energies on the level of CCSD(T)
theory and the DFT results to predict the pressure-temperature
phase diagrams of carbon and boron nitride. In Sec. IV E, we
review experimentally observed phase transitions and com-
pare to the produced theoretical results. Section IV F focuses
on the hexagonal form of diamond.

A. Carbon allotropes

Figure 8 depicts the electronic ground state energy dif-
ferences (�E = Ec-D − EG−ABC) between carbon diamond

(c-D) and graphite (G-ABC) obtained using a range of DFT
and quantum chemical wave-function-based theories. Experi-
mentally, G-AB is the most stable form of graphite. However,

LDA
LDA

PBE

PBE+MBD
SCAN

PBE0
B3LYP

HSE06 HF

MP2-TA-FS

CCSD-TA-FS

CCSD(T)-T
A

DMC (Shin)
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200
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Δ
E

[m
eV

/a
to

m
]

FIG. 8. Energy difference between c-D and G-ABC (�E =
Ec-D − EG−ABC) compared with DMC [89] and experimental values
with a freely chosen error of ±10 meV atom−1 (gray bar) [48]
excluding 9 meV atom−1 ZPVE. See text for further details.
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G-ABC and G-AB are degenerate to within a few meV
per atom. Positive and negative energy differences in Fig. 8
indicate the thermodynamic stability of graphite and diamond,
respectively. We stress that these calculations employ the
DFT-LDA relaxed structures and that further relaxation effects
of the respective functionals are not taken into account. Fur-
ther relaxation effects can be significant for functionals that
fail to describe the interlayer binding in graphite. However,
this section will focus on benchmarking the accuracy of the
employed functionals for a fixed geometry only. In passing we
note, however, that for comparison we have repeated the DFT
calculations summarized in Fig. 8 using geometries relaxed
on the level of the PBE+MBD functional. The corresponding
energy differences did not change by more than five percent
as a result of the small changes in the employed geometries.

The grey bar in Fig. 8 corresponds to the experimental
estimate of the ground state energy difference corrected for
zero-point vibrational energies (ZPVEs). The experimental
value of the difference in the Gibbs energy between graphite
and diamond is 25 V atom−1 and has been obtained from
the heat of combustion and extrapolation to 0 K using the
heat capacity [48]. Therefore the latter value includes ZPVEs
that stabilize graphite compared to diamond. To allow for a
direct comparison between experiment and theory, we have
removed 9 meV atom−1 ZPVE contributions (estimated using
DFT-LDA) from the experimental energy difference.

We now turn to the discussion of the energy differences
in Fig. 8 obtained using XC functionals in the framework of
DFT. LDA underestimates the energy difference, predicting
diamond to be more stable than graphite by 12 meV atom−1.

On the level of the GGA using the PBE functional we find
that the stability of graphite is significantly overestimated by
almost 100 meV atom−1 compared to experiment. This over-
estimation is partly reduced by including dispersion effects
on the level of MBD or by switching to the SCAN functional,
yielding energy differences of 52 meV atom−1 (PBE+MBD)
and 94 meV atom−1 (SCAN), respectively. Furthermore, hy-
brid functionals such as PBE0 or HSE06 constitute a further
improvement compared to SCAN, overestimating the stability
of graphite compared to experiment by a few 10 meV atom−1

only. However, we note that the B3LYP hybrid functional
does not follow this trend and gives the worst agreement
with experiment out of all theories considered in the present
study. Therefore a systematic improvability of the employed
XC functionals with respect to their rung and computational
cost can not be achieved in the present case. Furthermore, one
conclusion of the above findings is that non-van der Waals
corrected higher-level functionals (PBE, SCAN, PBE0 and
HSE06) predict the graphitic phase to be more stable than
diamond, whereas the inclusion of van der Waals corrections
(MBD) can reverse their ordering. Indeed we note in passing
that in contrast to HSE06, HSE06+MBD predicts c-D being
more stable than G-ABC by 30 meV atom−1.

We now turn to the discussion of the results obtained
using wave-function-based theories as depicted in Fig. 8.
HF predicts graphite to be more stable than diamond by
approximately 100 meV atom−1, albeit neglecting dispersion
effects that play an important role in the interlayer binding
of graphite. We note that due to the neglect of these contri-
butions, HF would predict the isolated graphene sheets to be

more stable than graphite. Second-order Møller-Plesset (MP2)
perturbation theory corresponds to the next level of wave-
function-based method and predicts diamond to be slightly
more stable than graphite by approximately 19 meV atom−1.
However, the finite size errors of the obtained MP2 results
are significant as indicated by the box plot, which is de-
scribed in Sec. III B 1. The k-point mesh convergence using
CCSD-TA-FS theory is much faster compared to MP2-TA-FS
theory as indicated by the smaller error bar. We find that
CCSD-TA-FS theory predicts diamond to be more stable
than graphite by 31 meV atom−1. Including the perturbative
triples contribution to CCSD-TA-FS theory yields an even
better agreement with experiment albeit predicting diamond
to be slightly more stable than graphite by 14 meV atom−1.
In passing we note that DMC has been used in Ref. [89]
to predict an energy difference in almost perfect agreement
with experiment, whereas the random-phase approximation
(RPA) predicts both allotropes to be exactly degenerate [90].
The good agreement between DMC and experiment is partly
fortuitous due to remaining errors from the stochastic sam-
pling, the fixed-node approximation and the employed pseu-
dopotentials. However, the agreement between the high-level
methods such as wave-function-based theories DMC and
CCSD(T), the RPA results and experiment to within a few
ten meV atom−1 is encouraging. The remaining finite size and
basis set errors in CCSD(T) theory calculations do not allow
for predicting which carbon allotrope is more stable, although
we can conclude that they are expected to be degenerate
to about 10–20 meV atom−1 including ZPVE. Our findings
indicate that quantum chemical wave-function-based theories
allow for a systematic improvability of the predicted energy
differences as one increases the level of theory ranging from
HF, MP2, CCSD, to CCSD(T).

Having demonstrated that CCSD(T) theory is expected to
yield accurate energy differences for the thermodynamically
most stable carbon allotropes we now seek to investigate the
pressure-driven transition pathways introduced in Sec. II B.
To this end we focus on the activation barrier height that is
defined as the difference in the electronic ground state energy
between graphite and the corresponding transition state EA =
ETS − EG−ABC. The considered transition states are referred
to as pc-TS, pw-TS, bw-TS, and l-pc-TS. The activation barri-
ers can not be compared to experimental observations directly
but serve as theoretical benchmark systems and qualitative
models for realistic phase transitions. Figure 9 depicts the
difference of calculated activation barrier heights between var-
ious methods and CCSD(T) (including finite size corrections);
for example, �ELDA

A = ELDA
A − E

CCSD(T)−TA
A . The depicted

results confirm well-known trends for the accuracy of DFT
methods, assuming that CCSD(T) theory can be considered
an accurate benchmarking reference for the activation barrier
height. LDA underestimates the activation barrier heights
for all investigated transition states by 50–100 meV atom−1,
showing that this level of theory suffers from larger errors in
the description of XC energies for transition states compared
to initial and final states (G-ABC and c-D). Including gradi-
ent corrections on the level of the PBE functional improves
the agreement with CCSD(T) theory noticeably, yielding
overestimated activation energies with errors smaller than
50 meV atom−1 for all four transition states. This is in contrast
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FIG. 9. Energy difference between G-ABC and transition state (TS) compared to CCSD(T)-TA referred as 0 meV atom−1. Outlier marked
with a “’+” and dotted line connects energies from k meshes with only one k point along one direction. See text for further details.

to PBE results for molecular activation barrier heights in the
gas phase that are in general underestimated [10]. However,
we believe that the overestimation of the PBE barriers for
the studied solids is caused by the neglect of interatomic
van der Waals forces, which play an important role for the
present systems. We stress that the inclusion of dispersion
effects to PBE on the level of PBE+MBD theory yields again
underestimated activation energies that agree with CCSD(T)
to within 50 meV atom−1. The SCAN functional yields barrier
heights that are almost identical to our PBE findings. Further-
more, the inclusion of nonlocal exchange in the PBE0 and
HSE06 hybrid functionals yields on average slightly larger
barrier heights. We note that adding the MBD effect (from
the difference between PBE and PBE+MBD calculations) to
these hybrid functionals would yield barrier heights in almost
perfect agreement with CCSD(T) theory. On the other hand,
we find that the B3LYP hybrid functional yields overestimated
barrier heights, exhibiting errors on a scale of more than
100 meV atom−1.

We now turn to the discussion of activation barrier heights
calculated using wave-function-based theories starting with
the HF method. Our findings are depicted in Fig. 9 and show
that HF yields strongly overestimated barrier heights with
errors on the scale of almost 300 meV atom−1 compared
to CCSD(T). This trend is known from molecular quantum
chemistry and can be explained by the fact that HF neglects
electronic correlation effects, which are in general larger in
the transition state compared to the initial and final state
of most chemical reactions. Accounting for electronic cor-
relation effects on the level of MP2 theory corrects for this
tendency although it yields underestimated barriers by about
100–200 meV atom−1 for all transition states. We note that
the box plots of the MP2 results in Fig. 9 also indicate that the
remaining finite size errors for these estimates are significant.
We attribute this to the observation that some transition states
exhibit a metallic character in DFT calculations (l-pc-TS and
bw-TS) and that MP2 theory suffers from severe shortcomings
in metals such as k-point mesh divergence [91]. CCSD results
for the barrier heights constitute a substantial improvement
over MP2 findings, exhibiting errors compared to CCSD(T)
that are smaller than 50 meV atom−1. Furthermore, we note
that the box plot for CCSD-TA-FS results is significantly

smaller, indicating that the remaining finite size errors are
below a few 10 meV atom−1. From these findings, we con-
clude that quantum chemical wave-function-based theories
including MP2 and CC theories have the potential of achiev-
ing results for activation barrier heights in solid-solid phase
transitions with systematically improvable accuracy.

Having discussed the accuracy of DFT and wave-function-
based methods for predicting the activation barrier heights,
we now seek to address the question: which transition states
are energetically the most favorable? This is an important
question because it affects through which transition state a
pressure-driven phase transition proceeds and which (meta-
)stable carbon allotrope will be the outcome. Figure 10 depicts
the energy differences of the activation barrier heights with
respect to the pc-TS for the respective electronic structure
theories. Unequivocally, all theories predict the pc-TS to be
the energetically most favorable transition state, implying that
the puckering mechanism is expected to play the most impor-
tant role in pressure-driven graphite to diamond transitions. In
passing we note that our LDA results are comparable to pre-
vious work [68,69] and that the energy difference between the
boat and chair conformation of graphane is 55 meV atom−1,
favoring the chair conformation [92]. As regards the ordering
of the remaining transition states (bw-TS, pw-TS, and l-pc-
TS), we find that the DFT methods shown in Fig. 10 predict
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FIG. 10. Energy difference between pc-TS and other transition
states. See text for further details.
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TABLE III. Energy differences in meV per atom for carbon structures as obtained by various levels of theory.

System LDA PBE PBE+MBD SCAN PBE0 B3LYP HSE06 HF MP2-TA-FS CCSD-TA-FS CCSD(T)-TA

c-D–G-ABC −12 121 52 94 45 206 49 110 −19 ± 29 −31 ± 5 −14
h-D-c-D 25 24 25 29 27 30 27 37 30 ± 14 35 ± 10 33
pc-TS–G-ABC 329 423 372 422 437 530 435 671 210 ± 46 426 ± 1 385
bw-TS–G-ABC 395 488 438 495 512 604 509 772 334 ± 49 529 ± 20 481
pw-TS–G-ABC 362 452 404 452 474 560 470 710 238 ± 61 469 ± 14 423
l-pc-TS–G-ABC 367 470 413 473 473 581 470 685 350 ± 41 469 ± 16 441

all very similar orderings. bw-TS is energetically the least
favorable transition state, whereas pw-TS and l-pc-TS agree
to within a few meV per atom, except for the PBE, SCAN,
and B3LYP functionals that predict the pw-TS to be slightly
more favorable in energy than the l-pc-TS. In the case of
results obtained using wave-function-based methods depicted
in Fig. 10, we find that the bw-TS corresponds to the largest
activation barrier height and that pw-TS and l-pc-TS agree to
within the remaining finite size errors. However, MP2 theory
deviates from this trend by predicting equally large activation
barrier heights for the bw-TS and l-pc-TS, making the pw-TS
the second most favorable transition state. However, we stress
that MP2 results are perhaps not meaningful due to the metal-
lic character of some transition states. From the above results,
we conclude that interatomic van der Waals forces play a
minor role in the ordering of the respective transition states.
Furthermore, the ordering is already correctly described on
the level of the LDA to the XC functional.

Table III summarizes all energy differences discussed
above for the (meta-)stable carbon allotropes and the transi-
tion states. Furthermore, the table also lists the energy differ-
ence between c-D and h-D that is predicted by all methods to
be about 30 meV atom−1.

B. Boron nitride allotropes

This section is organized similarly to Sec. IV A and sum-
marizes the boron nitride results. Figure 11 depicts the differ-
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FIG. 11. Energy difference (�E = Ec-BN − Er-BN) between c-
BN and r-BN with different methods compared to experimental
values with a freely chosen error of ±10 meV atom−1 (grey bar).
Experimental values refer to h-BN instead of r-BN extrapolated to
0 K: −82 meV atom−1 (Ref. [51]), −57 meV atom−1 (Ref. [52]),
4 meV atom−1 (Ref. [93]) excluding 4 meV atom−1 ZPVE.

ence in the electronic ground-state energies between r-BN and
c-BN as obtained using a range of DFT and wave-function-
based methods, whereas experimental estimates refer to the
difference between h-BN and c-BN. We stress that experi-
mentally h-BN is always found to be more stable than r-
BN. However, calculations at zero pressure and temperature
have shown that these two structures differ in energy by
less than 4 meV/atom [94,95]. r-BN has a two atomic unit
cell only, whereas h-BN contains at least four atoms in the
unit cell. Therefore calculations of r-BN are computationally
less demanding. We stress that all employed structures have
been optimized using DFT-LDA. In this section, we focus
on benchmarking the accuracy of the predicted energies for
a fixed geometry. In passing we note, however, that for
comparison we have repeated the DFT calculations summa-
rized in Fig. 11 using geometries relaxed on the level of the
PBE+MBD functional. The corresponding energy differences
did not change by more than five percent as a result of the
small changes in the employed geometries.

Positive and negative energy differences in Fig. 11 indicate
that the low- (h-BN/ r-BN) and high-density (c-BN) phase
is predicted to be more stable, respectively. Grey bars show
experimental findings. Solozhenko et al. predict c-BN to be
more stable than h-BN by 78 meV atom−1 at 0 K (including
ZPVE) [51]. This result was obtained from fluorine combus-
tion and extrapolation to 0 K using the heat capacity. Other
recent experiments obtain the equilibrium phase boundary
directly from catalytic transitions with x-ray diffraction anal-
ysis [61], finding that h-BN is more stable even at 0 K. To
allow for a comparison between experiment and theory we
have removed 4 meV atom−1 ZPVE from the experimental
estimates in Fig. 11 estimated using LDA.

We find that DFT-LDA calculations predict c-BN to
be more stable than r-BN with an energy difference of
−56 meV atom−1 in good agreement with results from
Ref. [96]. Including gradient corrections on the level of the
PBE functional reverses their order and yields an energy
difference of 64 meV atom−1. However, it is known that
van der Waals interactions have to be taken into account
for an accurate description of electronic correlation effects
especially in layered compounds. Inclusion of MBD on top
of the PBE functional allows for capturing such correlation
effects. Compared to PBE, PBE+MBD reverses the order
between both allotropes again, yielding an energy difference
of −13 meV atom−1. The SCAN functional goes beyond the
GGA and is expected to perform better than PBE [5]. Our
findings shown in Fig. 11 reveal that SCAN reduces the
energy difference between c-BN and r-BN compared to PBE
from 64 to 47 meV atom−1. The hybrid functionals PBE0 and
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FIG. 12. Energy difference between h-BN and transition state (TS) compared to CCSD(T)-TA referred as 0 meV atom−1. Outlier marked
with a “’+” and dotted line connects energies with the smallest k meshes. See text for further details.

HSE06 continue this trend and predict r-BN to be more stable
than c-BN with an even smaller energy difference of 30 and
31 meV atom−1, respectively. However, the B3LYP functional
significantly overestimates the stability of r-BN, predicting
a difference of 160 meV atom−1. The different results from
the various DFT methods make it difficult to provide a firm
conclusion on the true energy difference. However, we believe
that the results allow for a similar conclusion as for the case
of carbon allotropes: higher-level functionals (PBE, SCAN,
PBE0, and HSE06) predict the graphitic phase to be more
stable than the diamondlike phase but the inclusion of van der
Waals corrections can reverse their ordering.

We now turn to the discussion of results for the energy
difference between c-BN and r-BN obtained using wave-
function-based methods as depicted in Fig. 11. HF theory,
disregarding electronic correlation effects, substantially over-
estimates the stability of r-BN compared to c-BN. The HF
energy difference is the largest of all considered methods
(222 meV atom−1). The simplest treatment of electronic cor-
relation effects on the level of wave-function-based methods
is achieved using MP2 theory, predicting c-BN to be more
stable than r-BN by 58 meV atom−1. However, as indicated
by the large error bars, we find that the remaining finite
size errors on the level of MP2 theory are on the scale
of several 10 meV atom−1. CCSD-TA-FS predicts r-BN to
be more stable than c-BN by 14 meV atom−1 and is well
converged with respect to the employed k-mesh. The inclu-
sion of perturbative triples yields an energy difference of
2 meV atom−1 only. From these findings, we conclude that the
series of wave-function-based theories ranging from HF, MP2,
CCSD to CCSD(T) predicts an oscillating but convergent
energy difference between r-BN and c-BN that is close to
zero on the level of CCSD(T) theory. Due to the remaining
finite size errors that are estimated to be on the scale of
approximately 10 meV atom−1, we conclude that r-BN and
c-BN are degenerate to within 10 meV atom−1 on the level
of CCSD(T).

We now seek to investigate the pressure-driven transition
pathways introduced in Sec. II B for boron nitride. The discus-
sion and most results are analog to our findings for carbon. We
investigate again the activation barrier height that is defined as
the difference in the electronic ground state energy between h-

BN and the corresponding transition state EA = ETS − Eh-BN.
Figure 12 depicts the difference in activation barrier heights
between various methods and CCSD(T) (including finite size
corrections); for example, �ELDA

A = ELDA
A − E

CCSD(T)−TA
A .

LDA underestimates all activation barrier heights by
approximately 50 meV atom−1. Including the effect of
gradient corrections on the level of the PBE functional
improves the agreement with CCSD(T) theory slightly,
yielding overestimated activation energies with average errors
of roughly 25 meV atom−1 for all four transition states. This
is in contrast to PBE results for molecular activation barrier
heights in the gas phase that are in general underestimated.
However, we believe that the overestimation of the PBE
barriers for the studied solids is caused by the neglect of
interatomic van der Waals forces in the same manner as for
carbon. We stress that the inclusion of dispersion effects
to PBE on the level of PBE+MBD theory yields again
underestimated activation energies that agree with CCSD(T)
to within approximately 25 meV atom−1. Moving to the
next level of theory, we find that the SCAN functional
yields barrier height results that are slightly better than our
PBE findings. The PBE0 and HSE06 hybrid functionals
yield barrier heights similar to SCAN. However, the B3LYP
hybrid functional overestimates barrier heights substantially,
exhibiting errors on a scale of more than 100 meV atom−1.

We now turn to the discussion of activation barrier heights
calculated on the level of wave-function-based theories, start-
ing with the HF method. Our findings are depicted in Fig. 12
and show that HF yields significantly overestimated barrier
heights with errors ranging from 150 to 200 meV atom−1

compared to CCSD(T). Accounting for electronic correlation
effects on the level of MP2 theory corrects for this tendency
partly despite yielding significantly underestimated barriers
on the scale of 50 meV atom−1 and suffering from non-
negligible finite size errors as indicated by the error bars.
CCSD results for the barrier heights constitute a substantial
improvement over MP2 findings, overestimating the barriers
by about 25 meV atom−1. From these findings we conclude
again that quantum chemical wave-function-based theories in-
cluding MP2 and CC theories have the potential of achieving
results for activation barrier heights in solid-solid phase transi-
tions with systematically improvable accuracy. However, their
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TABLE IV. Energy differences in meV per atom for boron nitride structures as obtained by various levels of theory.

System LDA PBE PBE+MBD SCAN PBE0 B3LYP HSE06 HF MP2-TA-FS CCSD-TA-FS CCSD(T)-TA

c-BN-r-BN −56 64 −13 47 30 160 31 222 −58 ± 21 14 ± 11 2
w-BN-c-BN 18 17 18 20 19 20 19 23 23 ± 7 24 ± 4 22
pc-TS-h-BN 169 250 195 240 249 329 249 409 173 ± 17 243 ± 10 221
bw-TS-h-BN 214 292 240 286 294 372 294 454 233 ± 42 299 ± 30 281
pw-TS-h-BN 179 259 207 251 258 338 258 412 188 ± 18 256 ± 11 234
l-pc-TS-h-BN 202 293 230 288 286 381 287 461 213 ± 32 283 ± 19 259

finite size errors are a dominant source of error in our present
calculations.

Having discussed the accuracy of DFT and wave-function-
based methods for predicting the activation barrier heights, we
now seek to address the question which transition states are
energetically the most favorable for boron nitride allotropes.
As for carbon this is an important question because it affects
through which transition state a pressure-driven phase transi-
tion proceeds and which (meta-)stable boron nitride allotrope
will be the outcome. Figure 13 depicts the energy differences
of the activation barrier heights with respect to the pc-TS
for all employed electronic structure theories. Unequivocally,
all theories predict the pc-TS to be the energetically most
favorable transition state in the same manner as for carbon.
As regards the ordering of the remaining transition states
(bw-TS, pw-TS, and l-pc-TS), we find that all methods pre-
dict pw-TS to be the second most favorable transition state,
whereas bw-TS and l-pc-TS have the largest barrier heights.
An important conclusion from the above results is that all
levels of theory agree qualitatively and predict similar energy
differences between the barrier heights. However, we note in
passing that our MP2 and CCSD results exhibit very large
finite size errors for the bw-TS.

All the energies discussed in this section are summarized
in Table IV. Furthermore we note that all employed meth-
ods predict w-BN to be less stable than c-BN by about
20 meV atom−1.

C. Comparing the carbon and boron nitride systems

As discussed in the previous sections and as summarized in
Tables III and IV, the produced results for carbon and boron
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FIG. 13. Energy difference between pc-TS and other transition
states. See text for further details.

nitride systems are very similar. Overall, the employed elec-
tronic structure theories exhibit the same trends for the pre-
diction of energy differences between (meta-)stable allotropes
and barrier heights. However, one interesting exception is the
energy difference between the high- (c-BN/c-D) and low-
density (r-BN/G-ABC) phases. Comparing this difference
for DFT-based methods between boron nitride and carbon
systems reveals that DFT tends to stabilize the high-density
phases of boron nitride more than in the case of carbon.
The opposite trend can be observed for wave-function-based
methods with the exception of MP2 theory. This trend is
most evident when comparing LDA (BN: c-BN− r-BN=
−56 meV atom−1; C: c-D − G-ABC = −12 meV atom−1)
to HF (BN: c-BN− r-BN= 222 meV atom−1; C: c-D − G-
ABC= 110 meV atom−1). Improving upon the respective
rung of theory makes this trend less pronounced as can be seen
for HSE06 (BN: c-BN− r-BN= 31 meV atom−1; C: c-D −
G-ABC= 49 meV atom−1) and CCSD(T) (BN: c-BN− r-
BN= 2 meV atom−1; C: c-D − G-ABC= −14 meV atom−1).
This shows that the true energy differences between low- and
high-density phases of carbon and boron nitride systems are
perhaps on the scale of ten meV per atom, indicating that
their respective phase diagrams are very similar. Moreover,
we note that the barrier heights in carbon are approximately
180 meV atom−1 larger than for boron nitride, which can be
attributed to the stronger covalent bond in carbon allotropes.

D. Phase diagrams and transition probabilities

We now turn to the discussion of pressure-temperature
phase diagrams for carbon and boron nitride. The calculated
phase diagrams are obtained from the Gibbs energies (G) as
defined in Eq. (1). Furthermore, the Gibbs energy of the transi-
tion states GTS(T , P ) allows us to determine the approximate
phase transformation probabilities as defined by Eq. (4).

Figure 14 depicts the pressure-temperature phase diagrams
for carbon and boron nitride. The experimental equilibrium
phase boundaries are shown by dotted lines and separate the
low-density graphitic phases (h-BN and G-AB) at lower pres-
sures and higher temperatures from the high-density diamond-
like phases (c-BN and c-D) at higher pressures and lower
temperatures. In the case of carbon, the two experimental
phase boundaries deviate from each other only at temperatures
higher than 2000 K [87,93]. Furthermore, both experimental
results predict graphite being the stable carbon allotrope at
ambient conditions. This is in contrast to boron nitride where
the experimental equilibrium phase boundaries disagree by
several GPa at lower temperatures [51,61]. The experimental
findings by Solozhenko et al. [51] and Fukunaga et al. [61]
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FIG. 14. Pressure-temperature phase diagrams for carbon (a) and boron nitride (b). The calculated LDA and CCSD(T) equilibrium phase
boundaries are depicted by solid lines. The dotted lines correspond to the experimental equlibrium phase boundaries as obtained from the
Berman-Simon line [87] and Day et al. [93] for carbon and from Fukunaga et al. [61] and Solozhenko et al. [51] for boron nitride. The phase
tranistion probability contour lines for a fixed probability of f = 0.02 are shown by dashed lines.

even differ in their prediction of the thermodynamically most
stable allotrope at ambient conditions. Solozhenko et al. pre-
dict the zinc-blende phase, whereas Fukunaga et al. find the
h-BN phase being more stable.

Figure 14 also shows the calculated equilibrium phase
boundaries obtained using DFT on the level of the LDA. In
the case of carbon, the LDA results agree with both experi-
mental findings to within a few GPa at low temperatures. At
temperatures higher than 2000 K, the LDA boundary is closer
to the Berman-Simons line. However, we stress that LDA
results are less accurate for higher temperatures due to the
underestimation of the interlayer binding energy. In the case
of boron nitride, we find that the LDA phase boundary agrees
well with that of Solozhenko et al. [51], predicting that the
high-density phase (c-BN) is more stable than the low-density
(h-BN) phase at ambient conditions. However, this agreement
is most likely fortuitous due to the limited accuracy of the
LDA as discussed in Secs. IV A–IV C. Figure 14 also depicts
the equilibrium phase boundaries obtained using CCSD(T)
theory. We stress that the employed CCSD(T) Gibbs energies
are approximated using Eq.(3), corresponding to a rigid shift
of the LDA Gibbs energies. Compared to the LDA, the more
accurate CCSD(T) theory shifts the equilibrium phase bound-
ary of carbon only slightly (0.2 GPa), whereas it has a large
effect on the phase boundary of boron nitride. We find that
CCSD(T) theory predicts the h-BN phase being slightly more
stable than c-BN at ambient conditions in good agreement
with the boundary of Fukunaga et al. [61]. We atribute the
disagreement between the experimental and calculated phase
boundaries at higher temperatures to the underestimation of
the interlayer binding in h-BN on the level of the LDA and the
neglect of anharmonic vibrational energy contributions [96].
In passing we note that the equilibrium phase boundary of
carbon allotropes has also been investigated using HSE06,
GGA, and GGA+vdW functionals in Refs. [97,98].

Atomistic simulations of the pressure- and temperature-
driven phase transitions in the considered carbon and boron

nitride allotropes are computationally demanding even on the
level of DFT [99,100]. However, it is possible to gain in-
sight into the required pressure and temperature conditions of
phase transitions from a minimal model using the considered
(meta-)stable and transition states, their Gibbs energies and
an approximate expression for the transition probability given
by Eq. (4) [87]. We have performed calculations of these
probabilities using the approximate CCSD(T) Gibbs energies.
Figure 14 depicts the obtained contour lines for several re-
actions via different transition states with a probability of
0.02. The choice of the probability introduces ambiguity but
we will mostly discuss trends and relative changes of these
contour lines that are not affected significantly by this choice.
We first discuss the contour lines for the transitions from
low- to high-density phases as shown by the dashed lines that
approach the equilibrium phase boundary in the limit of higher
temperatures and turn to very large pressures in the limit of
low temperatures. From these dashed contour lines, we can
conclude that the ordering of the considered transition states
does not change in the investigated temperature and pressure
range. As such the transitions from the low- to high-density
phases are always expected to proceed via the pc-TS. Further-
more, the shape of these lines indicates that the activation of
this transition depends strongly on temperature and pressure.
At low temperatures, high pressure is needed to drive this
transition, whereas significantly lower pressure suffices at
higher temperatures. We have also considered the transitions
for the h-D to c-D and w-BN to c-BN phases. The corre-
sponding contours are depicted by the green almost vertical
dashed lines, indicating that the activation of the transitions is
mostly temperature dependent. We note that comparing the
calculated green contour curves between carbon and boron
nitride reveals that they are shifted with respect to each other
by about 800 K. This observation is in agreement with experi-
ment and reflects the fact that the barrier heights in carbon are
approximately 180 meV atom−1 larger than in boron nitride.
The shape of these contours are comparable with experimental
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findings [51,56,57]. In experiment the shape of these contour
lines can be estimated by probing phase transitions with and
without catalysts for a range of temperatures and pressures.
In the transition from the wurtzite to the cubic phase, bonds
have to be broken to correct for stacking faults and twins in
the crystal by rearranging all boat to chair conformations.
This process requires a minimum temperature to overcome
the bond energy and drive the transition. We note that the
vertical line in the experimental phase diagram of BN is at
1500 K and that of carbon at 2000 K [51,54]. The contour
lines reveal an important problem in the synthesis of cubic
diamondlike phases. When starting from a graphitelike phase
a diamondlike phase can be obtained by applying a minimum
pressure, which increases strongly at lower temperatures.
However, once the metastable wurtzite phase is created or
stacking faults and twins are present the kinetics is very
different and much higher minimum temperatures are required
to transform into the cubic phase or heal stacking faults. This
explains the almost rectangular region in the experimental
phase diagram for the cubic phase.

E. Revision of observed experimental phase transitions

We now summarize experimental findings of observed
phase transitions in more detail. As an overview all ground
and transition states are depicted in Fig. 15. The first row
shows the graphitelike phases (except for w-BN in the last
column), the transition states are in the middle row and the
high-density phases in the bottom row. The green and black
arrows correspond to the experimentally observed transitions
of boron nitride and carbon, respectively. A detailed discus-
sion is provided in the following sections.

1. Transitions between low- and high-density carbon phases

Since graphite occurs in the AB stacking there is no direct
transition pathway to c-D without introducing shear stress.
This is illustrated by the yellow lines of Figs. 15(b) and
15(l), which are not parallel to each other. Shear stress can
be reduced by twin formation or stacking faults parallel to
(111)c, as can be observed by high resolution TEM [101].
The stacking faults can be interpreted as h-D reflections [70].
Another way of reducing shear stress is to bend the layers
by applying pressure perpendicular to the c axis of graphite,
inducing a so-called “wavelike buckling and slipping” mech-
anism [102]. This could change the stacking order from AB
to ABC and would make the pc-TS accessible, reducing the
activation energy since the pc-TS is the lowest transition state.

Experimental observations of the transformation from
G-AB to c-D suggest a structural relationship with plane
(001)G ‖ (112)c and direction [1010]G ‖ [111]c [46]. The
same orientation has been found in an MD simulation [99].
This orientation fits exactly to the combination of Fig. 15(b)

(G-AB)
15f−→ 15(j)/15(d)

15h−→ 15(l) (c-D). If graphite is com-
pressed to over 20 GPa at room temperature the resistance
increases, especially perpendicular to the c axis and returns to
its original value after pressure is released [103,104]. For tem-
peratures between 800 ◦C and 1600 ◦C, a mixture of h-D and
c-D is formed [76]. With a minimum pressure of 12 GPa and
temperatures beyond 1800 ◦C the portion of h-D decreases

and only c-D is left [54]. Beyond 1800 ◦C the temperature
is high enough to reduce shear stress and to break bonds to
heal out stacking faults. This is in good agreement with the
calculated transformation probability contour lines depicted in
Fig. 14. h-D can be considered an intermediate structure and
can be left out in the conversion from G-AB to c-D by slightly

different carbon displacements G-AB
l-pc-TS (Fig. 15h)−−−−−−−−−→ c-D. The

bw-TS is higher in energy than the l-pc-TS and the latter
one would be preferred. This means the h-D would not be
created from the energetic point of view. However, the latter
mechanism is only probable if one accounts for the induced
shear stress in some manner.

G-AB [Fig. 15(b)] can transform into h-D without intro-
ducing shear stress. The structure relation is the one via bw-TS
[Fig. 15(f)] as proposed by Bundy and Kasper [103] and
confirmed many times [42,46,76].

The activation energies for the carbon system are higher
than for boron nitride and therefore require higher pressures
and larger temperatures to observe. For the catalytic transition
at the phase boundary the activation energy in solution is
about 1.3–1.7 eV [54]. However, this is not comparable with
the calculated solid-solid phase transitions from this work
since the carbon dissolves within the liquid catalyst.

2. Transitions between low- and high-density BN phases

For the boron nitride system, the direct transitions via
pc-TS and pw-TS are the most probable because the sta-
ble graphitelike structures exhibit an ABC (r-BN) and AA′
(h-BN) stacking and these transition states have the lowest
activation energies of those calculated in the present work.
Experimentally, direct conversion of h-BN → w-BN and
r-BN → c-BN have been observed. Experimental observa-
tions of structural orientation relationships of initial and final
states can be used to infer which transition states are possible.
Experimentally, the transitions r-BN → c-BN [Fig. 15(a)
15e−→15(i) with plane (001)r ‖ (111)c and direction [1120]r ‖
[110]c] and h-BN → w-BN [Fig. 15(c)

15g−→15(k) with plane
(001)h ‖ (001)w and direction [1010]h ‖ [1010]w] has been
observed during shock wave synthesis [47]. Due to the differ-
ent stacking sequence of G-AB and h-BN the structure rela-
tionship to h-D and w-BN is different [105]. The 90◦ rotation

can be seen by comparing G-AB [Fig. 15(b)]
bw-TS (Fig. 15f )−−−−−−−−→

h-D [Fig. 15(j)] with h-BN [Fig. 15(c)]
pw-TS (Fig. 15g)−−−−−−−−→ w-BN

[Fig. 15(k)]. The minimum pressure and temperature condi-

tions for the direct transitions of r-BN
pc-TS−−−→ c-BN at about

1200 ◦C and more than 8 GPa [45] are slightly lower than for

h-BN
pw-TS−−−→ w-BN with about 1400 ◦C and more than 8.5 GPa

[56]. This agrees with the higher activation energy of pw-TS
compared to pc-TS [rate curves in Fig. 14(b)]. Above 13 GPa,
h-BN transforms partially to w-BN at room temperature,
and completely at temperatures exceeding 800 ◦C–1000 ◦C
[56]. This implies that for the transition from low to high-
density phases the pressure is crucial, the higher the pressure
the less temperature is needed, which is reflected in the
transition probability contour lines shown in Fig. 14(b). It
has also been reported that r-BN can transform into w-BN
above 8 GPa and at low temperatures (25 ◦C–400 ◦C) via

134108-14



Ab INITIO CALCULATIONS OF CARBON AND … PHYSICAL REVIEW B 98, 134108 (2018)
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FIG. 15. Structures for different phase transition pathways: (a)
(e)pc-TS−−−−→ (i) (BN: [72]; C: [67]), (b)

(f)bw-TS−−−−→ (j) (BN: [44] for r-BN → w-BN;

C: [69]), (c)
(g)pw-TS−−−−→ (k) (BN: [72]; C: [68]), (d)

(h)l-pc-TS−−−−−→ (l) (C: [69]). Red arrows indicate the atomic displacements and support together
with the atom numbers the assignment during the phase transition. Dotted lines show new bonds to be formed and red lines represent strong
interaction during the transition state. Black (carbon) and green (BN) arrows represents possible transitions (See text for further information).
The crystal structures for C can easily be derived from BN, by substituting all B and N atoms with C atoms. This makes r-BN, BN-AB, h-BN,
c-BN, and w-BN equivalent to G-ABC, G-AB, G-AA, c-D, and h-D, respectively.

bw-TS [44,45]. However, these samples of w-BN (formed
from r-BN) contain a lot of stacking faults. We find that
bw-TS is the least favorable transition state and it is more
likely that c-BN is formed with stacking faults that create
stacks of w-BN due to stress and low repairing ability at low
temperatures.

c-BN can not only be created from r-BN [via pc-TS
Fig. 15(e)], but also from w-BN [via l-pc-TS Fig. 15(h)].
Therefore a transition from h-BN to c-BN could proceed via
w-BN as an intermediate structure [43,106]. However, there
is no experimental proof for such a direct conversion from
h-BN to c-BN. At elevated pressure h-BN first converts into
w-BN. However, only at a minimum pressure and temperature
of about 8 GPa and 1400 ◦C w-BN can start converting into

c-BN but lacks a clear equilibrium phase boundary, indicating
that w-BN is a metastable phase [58]. The resulting c-BN
is not pure and contains fractions of w-BN. Only at very
high pressures and temperatures (∼20 GPa and 2300 ◦C)
the resulting product is pure c-BN [39]. As such for the
transition from w-BN to c-BN temperature is the limiting
factor. The transition starts at 1500 ◦C and more than 2000 ◦C
is needed to complete [39,56]. Increasing the pressure rather
increases the transition temperature and our probability curve
confirms that [Fig. 14(b)].

w-BN transforms into h-BN at zero pressure and above
1300 ◦C [106]. With increasing grain size of c-BN powder
the onset temperature for the transition to h-BN increased be-
tween 900 ◦C–1500 ◦C. Its transition is usually accompanied
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by a significant formation of cracking, which could be a sign
for no direct transition from c-BN to h-BN [59].

The experimental values for the activation energy of the
w-BN → c-BN reaction span a wide range of 0.96–3.4 eV
depending on the reaction conditions [106,107]. The value
for shock wave synthesis is even higher: 8.7 eV atom−1 [56].
Since all these values for the w-BN → c-BN reaction are
obtained from non equilibrium conditions, they can not be
compared with the calculated ones. Obtained activation ener-
gies are influenced by kinetic effects, which arise from grain
size, defects or other structural distortions [58]. Therefore
these values are rather upper bounds than real activation
energies. If these were real activation energies, the backward
reaction would have a similar activation energy. However,
this is not true as can be seen by comparing with the w-
BN → h-BN reaction with an experimental activation en-
ergy of 0.22 eV atom−1 [60]. The latter value is comparable
with the calculated one at the same experimental conditions
(∼0.17 eV atom−1 at 900 ◦C).

3. Transition between low-density graphitelike BN phases

The r-BN has an ABC stacking and could be converted
to AB or AA trough translation because the layers are only
shifted towards each other [Figs. 1(b) and 1(c)]. h-BN has
an AA′ stacking, where each layer is rotated by 60◦ towards
their neighboring layers and a translation would never create
an AA, AB, or ABC stacking (Fig. 1). To reach bw-TS
and pw-TS, pressure has to be applied. The transformation
from r-BN → h-BN occurs only at elevated pressure and by
applying shear stress [45], which could be a sign, that the
layers have first to be changed into the AD stacking order and
buckle before they can transform into each other. One possible

transition path could be similar to Figs. 15(a)
15b−→ 15(f) by

changing the layer sequence from ABC to AD and result in the
bw-TS or close to it. It can switch to the pw-TS [Fig. 15(g)]
by changing some bond lengths. This changes the orientation
of the c axis and the new c axis has an AA′ stacking order
and after depuckering and elongation along this new c axis
the h-BN structure is formed.

F. Hexagonal diamond (lonsdaleite)

While the synthesis of high-quality wurtzite boron nitride
crystals is possible, the existence of the corresponding carbon
polymorph known as lonsdaleite has recently been called
into question [70]. A number of studies have investigated the
wurtzite structure of carbon and shown the main XRD peaks
of the cubic phase are also part of the XRD spectra of the
wurtzite phase, making it difficult to distinguish these phases.
Ignoring the relative intensities of the peaks maybe due to
textures effects, makes it impossible to determine the exact
amount of the cubic phase within the wurtzite phase. The latter
problem occurred in older publications about diamond, where
the detected lines only have been published without the XRD
spectra [42,103]. The largest peak of the h-D spectra which is
not part of the c-D spectra has a d spacing of 2.18 Å and is just
a shoulder of the main peak with a d spacing of 2.06 Å. In a
recent publication of XRD spectra for a natural and a synthetic
sample the h-D peaks are just shoulders and the sample is

mainly c-D [70]. The authors point out that the peaks are due
to stacking faults of basal planes and twinning, which are sup-
ported by STEM images. The defects create new planes with
different d-spacing compared to cubic single crystals and have
the same spacing like the ones in h-D because these planes are
in the wurtzite structure. Therefore the amount of h-D can be
assigned to the amount of defects. Transforming

pc-TS−−−→ c-D
implies to produce shear stress due to changing the stacking
order from AB to ABC, as already pointed out by Tateyama
[69]. By forming a (111) twin the stacking order inverts and
the stress is reduced. The formation of one type of twins can
be seen in an MD simulation [99]. The twin planes where
the stacking order inverts corresponds to the h-D structure.
This is a clear example why h-D can not by synthesized as
a single crystal easily. Yoshiasa et al. observed a higher ratio
of h-D to c-D for X-ray diffraction profiles perpendicular to
the c axis of the parent graphite [76]. This supports that h-D
stacking is not produced by the pw-TS, but via bw-TS because
of the orientation of the c axis. The pressure and temperature
region observed by Bundy and Kasper [103] for the formation
of h-D has been investigated by other groups and not all were
able to synthesize a detectable amount of h-D [41], which was
attributed it to the different experimental conditions.

The same type of defects as described above were also
observed in the BN system [44]. However, in contrast to h-D,
w-BN can be synthesized relatively pure [39]. We attribute
this to the existence of a stable graphitelike (h-BN) structure
together with a relatively low transition state (pw-TS) that
forms directly the wurtzite phase without inducing shear
stress. In the carbon system, the graphitelike phase with the
same stacking order as h-D (G-AA) does not exist. G-AB
needs to shift individual sheets to reach the bw-TS or l-pc-TS.
This is very unlikely to happen and would also require larger
temperatures. Since h-D and w-BN are metastable structures
an increase in temperature and pressure will always lead to
a transformation into the thermodynamically stable c-D and
c-BN structures.

V. CONCLUSION

In this work, we have investigated (meta-)stable boron
nitride as well as carbon allotropes for a range of pressures
and temperatures. Furthermore, corresponding concerted tran-
sition pathways have been explored. The calculations were
performed using a selection of approximate exchange and
correlation density functionals and quantum chemical wave-
function-based theories including the coupled cluster method.
A comparison between the theoretical and experimental find-
ings reveals that highly accurate predictions for equilibrium
phase boundaries constitute a true challenge for state of the
art electronic structure theories.

We have investigated the energy differences between low-
and high-density phases of carbon and boron nitride. Due to
the variation in the results obtained using LDA, GGA, mGGA,
and hybrid functionals a firm conclusion and accurate estimate
of the energy differences can not be achieved. Furthermore,
the explicit inclusion of van der Waals interactions on the
level of MBD is found to be significant and might change
the order of the predicted stability depending on the em-
ployed parent XC functional. We stress that considering other
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approximations to the van der Waals interactions or additional
XC functionals would not allow for achieving more reliable
results. On the other hand, we find that quantum chemical
wave-function-based theories allow for a systematic improv-
ability of the obtained results. HF, MP2, CCSD, and CCSD(T)
methods yield an oscillating but convergent estimate of the
calculated energy differences. We note in passing that such a
systematic behavior was recently also reported for calculated
transition pressures in LiH crystals [108]. The CCSD(T)
method predicts that the corresponding low- and high-density
phases of boron nitride as well as carbon are degenerate to
about 10–20 meV atom−1 including ZPVEs. We stress that
the remaining uncertainty of coupled cluster theory results is
dominated by finite size effects that can possibly be further
reduced in future by studying larger systems. We also note that
finite size errors are significantly larger for results obtained
using second-order Møller-Plesset perturbation theory (MP2)
in particular for small gap systems, where MP2 is considered
less accurate. The present coupled cluster theory results for
the energy difference between carbon diamond and graphite
are in agreement with experimental measurements and quan-
tum monte carlo calculations from literature to within about
20–30 meV atom−1, which corresponds to the accuracy that is
typically ascribed to CCSD(T) theory. The same conclusion
can not be drawn for boron nitride due to a larger spread in the
available experimental findings. However, we hope that this
work will motivate further calculations using quantum monte
carlo methods and experimental studies to help providing
more accurate estimates of the corresponding equilibrium
phase boundaries.

The obtained coupled cluster theory results for the acti-
vation barrier heights in the graphitic to diamondlike tran-
sitions of boron nitride as well as carbon also allow for
benchmarking different levels of approximate exchange and
correlation density functionals. We conclude that the accuracy
of the employed LDA, GGA, and mGGA functionals follows
roughly the same trends as for activation barrier heights
in molecular gas phase reactions: LDA, GGA, and mGGA
functionals underestimate the barrier heights if the effect of
van der Waals interactions is taken into account. Furthermore,
the results for hybrid functionals indicate a strong dependence
on the choice of parametrization. We find that PBE0 and
HSE06 yield significantly more accurate results than B3LYP,
confirming previous findings for a wide range of solids [109].
Furthermore, we note that the investigated transition states
are not very strongly correlated as indicated by the good
agreement of a few 10 meV atom−1 between CCSD and
CCSD(T) theory. The observed finite size effects are larger
for the predicted coupled cluster barrier heights than for the
energy differences of the (meta-)stable allotropes. An impor-
tant conclusion for the investigated transition states is that

their ordering and relative stabilities is mostly independent
from the employed electronic structure theory. All employed
theories predict unequivocally that the puckering mechanism
as present in the pc-TS is energetically the most favorable
transition mechanism for boron nitride as well as carbon.

The prediction of pressure-temperature phase diagrams
requires the calculation of Gibbs energies. We have shown
that approximating the CCSD(T) Gibbs energy using the
CCSD(T) energies of the (meta-)stable and transition states
only and the LDA for its temperature and pressure depen-
dence yields reliable pressure-temperature phase diagrams.
The obtained phase boundaries agree with experimental re-
sults of carbon to within about one GPa at temperatures below
2000 K. In the case of boron nitride, we find a similarly
good agreement with a recently obtained experimental re-
sult of Fukunaga et al. in Ref. [61]. Furthermore, we have
provided estimates of approximate phase transition proba-
bilities in a similar manner. The calculated phase transition
probabilities confirm trends in the measured pressure and
temperature dependence of experimentally observed phase
transitions.

Finally, we have addressed the conversion of graphite
to hexagonal diamond, also known as lonsdaleite using the
obtained results for transition and (meta-)stable states. In the
context of the present work, it is reasonable to ask the ques-
tion: why can the wurtzite phase of boron nitride be synthe-
sized as an almost pure powder whereas the existence of single
crystals of lonsdaleite is still under debate? We conclude that
the puckering mechanism for the corresponding phase transi-
tions is always the most probable due to its energetically more
favorable transition state. However, the stacking of the parent
graphitic phase that is put under pressure has a significant
influence on the kinetics of the phase transition. We note that
cubic diamond and wurtzite structures exhibit an ABC and
AA′ stacking, respectively. Experimentally, w-BN is formed
only when applying pressure to h-BN, which exhibits also an
AA′ stacking. In the case of carbon the corresponding G-AA
phase is not stable, making a transformation from G-AB or
G-ABC to lonsdaleite only possible by introducing stacking
faults or similar defects. This conclusion is in agreement with
recent experimental work.
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