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Correlated polarization-switching kinetics in bulk polycrystalline ferroelectrics. II.
Impact of crystalline phase symmetries
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Electric depolarization fields have a great impact on the polarization-switching kinetics in ferroelectrics
although they are often neglected in statistical considerations. Analysis of statistical distributions and correlations
of polarization and electric field during the field-driven polarization reversal in a bulk polycrystalline ferroelectric
by means of the two-dimensional self-consistent mesoscopic switching (SMS) model has revealed that correla-
tions, mediated by electrostatic fields, are mostly isotropic and short range at a typical scale of the mean grain size
[Phys. Rev. B 96, 054113 (2017)]. However, the magnitude of emerging depolarization fields remains substantial
and strongly influences the switching kinetics. It is known, on the other hand, that the effect of inhomogeneities,
such as a granular structure, on the electric field pattern and local field magnitudes is considerably overestimated
in two-dimensional simulations. Three-dimensional extension of the SMS model in the current study allows a
realistic evaluation of the impact of spatial correlations on the polarization switching in ferroelectric ceramics
and opens a possibility to consider materials of different phase symmetries. It is shown that bound charges
at grain boundaries due to mismatching grain polarizations as well as the subsequent depolarization fields are
essentially dependent on the crystalline symmetry. This explains great differences in statistical field distributions
and polarization kinetics observed in ceramics of different phase symmetries. Field correlations are anisotropic,
depend on the material symmetry, but remain in all cases short range at the scale of a grain size. This sheds
light on the success of models assuming statistically independent switching of different regions. Evolution of
the statistical field distributions in the course of polarization reversal is also symmetry dependent but temporal
changes in distributions are not substantial which clarifies a good performance of models neglecting the feedback
via depolarization fields.
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I. INTRODUCTION

The most characteristic property of ferroelectrics is their
ability to switch the spontaneous polarization when a strong
enough electric field is applied. This is a basic process in such
ferroelectric applications as digital data storage (FERAM) [1].
Polarization reversal at some location generates a long-range
depolarization field [2,3] which should affect the switching
process at other locations. However, statistical concepts of
polarization reversal typically neglect the feedback effect of
depolarization fields and assume independent and uncorre-
lated nucleation and growth of reversed domains [4–13].
Nevertheless, the nucleation limited switching (NLS) model
[7] and the inhomogeneous field mechanism (IFM) model
[10,12], assuming a stable statistical distribution of switching
times in polycrystalline systems, are able to describe with high
accuracy the time-dependent response of ferroelectric ceram-
ics of different chemical compositions and phase symmetries
[7,8,12,14–20] as well as of organic ferroelectrics [21–27]
and organic-inorganic ferroelectric composites [28,29]. Does
it mean that the depolarization fields emerging during the
switching process and the interaction of the switching regions
can be neglected?
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Experimental observations of polarization response by
piezoelectric scanning probe microscopy and transmission
electron microscopy revealed clustering ranging from a few
grains [30] to agglomerations of 102–103 grains [31,32] in
polycrystalline thin films. Similarly, the grain-resolved three-
dimensional x-ray diffraction disclosed a collective dynamics
in bulk ceramics correlated over approximately 10–20 grains
[33–35], a characteristic scale resulting from the complicated
and still not understood interplay between the electrostatic
and elastic fields. The experimentally revealed characteris-
tic lengths disagree with extremely long-range electrostatic
correlations found in phase-field simulations [36] and micro-
scopic modeling [37] of uniform ferroelectric media. Thus,
the role of long-range depolarization fields in the switching
dynamics of bulk ferroelectric ceramics still remains unclear.

Recent attempts to account for the feedback of depo-
larization fields in the statistical approach remained mostly
within the mean-field approximation assuming the emergence
of a time-dependent uniform electric field due to averaging
of individual switching events [38–40]. Such an approach
still misses the role of local correlations clearly observed in
experiment [41–43].

A self-consistent mesoscopic switching (SMS) model
[44,45] recently suggested by the authors accounts in a self-
consistent way for the local depolarization fields emerg-
ing during the field-driven polarization reversal in indi-
vidual grains of a random polycrystalline medium. This
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two-dimensional model allowed tracing the evolution of sta-
tistical distributions of electric field and polarization as well
as their auto- and cross correlations. It was established that
both polarization and electric field are correlated at a short
range of about the mean grain size. The depolarization fields
appeared to be effectively screened by adapting bound charges
at grain boundaries. This explains, on the one hand, why the
classical statistical approach [6] neglecting correlations may
satisfactorily describe total polarization switching at earlier
and intermediate stages of polarization reversal in polycrys-
talline ferroelectrics. On the other hand, the continuously
spreading statistical distribution of the local depolarization
fields [45] might have a remarkable retarding impact on the
later stage of polarization reversal observed in experiment
[7,10,13,18,25,27] and modeling [38–40,44]. The question
remains open, why the NLS and IFM models neglecting a
feedback via depolarization fields are nevertheless able to
describe polarization response over the time domain with high
accuracy [8,12,14–17].

Two-dimensional (2D) simulations overestimate the ef-
fect of obstacles on the field-line pattern [20,46,47] and do
not allow consideration of different crystalline symmetries
typical of perovskite ferroelectrics which apparently have a
great impact on the polarization-switching dynamics [15–17].
Therefore in the current study we extend the SMS model to a
three-dimensional (3D) geometry. The paper is organized as
follows. An analytical 3D model of a fully polarized uncorre-
lated ceramic is introduced in Sec. II and serves as a reference
limiting case for the following simulations. Analytical calcu-
lations of the surface bound charges in uncorrelated ceramics
of different symmetries are performed for comparison with
the respective correlated cases. A numerical 3D-SMS model
is introduced in Sec. III. Simulations within this model pre-
sented and discussed in Sec. IV show the time development of
the total polarization, statistical field distributions, and spatial
correlations of electric field and polarization components dur-
ing their evolution in the course of the polarization reversal.
The results are concluded in Sec. V.

II. ANALYTICAL MODEL OF A FULLY POLARIZED,
UNCORRELATED BULK FERROELECTRIC CERAMIC

Ferroelectric ceramics are characterized by random shape
of grains and random orientation of the crystal lattice inside
the grains. In the current study we focus on the latter factor
of randomness which allows one to capture the main reasons
for emerging and development of depolarization fields. To
this end we use an original model of a ferroelectric ceramic
introduced in Ref. [48]. We imagine a sample consisting
of a regular cubic lattice of equal tightly contacting single-
crystalline cubic grains of size R much larger than the lattice
constant of the material. The grain edges are supposed to be
aligned along the axes of the Cartesian coordinate system
x, y, z as is shown in Fig. 1. The sample of a macroscopic size
L � R is sandwiched between two plane electrodes located at
z = ±L/2. It is supposed to be polarized in a dc electric field
substantially higher than the coercive field to the maximum
possible spontaneous polarization in the z direction. After that
the voltage at the electrodes is set back to zero so that the
remanent polarization Pr in the z direction remains. This state

FIG. 1. Scheme of a three-dimensional distribution of polariza-
tion in a fully polarized ferroelectric ceramic represented by a regular
array of cubic grains with arbitrary crystalline orientations.

will be considered as an initial one for the polarization reversal
investigated in the next section.

Since the crystal structure of the grains is formed at temper-
atures far above the ferroelectric phase transition, the crystal
axes orientation in different grains is supposed to be arbitrary
and not correlated. In the high electric field the spontaneous
polarization in each grain Ps takes on the direction of one
of the pseudocubic symmetry axes closest to the direction of
the applied field (see Fig. 1). Accordingly, an anisotropic di-
electric permittivity tensor is arbitrarily oriented in the grains
with its c axis along the local spontaneous polarization. The
vectors Ps , assumed to be uniform within each grain, have the
same magnitude of Ps and are statistically distributed within
the cone defined by the polar angle θ < θmax with respect to
the z axis. The angle θmax depends on the phase symmetry
of the ferroelectric. For the cases of the tetragonal (T) and
rhombohedral (R) symmetries the respective angles θmax,t and
θmax,r were found by Uchida and Ikeda [49] to be equal to
each other and amount to arcsin

√
2/3. In the orthorhombic

(O) phase this angle equals θmax,o = π/4.
In the rest of this section, spatial fluctuations of the bound

charges at the grain boundaries in the highly poled state of
ceramics of different phase symmetries will be evaluated. For
their calculation one needs a procedure of statistical averaging
which is specified as follows.

A. Configurational averaging

Configurational averaging of local angle-dependent vari-
ables over the ensemble of all possible random configurations,
which is equal to the averaging over the infinite sample
volume, may be performed using the distribution function
f (θ, ϕ) of a possible polarization directions compatible with
the applied field direction. Derivation of this function presents
a nontrivial task involving cumbersome calculations. For the
case of tetragonal symmetry, the appropriate distribution func-
tion ft (θ, ϕ) was derived in Ref. [48]:

ft (θ, ϕ) =
⎧⎨
⎩

3

2π
, 0 � θ � π

4 ,

6

π2

[
π
4 − arccos (cot θ )

]
,

π

4 � θ � θmax,t ,

(1)
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FIG. 2. Two-dimensional projection of statistical distributions
f (θ, ϕ) of polarization directions on an arbitrary ϕ plane in fully
polarized uncorrelated ferroelectric ceramics of different phase
symmetries.

for 0 � ϕ < 2π where ϕ and θ are, respectively, the azimuthal
and polar angle in spherical coordinates associated with the
above introduced cartesian coordinates and centered in the
center of the chosen grain. The distribution functions fr (θ, ϕ)
and fo(θ, ϕ) for the cases of rhombohedral and orthorhombic
symmetries are derived in Appendixes A and B and given by
Eqs. (A5) and (B5), respectively. Since the considered poled
polycrystalline ferroelectrics belong to the Curie symmetry
group ∞m [50], the distribution functions are independent of
the azimuthal angle and can be presented on a plane graph [51]
as is shown in Fig. 2. It is seen that the orthorhombic phase,
possessing twelve possible stable polarization directions, is
described by the most concentrated polarization distribution
fo(θ, ϕ), followed by the wider rhombohedral distribution
fr (θ, ϕ), related to eight possible polarization directions, and
the most spread tetragonal distribution ft (θ, ϕ), related to six
possible polarization directions.

Let us introduce as in Ref. [48] a three-dimensional numer-
ation (integer coordinates) of grains [n, k,m] associated with
the Cartesian coordinates so that the centers of the grains take
positions (nR, kR,mR). For evaluation of macroscopic mean
values the sample will be considered as an infinite one so that
the numbers [n, k,m] run over all integers from −∞ to +∞.
Assuming statistical independence of random angle variables
in different grains the distribution function for polarization
directions in all grains reads

F ({θi, ϕi}) =
∏

n,k,m

f (θn,k,m, ϕn,k,m), (2)

where {θi, ϕi} denotes the manifold of spherical angles in all
grains, while θn,k,m and ϕn,k,m denote the angles in the grain
with numbers [n, k,m]. Calculating an ensemble average of a
quantity g({θi, ϕi}),

〈g〉 =
∏

i

∫
sin (θi )dθi

∫
dϕi g({θi, ϕi})F ({θi, ϕi}), (3)

one should take into account that all azimuthal and po-
lar angle variables change in the same angle ranges, 0 �
ϕ < 2π, 0 � θ � θmax. Thus, the ensemble average of the

TABLE I. Mean polarization values and variances of bound
charge densities at grain boundaries in uncorrelated tetragonal (T),
rhombohedral (R), and orthorhombic (O) ceramics.

T R O

Pmax/Ps 0.831 0.866 0.912
SD(σ x )/Ps 0.547 0.492 0.406
SD(σ z )/Ps 0.141 0.126 0.080

polarization along the z-axis 〈Pz〉 is reduced to

Pr = Ps〈cos (θn,k,m)〉 = Ps

∫ 2π

0
dϕn,k,m

×
∫ θmax

0
f (θn,k,m, ϕn,k,m) sin (θn,k,m)

× cos (θn,k,m)dθn,k,m. (4)

By applying the respective distribution functions for ce-
ramics of different phase symmetries this formula brings
about the maximum possible values of polarization Pmax in
nontextured ceramics of tetragonal, rhombohedral, and or-
thorhombic symmetries presented in Table I which coincide
with the numbers known in literature [49,52,53]. The perpen-
dicular x component of polarization in all cases vanishes,

〈Px〉 = Ps〈cos (θn,k,m) cos (ϕn,k,m)〉 = 0, (5)

as well as 〈Py〉 = 0 for symmetry reasons. Finally, the local
polarization can be conveniently decomposed in a sum of the
mean and fluctuation polarizations as Ps = Pr + �Ps , where
〈Pr〉 = (0, 0, Pmax) with 〈�Ps〉 = 0.

B. Variances of bound charges at grain boundaries

Surface bound charge densities at the faces of a cubic grain
with the number [n, k,m] located inside the bulk material are
constant over the cubic faces and result from discontinuities of
the respective normal components of the polarization �Ps in
the neighbor grains. Namely, the charge density at the bottom
face perpendicular to the axis z equals

σ z
n,k,m = Ps[cos (θn,k,m−1) − cos (θn,k,m)], (6)

the charge density at the left face perpendicular to the axis
x equals

σx
n,k,m = Ps[sin (θn−1,k,m) cos (ϕn−1,k,m)

− sin (θn,k,m) cos (ϕn,k,m)], (7)

and the charge density at the left face perpendicular to the axis
y equals

σ
y

n,k,m = Ps[sin (θn,k−1,m) sin (ϕn,k−1,m)

− sin (θn,k,m) sin (ϕn,k,m)]. (8)

Configurational averaging of the above charge den-
sities for internal grains with the distribution functions
f (θn,k,m, ϕn,k,m), equal to the averaging over the sample vol-
ume, results in vanishing mean values 〈σx,y,z

n,k,m〉 = 0, which
does not preclude the fact that local values (6)–(8) in a certain
random system are finite. For the top plane of a physical
sample, Eq. (6) is not valid because there are no grains above
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the top grain layer. For that reason the nonzero mean value
〈σ z

n,k,m〉 = Pr produced by the mean polarization Pr prevails
at the top plane of the sample z = L/2. Similarly, 〈σ z

n,k,m〉 =
−Pr at the bottom plane of the sample z = −L/2.

Typical magnitudes of the local charge densities at the
internal grain faces (6)–(8) are characterized by the standard
deviations (SD) of the respective charge densities,

SD(σx ) =
√〈(

σx
n,k,m

)2〉 = SD(σy ) and

SD(σ z) =
√〈(

σ z
n,k,m

)2〉
. (9)

Table I shows their values normalized to Ps for ferroelectric
ceramics of different phase symmetries. Details of calcula-
tions are presented in Appendix C. Substantial differences
between SD(σ z) and SD(σx ) are explained by the fact that
the polarization direction in the (x, y) plane and, hence,
the variation of its azimuthal angle are not restricted while
the polar angle is confined to the cone θ � θmax around the
positive z direction.

III. 3D SELF-CONSISTENT MODEL OF
POLARIZATION-SWITCHING KINETICS
IN A BULK FERROELECTRIC CERAMIC

The main task of the current study is to account for the
electric interaction between different switching regions due
to the emerging depolarization fields and finally to evaluate
the feedback effect of these fields on the global polarization
kinetics. To this end we advance here a three-dimensional
self-consistent mesoscopic switching model (3D-SMS) of
polarization reversal kinetics in a bulk ferroelectric ceramic
which conceptually extends the previously developed 2D-
SMS model [45]. Differently from the latter, the 3D-SMS
model does not assume a random grain structure of the ma-
terial but uses instead the regular cubic grain structure with
randomized crystal lattice orientations delineated in Sec. II.
Similarly to the previous 2D approach, the 3D-SMS model
combines a numerical solution of the coarse-grained local
equations for polarization development in individual grains
with the global calculation of the electric field by the finite-
element method (FEM), the whole algorithm being realized
within a FlexPDE program (PDE Solutions Inc.). In the
following, the description of ferroelectric ceramics and the
evolution equations are presented in detail.

A. Creation of a random structure

We consider a polycrystalline bulk ferroelectric placed
between two—top and bottom—plain electrodes. A cubic
sample is assumed to consist of equal cubic single-crystalline
grains as is schematically shown in Fig. 1. Each grain pos-
sesses the same phase symmetry—tetragonal, rhombohedral,
or orthorhombic—and a random crystal orientation uncor-
related with neighbor grains. An initial polarization state is
assumed to be created by a very strong electric field ap-
plied in positive z direction given by the vertical axis in
Fig. 1. In this case, polarization directions in individual grains
are arbitrarily chosen from an appropriate three-dimensional
angle distribution function for a nontextured ferroelectric bulk
ceramic of the respective symmetry using Eq. (1) or (A5) or

(B5). According to the chosen polarization (c-axis) direction
(and a random rotation around it), each grain is characterized
by a dielectric tensor εij , with principal values of the relative
permittivity taken from Refs. [54–57] for exemplary materials
of different symmetries.

In a coarse-grained consideration, polarization within each
grain is characterized by a mean value pi approximately pre-
senting a multidomain state that entails discontinuities at grain
boundaries where surface charge densities arise, equal to an
abrupt variation of the normal component of the polarization
when traversing the boundary. The electric field, in contrast,
varies within the grains according to the Laplace equation and
natural boundary conditions at the grain boundaries which
comprise continuity of the tangential electric field and discon-
tinuity of the normal component of the electric displacement
equal to the surface charge density. To apply an external
electric field of either sign in z direction, the top and the
bottom surfaces of the computation box are held at constant
potentials, whereas periodic boundary conditions are applied
in x and y directions.

B. Evolution equations

The change in the polarization of individual grains will be
considered in the spirit of the Kolmogorov-Avrami-Ishibashi
(KAI) model of domain nucleation and growth [4–6] giving
the total polarization reversal as

�p(t ) = 2Ps{1 − exp [−(t/τ )β]}, (10)

where Ps is the saturation polarization, β is the Avrami index
depending on the reversal domain dimensionality, t is the time
elapsed after the voltage application, and τ is the characteristic
switching time. It is well known that τ is strongly dependent
on the electric field value E, for example, according to the
empiric Merz law [58] τ (E) = τ0 exp (Ea/E), where Ea is
the so called activation field and τ0 is the switching time at
very high fields.

In the original KAI approach the field E is assumed to
be uniform in the whole system and constant in time. In
ferroelectric ceramics the field is indeed distributed nonuni-
formly due to complying with the boundary conditions at
the grain boundaries. In the spirit of the IFM model [10,12]
we suppose that the local switching time τ (E) is determined
by the local value of the electric field [59]. In accordance
with our coarse-grained consideration, for the local field E

the mean-field value over each grain will be taken. Over and
above, we account for the fact that local switching time values
are also time dependent together with the field E. To be
able to capture this dependence we substitute the global time
dependence of the polarization, Eq. (10), by the instantaneous
rate of the polarization change derived by differentiation of
Eq. (10) with respect to the time t :

dp

dt
= Ps sgn(E) − p

τ
β

(
t

τ

)β−1

. (11)

Here the signum function sgn(·) determines the direction to
which the saturation of the polarization proceeds. This one-
dimensional equation should be generalized to the actual 3D
case. In the following we assume, as in the classical KAI
approach [6], the polarization reversal to be dominated by
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180◦-switching events (which is generally not true [60–62]),
so that the polarization only changes along the randomly
chosen c direction within each grain given by a unit vector ni .
This means that the local dielectric tensor remains unchanged
during this process. Thus Eq. (11) can be generalized to the
local vectorial form

dpi

dt
= niPs sgn(〈E〉i · ni ) − pi

τ (|〈E〉i · ni |) β

[
t

τ (|〈E〉i · ni |)
]β−1

, (12)

where 〈E〉i is the electric field averaged over the volume of the
considered grain. Equation (12) takes into account that only
the field projection on the local c axis promotes switching.

Calculated local values of the depolarization field �Ed

scale with the magnitude of the saturation polarization Ps .
Typical magnitudes of the field components, estimated exem-
plarily for lead zirconate titanate (PZT) [48], appear to be of
the order of the thermodynamic coercive field which is known
to exceed experimentally observed values of the coercive field
by few orders of the magnitude [63]. In fact, local electric
fields are strongly reduced by various physical mechanisms,
first of all, by domain formation [63] and semiconductor
properties of ferroelectric materials [64–66]. For low total
polarizations, high local fields can be depressed by splitting
in domains which leads to lower mean polarizations of grains
and accordingly lower bound charges at grain boundaries. At
higher polarizations, too high local fields may be depressed
by screening of bound charges due to semiconductor effects
including band bending and accumulation of charged defects
in surface states at grain boundaries. Indeed, the fluctuation
field �Ed provides a variation of the electrostatic potential
across a grain about �ϕ � �EdR that can reach several tens
of volts [48]. Being much larger than a typical band gap in
ferroelectric perovskites Eg of 3–4 eV such a potential sweep
causes strong band bending and produces electron and/or hole
spatial pockets which effectively reduce bound charges at
grain boundaries. Due to this internal screening effect the local
fields cannot exceed a typical value of Eg/2qR, with the ele-
mentary charge q, so that the potential sweep remains below
Eg/2q [65,66]. The local fields may be further reduced by
accumulation of charge defects compensating bound charges
at grain boundaries [67].

To account for the internal screening, an effective value of
the local saturation polarization P ∗

s = 0.01 C/m2 was used
for calculation of depolarization fields in the 2D-SMS model
[45] that reduced local fluctuation fields to a typical magnitude
of the coercive field in tetragonal PZTs. The drawback of
this approach is that it uniformly depresses depolarization
fields all over the system including locations where the field
is already small. This might affect the statistical distribution
of local electric fields and distort the true picture of field
correlations. For that reason, in the actual 3D-SMS model we
introduce another approach. Namely, each time after the FEM
calculation of the electric field we apply a criterion testing
the local field magnitude E and reducing it to the cutoff field
Ecf < Eg/2qR if E > Ecf. Thus the depolarization field is
only depressed at locations where it is too large. Since the
value Ecf may result from a sophisticated interplay of the
above mentioned physical mechanisms it is used as a fitting
parameter when comparing simulations with available data on
polarization-switching kinetics.

C. Simulation procedure

Simulations include the following steps:
(1) Generation of a regular 3D array of 10×10×10 cubic

grains of size R = 1 μm and assigning to each grain a polar-
ization direction (c axis) arbitrarily chosen from the statistical
polarization distribution of the appropriate symmetry.

(2) Assignment of material parameters: saturation polar-
ization, activation and cutoff fields, high-field switching time,
Avrami index, eigenvalues of the permittivity tensor; assign-
ment of the dielectric permittivity tensor in each grain by
arbitrary rotation around its c axis.

(3) Evaluation of the spatial field distribution and average
field magnitudes inside each grain using the finite element
software FlexPDE.

(4) Evaluation of the polarization change in each grain
during the time step �t by integration of Eq. (12) over �t

using the software FlexPDE for the above calculated local
average field values; consequent updating of the polarization
in each grain.

(5) Calculation of the total polarization by adding up the
local modified polarizations.

(6) Repetition of steps 3–5 until the total polarization
reaches a saturated value.

For exemplary tetragonal and rhombohedral systems,
lead zirconate titanate ceramics Pb(ZrxTi1−x )O3 with,
respectively, x = 0.515 and x = 0.6 were chosen. The
appropriate permittivity values were taken from Refs. [54,55],
the other parameters were used as trial values and found by
best fitting to the available polarization kinetics data for these
compounds [16] as is shown below in Fig. 3. As an example of
an orthorhombic ferroelectric at room temperature, potassium
niobate KNbO3 was chosen whose polarization and coercive
field were taken from Ref. [68] and permittivity tensor from
Refs. [56,57]. Sufficient polarization kinetics data for this
material are not available, so that the respective kinetic pa-
rameters were exemplarily taken over from the solid solution
(1 − x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 with x = 0.5,
which possesses a comparable coercive field [17].

FIG. 3. Time evolution of the total polarization P = 〈pz〉 nor-
malized to its maximum value for materials of tetragonal (T), rhom-
bohedral (R), and orthorhombic (O) symmetries, as indicated in the
plot, at applied field values 1.8, 1.4, and 0.5 kV/mm, respectively.
Solid and dashed lines show, respectively, simulated and experimen-
tal response. The other parameters used are gathered in Table II.
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TABLE II. Ea,Ecf, β, and τ0 values in tetragonal (T), rhombo-
hedral (R), and orthorhombic (O) ceramics.

T R O

Ea (kV/mm) 35 28 8
Ecf (kV/mm) 0.4 0.25 0.1
β 2 3 3
τ0 (ps) 11.5 1.7 5
ε11 1721 529 160
ε22 1721 529 1000
ε33 382 295 55

IV. SIMULATION RESULTS

A. Polarization-time dependencies

Polarization-time curves obtained from experimental mea-
surements (dashed lines) and calculated ones (solid lines) are
presented exemplarily in Fig. 3 for the above introduced mate-
rials of tetragonal, rhombohedral, and orthorhombic symme-
tries at different applied field values. They cannot be displayed
on the same graph for the same applied field because the
switching processes evolve at very different timescales. Note
that the presented processes do not start from the initial highly
polarized state described in Sec. II. This fully uncorrelated
state includes, among others, unphysical local polarization
configurations with highly charged grain boundaries. Due
to resulting high local fields such places disappear after
few polarization-switching cycles. After that polarization-
switching curve becomes completely reproducible and weakly
dependent on the applied field direction, a consequence of a
finite size of the computation box.

Calculated polarization response demonstrates fair agree-
ment with available experimental data for tetragonal and
rhombohedral PZT ceramics using parameter values shown in
Table II. The band gap Eg in PZT is known to be about 3.5 eV.
The fitting value for the cutoff field Ecf is four times smaller
than Eg/2q. This reveals that the band bending is not of cru-
cial importance in the field suppression mechanism. Another
physical reasons could be domain formation, inhomogeneous
polarization distribution within domains, and possible non-
180◦ rotations of polarization which are not taken into account
in the actual model.

Non-180◦ rotations play an important role in polarization
reversal [60–62] and seem to present a dominating mechanism
at the beginning of this process because of much shorter
switching times [13,60,69]. They also prevail with decreasing
of the applied field value [13] that is supposed to explain the
emerging deviation of simulated curves from experimental
ones when the field is decreased, as is apparent in Fig. 4
presenting exemplary simulations for tetragonal symmetry.
In the following we will use the parameters from Table II
obtained by fitting of the kinetic polarization data in Fig. 3 for
analysis of spatial fluctuations and correlations of polarization
and field.

B. Charge and field spatial fluctuations

A rough insight into the coherence of polarization pro-
cesses may be gained by studying grain boundary charges,

FIG. 4. Polarization-time curves for the tetragonal material at
different applied field values as indicated in the plot. Dashed and
solid lines show, respectively, experimental data from Ref. [16] and
corresponding simulated response.

formed by polarization discontinuities between neighbor
grains, in the course of the global polarization reversal. Their
mean values averaged over the system volume remain, of
course, equal to zero but their typical local magnitudes may
be estimated from their variances. First a structure with max-
imum polarization in each grain is produced to compare stan-
dard deviations of simulated surface charges with analytical
results of Sec. II B. A good agreement between the former
and the latter for both x and z faces of cubic grains was found
for all symmetries considered (cf. Tables I and III).

Surface charges vary with the evolution of the total polar-
ization as is shown in Fig. 5. At the beginning of the displayed
polarization reversal simulation the system is already some-
what aligned after a few polarization cycles, therefore initial
levels of surface charges do not exactly coincide with those of
fully uncorrelated systems.

For all phase symmetries, the initial and final polarization
states are the most z aligned, exhibiting the lowest level of
σz spatial fluctuations. At the same time the σx fluctuations
are at the highest level in these states. Charge fluctuations
interchange their intensities in the middle of polarization
reversal, exhibiting the highest σz and the lowest σx spatial
fluctuations for intermediate P values. For all phase symme-
tries the mean level of σx fluctuations during the polarization
reversal is higher than of σz fluctuations, because of unbound
polarization directions in (x, y) plane, with the highest differ-
ence between them in the most anisotropic tetragonal system
[Fig. 5(a)]. Interestingly, the lowest level of charge fluctua-
tions is observed not in the least anisotropic rhombohedral

TABLE III. Simulated maximum polarizations and standard de-
viations of surface charge densities (both evaluated with inaccu-
racy of 2%) in uncorrelated tetragonal (T), rhombohedral (R), and
orthorhombic (O) ceramics.

T R O

Pmax/Ps 0.830 0.867 0.911
SD(σ x )/Ps 0.541 0.515 0.437
SD(σ z )/Ps 0.140 0.119 0.082
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FIG. 5. Evolution of spatial charge fluctuations presented by
standard deviations in units of Ps during the polarization reversal
in (a) tetragonal, (b) rhombohedral, and (c) orthorhombic systems.
Symbols show calculated quantities, solid lines are guide for the eye.

phase [Fig. 5(b)] but in the orthorhombic phase [Fig. 5(c)],
obviously thanks to the most focused statistical distribution of
polarization axes fo(θ, φ) in the latter phase (see Fig. 2).

Evolution of the field component fluctuations with the
development of the total polarization is shown in Fig. 6
exhibiting the highest level of fluctuations in the most
anisotropic tetragonal system and the lowest level of fluctu-
ations again in the orthorhombic system. Since the local field
components result to the same extent from both σx and σz

charges and these vary with polarization in a complementary
way (see Fig. 5) the field fluctuations do not vary much

FIG. 6. Evolution of spatial field fluctuations presented by stan-
dard deviations of field components Ex and Ez in units of kV/mm
during the polarization reversal in tetragonal (T), rhombohedral (R),
and orthorhombic (O) systems.

when polarization changes. For all symmetries, variance of
the Ez component exceeds that of the Ex component, the
largest difference between them being observed in the initial
polarization state (−Pmax) of the tetragonal ceramic.

C. Statistical field distributions

Evolution of the statistical field distributions during the
polarization reversal exhibits nontrivial features which were
not previously observed in 2D simulations [45]. As is seen
in Fig. 7(a), the field distribution in the tetragonal ceramic
is wide at the very beginning (P/Ps = −0.81). Then it
rapidly becomes much narrower and higher when the total
polarization changes up to P/Ps = −0.662 that takes a few
tenth of millisecond on the timescale in Fig 3. After that the
distribution height further slightly increases up to the polar-
ization P/Ps = −0.036 and subsequently does not change up
to P/Ps = 0.634. At the final stage, the distribution height
decreases a little bit when the polarization grows to P/Ps =
0.80 virtually coinciding finally with that at P/Ps = −0.662.

Evolution of the field distribution in the rhombohedral
ceramic exhibits partly similar but also some distinct features
[Fig. 7(b)]. It transforms also rapidly from a wider to a
narrower distribution when the polarization changes from
P/Ps = −0.851 up to P/Ps = −0.709 that takes a few mi-
croseconds on the timescale in Fig 3. After that, however,
it starts to decrease in height gradually changing its shape
from a one-peak to a bimodal form when the polarization
further changes to P/Ps = −0.071. Subsequently the dis-
tribution does not change essentially up to P/Ps = 0.626.
At the final stage, the distribution height increases again
when the polarization grows to P/Ps = 0.848 while the final
distribution shape almost reproduces that in the state with
P/Ps = −0.709.

The field distribution in the orthorhombic ceramic exhibits
features similar to but not identical with the rhombohedral
one. It transforms also rapidly from a wider initial one-
peak distribution at P/Ps = −0.902 to a narrower distribu-
tion at P/Ps = −0.704 that takes a few microseconds on
the timescale in Fig 3. After that it gradually decreases in
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FIG. 7. Evolution of the statistical field distributions F (E/Em),
where Em is an applied field, in (a) tetragonal, (b) rhombohedral, and
(c) orthorhombic ceramics for polarization variation from its negative
to its positive maximum value. Representative polarization values are
indicated in plots.

height changing its shape from a one-peak to a bimodal form
when the polarization further changes to P/Ps = 0.343. Then
the distribution height gradually increases again restoring
a one-peak form when the polarization grows to P/Ps =
0.755 and remains stabilized until the end of the process at
P/Ps = 0.902.

Notably, the saturated polarization values never reach the
theoretical maximum magnitudes listed in Table I because the

latter do not take into account possible disadvantageous local
polarization configurations. Strong local depolarization fields
appearing at such locations prevent reaching the maximum
local polarizations thus limiting the total polarization value.

The evolution of the statistical distributions of fields seems
to be more affected by statistical distributions of polarization
directions f (θ, ϕ), which are narrower in the rhombohedral
and orthorhombic ceramics, than by anisotropy of the permit-
tivity tensor, which is substantially higher in the tetragonal
and orthorhombic ceramics. This anisotropy, however, seems
to be reflected by wider field distributions in the latter two sys-
tems. The absence of bimodal features in the field distribution
of the tetragonal ceramic, Fig. 7(a), may also be due to the
dominating role of the stray fields resulting from the highest
anisotropy of this compound.

A general feature of evolution of statistical field distri-
butions in all systems is that their shapes (particularly their
widths) do not essentially change over the major part of the
switching time (more than five decades). This behavior is in
contrast to observations made in 2D simulations [45] where
the statistical distribution was consistently broadening during
the whole polarization reversal process. The difference to the
simulation results of the 2D model [45] seems to stem from
the stronger depression of the charge-induced depolarization
fields by the assumed uniform reduction of polarization in the
latter model, on the one hand, and from the overestimation of
stray fields in 2D geometry, on the other hand.

The nonmonotonic variation of distributions with time
may be rationalized as follows. In spite of the depolarization
field reduction by different physical mechanisms in the actual
model (see Sec. III B), the magnitude of these fields remains
large and has a great impact on statistical field distributions
in addition to the spatial fluctuations of the applied field due
to the nonuniform granular structure of the system. On the
one hand, the magnitude of spatial fluctuations of the depolar-
ization fields generated by local bound charges roughly scales
with the total polarization P . Thus, the variance of these fields
is expected to be at maximum for the maximum values of
polarization of either sign, the tendency observed in Fig. 6.
On the other hand, the feedback through the depolarization
fields provides an increasing synchronization of polarization
switching in adjacent grains during the polarization rever-
sal, which in turn leads to a continuous reduction of the
variance of the depolarization fields with time. This makes
the final distribution narrower than the initial one. Note,
however, that, as soon as the voltage polarity is changed
again, the distributions immediately transform back to the
initial shapes as it should be in the completely symmetrical
state. The difference in the behavior between tetragonal and
rhombohedral ceramics might originate from much stronger
anisotropy of the permittivity in the former. This means
a stronger contribution of spatial field fluctuations of the
applied field not related to the local charges. This dominat-
ing mechanism of the distribution broadening might hide in
Fig. 7(a) the bimodal contribution from the depolarization
fields which arises due to the cutoff of the high fields of
the polarization charges. The behavior of field distributions
in the orthorhombic ceramic bears features of both tetrag-
onal and rhombohedral systems being in between them in
anisotropy.
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D. Spatial correlations

Two-point correlation functions of polarization and elec-
tric field components characterize how coherent the spatial
fluctuations of these physical quantities are. The correlation
coefficients are defined as

REα,Eβ
(ρ) = 〈[Eα (r + ρ ) − 〈Eα〉][Eβ (r) − 〈Eβ〉]〉

SD(Eα )SD(Eβ )
, (13)

Rpα,pβ
(ρ) = 〈[pα (r + ρ) − 〈pα〉][pβ (r) − 〈pβ〉]〉

SD(pα )SD(pβ )
, (14)

where α and β adopt values x, y, or z, and imply averaging
over all pairs of points in the computational domain separated
by a position vector ρ. Due to cylindrical symmetry of the
macroscopic system the correlation coefficients may only be
dependent on the distance ρ and the angle the vector ρ makes
with the field direction. For convenience, these coefficients
will be displayed as polar diagrams in an arbitrary plain (ρ, φ)
including the (vertical) field direction at φ = π/2. A color
legend from deep blue to deep red corresponds to the value
variation from 0 to 1.

All cross correlations between the involved quantities in-
cluding those between different polarization or field com-
ponents were found to be negligible within the available
accuracy. The autocorrelation coefficients of the polarization
and field components exhibit nontrivial and distinct variations
in compounds of different symmetries during the polarization
reversal. This can only be captured when tracing a detailed
evolution of the respective correlation functions. Since this
analysis involves dozens of polar diagrams it is thoroughly
presented in the Supplemental Material [70]. Here we merely
show, for materials of different phase symmetries, exem-
plary plots of REz,Ez

and Rpz,pz
coefficients in polarization

states where correlations are most pronounced and anisotropic
(Fig. 8). These demonstrate remarkable angle dependencies of
correlations of both polarization and field components and an
essential impact of the phase symmetry.

In all systems the correlations of the Ez component of the
electric field are most pronounced in the x direction (φ = 0
or φ = π ) as is seen in Figs. 8(a), 8(c) and 8(e) and in
Figs. S1(f)–S1(j), S2(f)–S2(j), and S3(f)–S3(j) of the Sup-
plemental Material [70]. Similarly, the correlations of the Ex

component of the electric field are most pronounced in the z

direction (φ = π/2 or φ = 3π/2) as is seen in Figs. S1(a)–
S1(e), S2(a)–S2(e), and S3(a)–S3(e) of the Supplemental
Material [70]. These correlations are apparently related to the
continuity of the respective tangential field components across
the cubic grain faces providing high field correlations at least
in the neighbor grains. Beyond these features defined by the
considered model geometry of the regular cubic grain array
there are remarkable differences in the diagrams determined
by the crystalline symmetries of different phases.

Differently from the field component correlations the
correlation coefficient Rpx,px

reveals substantial variation
between zero polarization state P = 0 and the maximum
polarization states P = ±Pmax and also nontrivial anisotropic
correlations in the intermediate states. In the tetragonal sys-
tem, Rpx,px

is mostly of a fourfold symmetry with exception
of the states around P = 0 where it becomes almost isotropic

FIG. 8. Correlation coefficients REz,Ez
[(a), (c), and (e)] and

Rpz,pz
[(b), (d), and (f)] for tetragonal [at P/Ps = 0.762 (a) and

−0.531 (b), respectively], rhombohedral [at P/Ps = 0.853 (c) and
−0.299 (d), respectively], and orthorhombic [at P/Ps = 0.895
(e) and −0.548 (f), respectively] ceramics.

(Figs. S1(k)–S1(o) of the Supplemental Material [70]). In
the rhombohedral system, Rpx,px

becomes additionally almost
isotropic in the maximum polarization states P = ±Pmax

revealing a twofold symmetry at intermediate polarization
values (Figs. S2(k)–S2(o) of the Supplemental Material [70]).
In the orthorhombic system, this coefficient retains a compa-
rable fourfold symmetry at all polarization stages.

In contrast, the correlation coefficient Rpz,pz
exhibits the

strongest correlations along the z direction for the interme-
diate negative polarization values being otherwise virtually
isotropic in the tetragonal system (Figs. S1(p)–S1(t) of the
Supplemental Material [70]). These correlations along the
poling direction are most strongly pronounced for interme-
diate negative to zero polarization values in the rhombohedral
system (Figs. S2(p)–S2(t) of the Supplemental Material [70]).
They are, however, only weakly visible in the orthorhombic
system (Figs. S3(p)–S3(t) of the Supplemental Material [70]).
The strongest z correlations in the rhombohedral ceramic
result from the combination of the least anisotropic dielectric
tensor of all systems considered and the relatively focused
polarization axes distribution in this material (see Fig. 2).

With all anisotropic features and nonmonotonic behavior
the correlations of both polarization and field remain short
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range at the typical distance to the neighbor grain; a feature
already observed in 2D simulations [45].

V. CONCLUSIONS

A long-standing question in the problem of polarization
reversal kinetics was (i) why this process could be suc-
cessfully described in statistical models [6–8] as statistically
independent polarization-switching region by region as if
the electric and elastic interactions of different regions were
negligible. Furthermore, considering the evolution of depolar-
ization fields in the course of polarization reversal [38–40,45],
the question (ii) arises why the whole reversal process over
many decades in time can be described as if the statistical dis-
tribution of the local fields does not change [10,12,15–17,25].
The presented simulations using the 3D-SMS model shed
some light onto these problems.

Analysis of polarization and field correlations in Sec. IV D
revealed that the depolarization field-mediated correlations
remain short range at the typical scale of the grain size at all
polarization stages for all phase symmetries considered. This
means that, electrically, only nearest neighbors have effect on
the polarization-switching process in a grain. Physical back-
ground of the short-range correlations is an effective screening
of depolarization fields by adapting surface charges at grain
boundaries [45]. This may answer the question (i) why statis-
tical models [6–8] satisfactorily describe time dependence of
the total polarization. On the other hand, the medium-range
[33–35] correlations observed in ferroelectric ceramics and
long-range [31,32] correlations observed in ferroelectric thin
films seem rather to result from elastic interactions which
cannot be screened as electrical ones.

The problem (ii) of emerging and varying depolarization
field reveals different features in thin-film and bulk ferro-
electrics. Being solely due to the presence of a very thin
nonferroelectric layer below an electrode in the thin-film
case [38,44,71] the depolarization field of this nature can
hardly be significant in bulk ferroelectrics. In the latter case,
a uniform depolarization field evolving together with the total
polarization was conceived in Refs. [39,40]. From our point
of view, in an experiment on the dc field-driven polariza-
tion reversal, such a field should be exactly compensated
by charges at electrodes maintaining a constant voltage and
thus would not play a role in polarization kinetics. On the
other hand, spatial fluctuations of depolarization fields due to
varying polarization of grains might be important. These fields
arising due to mismatching polarizations in neighbor grains
are typically much higher than coercive fields of ferroelectric
materials. Therefore they are effectively reduced inside the
grains by various physical mechanisms such as splitting in
domains and semiconductor effects including band bending
and possible accumulation of charged defects in surface
states on grain boundaries. Since these mechanisms prevail
during the whole polarization reversal process the statistical
field distributions do not change much as was established in
Sec. IV C. This explains why the NLS model [7,8,14,22] and
the IFM model [12,15–17] neglecting the feedback due to
depolarization fields are nevertheless able to describe the total
polarization development in ferroelectric ceramics with high
accuracy. We note that the statement on a stable statistical

distribution of local electric fields resulting from the actual
study using the 3D-SMS model revises the previous analysis
based on the 2D-SMS model [45] where a broadening of the
statistical field distribution during the polarization reversal
was found. The physical reason of this discrepancy may be
in overestimation of stray fields in 2D simulations as well as
a simpler mechanism of the local field limitation assumed in
the 2D-SMS model.

In conclusion, simulations using the 3D-SMS model
helped to comprehend the paradoxically good performance of
the statistical NLS and IFM models neglecting both the corre-
lations between different switching regions and the feedback
through the developing depolarization field. The 3D-SMS
model itself, however, still provides only a fair agreement
between the simulated time-dependent polarization reversal
and available experimental data. Its most essential drawbacks
are (i) the absence of possible polarization rotation in grains,
which might strongly affect the switching kinetics, and (ii)
the missing random shape of grains which could have a great
effect on anisotropy of field and polarization correlations.
Furthermore, since the local polarization development within
grains is described by the statistical KAI approach, this model
can hardly be applied to ceramics with a submicron grain size
where a true single-domain state is expected to occur.
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APPENDIX A: DIRECTIONAL STATISTICS
OF POLARIZATIONS IN HIGHLY POLED

UNCORRELATED FERROELECTRIC CERAMICS
OF RHOMBOHEDRAL SYMMETRY

The distribution function of possible polarization direc-
tions in a polycrystalline ferroelectric of rhombohedral sym-
metry compatible with a given strong field direction can be de-
rived in the spirit of the approach by Uchida and Ikeda [49], as
was earlier done for the ceramics of tetragonal symmetry [48].
In their original work [49], Uchida and Ikeda avoided deriva-
tion of the distribution of polarization orientations around the
applied field and used an alternative way to evaluate the mean
directional cosine between the polarization and the applied
field. To this end they fixed the polarization direction of a
ferroelectric cell and averaged the directional cosine of the
field over all possible field directions compatible with the
chosen polarization direction. It was assumed that the crystal
lattice orientation is arbitrary and completely decoupled from
the form and orientation of grains.

Introducing the Cartesian coordinates aligned with a pseu-
docubic cell [see Fig. 9(a)] it is sufficient for the case of rhom-
bohedral symmetry to consider a solid angle 0<ϕ<π/4,

0 < ϑ < π/4, in terms of a conventionally associated spher-
ical coordinate system (r, ϕ, ϑ ), comprising one of eight
possible polarization directions with a Cartesian unit vector
ν = (1, 1, 1)/

√
3. Any field direction indicated by a unit vec-

tor n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ) from the considered
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FIG. 9. (a) Scheme of a pseudocubic cell disclosing a polar-
ization in the positive z′ direction and a solid angle OPRSNMK

of strong electric field directions compatible with this polarization
orientation. (b) Two-dimensional projection of the pseudocubic cell
seen from a remote point at the axis z′. Shaded area DKM deter-
mines the considered solid angle with the center at origin.

solid angle, comprising directions crossing the origin O and
the cube faces DKPR,DRSN,DNMK in Fig. 9, equally
favors the selected polarization direction ν. Crossing the bor-
der of the solid angle PRSNMK by the field direction results
in a 70.5◦-polarization rotation to one of the neighboring
stable polarization directions, OA,OC,OH .

The probability density for the field directions is uniform
with a distribution function pr (ϑ, ϕ) = 2/π , the reciprocal
value of the comprised solid angle of 4π/8 = π/2, but it
retains anisotropy through the choice of the considered solid
angle. By averaging of a direction cosine cos α = (n · ν) with
a tilt angle α over the chosen solid angle using the distribution

function pr (ϑ, ϕ) the mean projection of the field on the
selected polarization direction can be evaluated:

〈cos α〉 =
∫ π/2

0
dϕ

∫ π/2

0
dϑ pr (ϑ, ϕ) sin ϑ cos α = 0.866,

(A1)

which coincides with the result by Uchida and Ikeda [49]
and also equals the mean polarization projection from the
directions compatible with the fixed field direction.

To derive the distribution function of possible polarization
directions compatible with a given field direction we chose
the latter along the vector ν and rotate the Cartesian coor-
dinate system (x, y, z) so that a new axis z′ also coincides
with ν (see Fig. 9). Basis unit vectors of the new Cartesian
coordinate system (x ′, y ′, z′) expressed in terms of the old
one read nx ′ = (1,−2, 1)/

√
6, ny ′ = (1, 0, 1)/

√
2, and nz′ =

(1, 1, 1)/
√

3. Observed from a remote point at the axis z′ the
cubic cell looks like a figure of a sixfold rotational symmetry
(being in fact threefold) where x ′ axis is hidden behind the
line DA [Fig. 9(b)]. In terms of a spherical coordinate system
(r, φ, θ ) conventionally associated with the Cartesian system
(x ′, y ′, z′) it is sufficient to consider the azimuthal angle
region between the directions φ = 0 (hidden behind the line
DA) and φ = π/3 (hidden behind the line DE). The distri-
bution function of interest fr (θ, φ) must be φ independent
since due to arbitrary crystal orientation in different grains
there is no selected direction in the (x ′, y ′) plane normal to the
applied field. Therefore it can be derived by averaging over the
azimuthal angle from the relation

2π sin θ dθ fr (θ, φ) = 6
∫ π/3

φ0

dφ′ sin θ dθ pr (θ, φ′). (A2)

The lower integration limit φ0 is defined by the line KM

bounding the solid angle ODKM . For any unit vector n =
(sin θ cos φ, sin θ sin φ, cos θ ) crossing this line a condition
ϕ = 0 applies, therefore the relations

(n · nz′ ) = cos θ = (sin ϑ + cos ϑ )/
√

3,

(n · nx ′ ) = sin θ cos φ = (sin ϑ + cos ϑ )/
√

6 (A3)

are valid. By dividing the second equation by the first one a
relation tan θ cos φ = 1/

√
2 results which can be alternatively

resolved as

θr (φ) = arctan

(
1√

2 cos φ

)
or φr (θ ) = arccos

(
cot θ√

2

)
.

(A4)

When φ varies from 0 to π/3 the function θr monotonically
rises from θr1 = arctan (1/

√
2) (corresponding to 35.2◦) to

θr2 = arctan
√

2 (corresponding to 54.7◦). As long as θ <

θr1 integration in Eq. (A2) goes from φ0 = 0 to π/3 which
results in a constant value of fr (θ, φ). When θr1 < θ < θr2

integration in Eq. (A2) goes from φ0 = φr to π/3 which
results finally in a directional distribution

fr (θ, φ) =

⎧⎪⎨
⎪⎩

2

π
, 0 � θ � θr1,

6

π2

[π

3 − arccos
( cot θ√

2

)]
, θr1 � θ � θr2,

(A5)
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which is properly normalized to unity when integrating over
the full solid angle. Averaging using Eq. (A5) brings about
mean values 〈cos θ〉 = 0.866 and 〈cos2 θ〉 = 0.758 in agree-
ment with Uchida and Ikeda [49].

APPENDIX B: DIRECTIONAL STATISTICS
OF POLARIZATIONS IN HIGHLY POLED

UNCORRELATED FERROELECTRIC CERAMICS
OF ORTHORHOMBIC SYMMETRY

Orthorhombic symmetry allows twelve stable polarization
directions, namely, four in-plane diagonal orientations in each
of (x, y), (y, z), and (x, z) planes in the Cartesian coordinates
(x, y, z) aligned with a pseudocubic cell [see Fig. 10(a)].

Similar to the case of rhombohedral symmetry we start
with determination of a solid angle comprising possible strong
field directions compatible with a certain polarization direc-
tion, in this case exemplarily given by a unit vector ν =
(1, 1, 0)/

√
2. This polarization is compatible with a strong

FIG. 10. (a) Scheme of a pseudocubic cell disclosing a polariza-
tion in the positive z′ direction and a solid angle OAT BS of strong
electric field directions compatible with this polarization orientation.
(b) Two-dimensional projection of the pseudocubic cell seen from
a remote point at the axis z′. Shaded area BKT determines the
considered solid angle with the center at origin.

electric field applied in any direction crossing the origin O

and a rhombic area AT BS (Fig. 10). Crossing the border of
this area by the field direction would entail 60◦ switching of
the polarization to one of the neighboring stable polarization
directions given by vectors OL,OM,ON,OP [Fig. 10(a)].
The solid angle OAT BS has a fourfold symmetry so that it is
sufficient to consider one quarter of it bounded by the triangle
BKT . The lines KT and KB are defined, respectively, by
conditions 0 < ϕ < π/4, ϑ = π/2 and ϕ = π/4, π/2 < ϑ <

π/2 + θo with θo = arctan (1/
√

2) in terms of a convention-
ally associated spherical coordinate system (r, ϕ, ϑ ). The
boundary BT is determined by a unit vector directed to this
line from origin O, n0 = (

√
sin2 ϑ − cos2 ϑ,− cos ϑ, cos ϑ ),

and obeys a relation tan ϑ = −1/ sin ϕ or ϑ0(ϕ) = π −
arctan (1/ sin ϕ).

By integrating over the solid angle OAT BS its value is
found to equal π/3 as it should be considering the 12 available
polarization directions over the total solid angle. Since all
field directions with the solid angle OAT BS are equally in
favor of the polarization direction ν the probability density
for the field directions is uniform with a distribution function
po(ϑ, ϕ) = 3/π , the reciprocal value of the comprised solid
angle. By averaging of a direction cosine cos α = (n · ν) with
a tilt angle α of an arbitrary field direction n over the chosen
solid angle the mean projection of the field on the selected
polarization direction can be evaluated using the distribution
function po(ϑ, ϕ):

〈cos α〉 = 4
∫ π/4

0
dϕ

∫ ϑ0(ϕ)

π/2
dϑ po(ϑ, ϕ) sin ϑ cos α = 0.912,

(B1)

a value known from literature [52,53].
To derive the distribution function of possible polarization

directions compatible with a given field direction we chose the
latter along the vector ν and rotate the Cartesian coordinate
system (x, y, z) so that a new axis z′ also coincides with
ν [see Fig. 10(a)]. Basis unit vectors of the new Cartesian
coordinate system (x ′, y ′, z′) expressed in terms of the old
one read nx ′ = (1,−1, 0)/

√
2, ny ′ = (0, 0,−1), and nz′ =

(1, 1, 0)/
√

2. Observed from a remote point at the axis z′ the
cubic cell looks like a rectangle with the rhombic boundary
of the considered solid angle ASBT [Fig. 10(b)]. In terms
of a spherical coordinate system (r, φ, θ ) conventionally as-
sociated with the Cartesian system (x ′, y ′, z′) it is sufficient
to consider a quarter of the above solid angle delineated by
the triangle BKT [shadowed area in Fig. 10(b)] within the
azimuthal angle region between φ = 0 (line KT ) and φ =
π/2 (line KB). An equation describing the last line bounding
the solid angle BT can be derived from the relations

(n0 · nz′ ) = cos θ =
√

sin2 ϑ − cos2 ϑ − cos ϑ√
2

,

(n0 · nx ′ ) = sin θ cos φ =
√

sin2 ϑ − cos2 ϑ + cos ϑ√
2

,

(n0 · ny ′ ) = sin θ sin φ = − cos ϑ, (B2)
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from which an equation

cos (φ − φ0) = 1/
√

3 tan θ (B3)

with φ0 = arctan
√

2 results.
The distribution function of possible polarization direc-

tions in a polycrystalline ferroelectric orthorhombic symmetry
compatible with a given strong field direction fo(θ, φ) must
be φ independent since due to arbitrary crystal orientation in
different grains there is no selected direction in the (x ′, y ′)
plane normal to the applied field. Therefore it can be derived
by averaging over the azimuthal angle from the relation

2π sin θ dθ fo(θ, φ) = 4
∫

dφ′ sin θ dθ po(θ, φ′), (B4)

which looks similar to Eq. (A2) however covers a more
complicated integration region. According to Eq. (B3), in
the polar angle region 0 < θ < π/6 integration in Eq. (B4)
goes over the azimuthal region 0 < φ′ < π/2. In the polar
angle region π/6 < θ < θo integration over the azimuthal
angle includes two regions 0 < φ′ < φ− and φ+ < φ′ < π/2
with φ± = φ0 ± arccos (1/

√
3 tan θ ) being the solutions to

Eq. (B3). And finally in the polar angle region θo < θ < π/4
integration over the azimuthal angle goes over the region
0 < φ′ < φ− only (the other region disappears). This leads to
the directional distribution

fo(θ, φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3

π
, 0 � θ � π/6,

6

π2

[π

2 − 2 arccos
( cot θ√

3

)]
, π/6 � θ � θo,

6

π2

[
φ0 − arccos

( cot θ√
3

)]
, θo � θ � π/4,

(B5)

which is properly normalized to unity. Averaging using
Eq. (B5) brings about mean values 〈cos θ〉 = 0.912 and
〈cos2 θ〉 = 0.835 confirming Refs. [52,53].

APPENDIX C: SPATIAL FLUCTUATIONS OF BOUND
CHARGES IN HIGHLY POLED, UNCORRELATED

FERROELECTRIC CERAMICS

Variances of the surface bound charge densities at the
differently oriented grain boundaries are defined by coeffi-
cients

a = 〈cos (θn,k,m)2〉 and b = 〈cos (θn,k,m)〉2. (C1)

Using the distribution functions derived in Appendixes A
and B and Ref. [48] they can be calculated to equal at =
0.701 and bt = 0.691 for the tetragonal case, ar = 0.758 and
br = 0.75 for the rhombohedral case, and ao = 0.835 and
bo = 0.832 for the orthorhombic case.

Thanks to statistical independence of the polarization
directions in neighbor grains the variance of the charge den-
sity at the grain boundaries normal to the axis z [Eq. (6)] is
reduced to 〈(

σ z
n,k,m

)2〉 = 2P 2
s (a − b). (C2)

The variances of the charge densities at the grain boundaries
perpendicular to the axes x [Eq. (7)] and y [Eq. (8)] are
defined by 〈(

σx
n,k,m

)2〉 = 〈(
σ

y

n,k,m

)2〉 = P 2
s (1 − a). (C3)

These result in standard deviations of the respective charge
densities [Eq. (9)] listed in Table I for different phase symme-
tries.

For calculation of various physical quantities, for example,
of the field component variances [48], the knowledge of cor-
relation functions of charge densities is needed. They appear
to be diagonal in Cartesian indices β, β ′ and involve only the
identical and the next neighbor indexes n, k,m:〈

σx
n,k,mσ x

n′,k′,m′
〉 = (

P 2
s

/
2
)
(1 − a)δk,k′δm,m′

× (2δn,n′ − δn,n′−1 − δn,n′+1),〈
σ

y

n,k,mσ
y

n′,k′,m′
〉 = (

P 2
s

/
2
)
(1 − a)δn,n′δm,m′

× (2δk,k′ − δk,k′−1 − δk,k′+1),〈
σ z

n,k,mσ z
n′,k′,m′

〉 = P 2
s (a − b)δn,n′δk,k′

× (2δm,m′ − δm,m′−1 − δm,m′+1). (C4)
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