
PHYSICAL REVIEW B 98, 125431 (2018)

Six-dimensional quantum Hall effect and three-dimensional topological pumps
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Modern technological advances allow for the study of systems with additional synthetic dimensions. Using such
approaches, higher-dimensional physics that was previously deemed to be of purely theoretical interest has now
become an active field of research. In this work, we derive from first principles using a semiclassical equation-of-
motion approach the bulk response of a six-dimensional Chern insulator. We find that in such a system a quantized
bulk response appears with a quantization originating from a six-dimensional topological index: the third Chern
number. Alongside this unique six-dimensional response, we rigorously describe the lower even-dimensional
Chern-type responses that can occur due to nonvanishing first and second Chern numbers in subspaces of the
six-dimensional space. Last, we propose how to realize such a bulk response using three-dimensional topological
charge pumps in cold atomic systems.
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I. INTRODUCTION

The introduction of topological concepts in physics has
revolutionized our understanding of different phases of matter
[1–3]. Within this paradigm, systems are classified by global
topological invariants that only take certain integer values
and so cannot be smoothly varied. Instead, these invariants
jump discontinuously across the topological phase transi-
tion connecting two distinct topological phases. A physical
observable that depends on such a topological invariant is
therefore “topologically protected” as it will be robust against
perturbations that do not induce such a phase transition; this
has important consequences, such as quantized bulk responses
and robust edge states [4,5].

A seminal example of a topological phase of matter is the
two-dimensional (2D) quantum Hall (QH) system, in which
the Hall conductance is precisely and robustly quantized in
terms of fundamental constants [6]. In this system, the energy
bands can be characterized by a topological invariant, called
the first Chern number, which leads to the quantization of the
Hall conductance [7]. While this physics was first discovered
for a 2D electronic material in a perpendicular magnetic field
[6], it is now increasingly relevant across a wide range of
different platforms, thanks to the engineering of nonzero first
Chern numbers in, for example, 2D ultracold gases [8,9] and
photonics [3,10,11].

Remarkably, the 2D quantum Hall effect is just the first in
a family of related quantized responses that can be accessed
by changing the dimensionality of the system, i.e., the number
of spatial dimensions along which a particle can move [12].
The next new quantum Hall effect emerges as a nonlinear
quantized response in a four-dimensional (4D) system, where
the quantization is related to a 4D topological invariant called
the second Chern number [13–18]. It has been proposed to
(i) explain the generation of magnetic fields in the early
universe [14], (ii) reveal the topology of 2D quasicrystals

[19,20], (iii) serve as a parent model for three-dimensional
(3D) topological insulators [16,21–23], (iv) exhibit exotic
quasiparticle excitations [15], and (v) be engineered directly in
the laboratory by adding “synthetic” dimensions to a system of
atoms or photons [17,24,25]. In the latter, additional spatial di-
mensions are simulated by coupling sets of internal states such
that particles move between different states just as they would
hop between lattice sites along an extra direction [24,26–36].

Higher-dimensional topological physics can also be probed
experimentally by exploiting a powerful approach called topo-
logical charge pumping [19,23,37–45]. In a topological charge
pump, a system is slowly and periodically “pumped” over time,
such that after each pump cycle, there is a quantized transport
of particles across the system. The robust quantization of this
transport can be related, through a mathematical mapping,
to the quantization of the current response in a quantum
Hall system with more spatial dimensions. Drawing on this
correspondence, 1D topological pumps have been used to
measure the first Chern number [42,43] and its corresponding
boundary states [39,41] usually associated with a 2D quantum
Hall system. Recently, 2D topological pumps have been used
to reconstruct the second Chern number [44] and the plethora
of associated boundary phenomena [45] of a 4D quantum Hall
system for the first time.

In this paper, we develop these ideas further by showing
how a 3D topological pump could be used to probe the
six-dimensional (6D) quantum Hall effect. The latter has a
quantized bulk response that emerges in a system with six or
more spatial dimensions, and which is related to a 6D topolog-
ical invariant: the third Chern number [12,18,38,46]. Unlike its
2D and 4D cousins [17], the 6D quantum Hall response only
arises at third order in the perturbing electromagnetic fields,
and can be understood from the interplay of an electric field
with magnetic fields through two different planes. To illustrate
the physics of this effect, we derive the 6D quantum Hall effect
from a third-order semiclassical analysis, and demonstrate
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that all nontopological contributions to the current response
vanish for a filled energy band, i.e., we obtain generalized
2D- and 4D-like first and second Chern number responses
[17] alongside a 6D topological third Chern number response.
Our results agree with algebraic K-theory derivations of third
Chern number bulk responses [18].

We, further, demonstrate how the 6D quantum Hall effect
can be experimentally accessible by introducing a minimal 6D
model that can be mapped onto a 3D topological pump. Such a
3D pump could be realized, for example, by extending recent
atomic experiments on 1D [42,43] and 2D topological pumps
[44] to include 3D optical superlattices.

Outline

The structure of this paper is as follows: We begin in Sec. II
by introducing the relevant geometrical and topological prop-
erties of energy bands, before developing a third-order semi-
classical approach to calculate the quantum Hall response in a
system with six spatial dimensions. Then, in Sec. III, we show
how the 6D quantum Hall effect could be probed using a 3D
topological pump. We illustrate this for an explicit model that
has energy bands characterized by a nontrivial six-dimensional
topological invariant, namely, the third Chern number.

II. A SEMICLASSICAL APPROACH TO THE 6D
QUANTUM HALL EFFECT

In this section, we develop a semiclassical approach to
derive the 6D quantum Hall effect. We first introduce the rele-
vant geometrical and topological properties of six-dimensional
energy bands in Sec. II A, and then we discuss the semiclassical
equations of motion for a wave packet moving with respect to
such energy bands in Sec. II B. We then apply this semiclassical
approach in Sec. II C to derive the total 6D quantum Hall
current response of a system with a filled energy band. This ex-
tends and generalizes the semiclassical approaches previously
developed for the 2D [51] and the 4D quantum Hall effects [17].

A. Geometrical properties and topological invariants of a 6D
quantum Hall system

As we shall see in the following sections, the response of a
6D quantum Hall system stems from the geometrical properties
and topological invariants of its energy bands, namely, from
the Berry connection and Berry curvature [51,52], and the first,
second, and third Chern numbers [7,12,46].

To first define the relevant geometrical quantities, we begin
from a single particle moving in a periodic potential, for which
the eigenstates can be expressed using Bloch’s theorem as
|χn,k〉=eik·r |n(k, r )〉, where |n(k, r )〉 are the periodic Bloch
functions and k is the crystal quasimomentum. The Bloch
functions |n(k, r )〉 form energy bands within the Brillouin
zone (BZ), with energies En(k), labeled by the band index n.
The key geometrical properties of the energy bands are encoded
in their respective Berry connections and Berry curvatures [52].
For a single energetically isolated and nondegenerate energy
band n, the latter can be expressed as an antisymmetric tensor
with components

�μν (k) = ∂kμ
Akν

− ∂kν
Akμ

, (1)

where Akμ
= 〈n(k, r )| ∂kμ

|n(k, r )〉 is the Berry connection,
and where the indices μ, ν run over all six spatial coordinates.
The Berry curvature (1) is analogous in structure to magnetic
fields but in momentum space, i.e., the Berry connection
acts like a magnetic-vector potential and the Berry curvature
plays the role of the magnetic field [52–55]. Similar to the
magnetic quantities in this analogy, the Berry connection is
gauge dependent, while the Berry curvature is gauge invariant
and so can be extracted from physical observables [56–61].
More formally, the Berry curvature can be expressed as a
differential two-form

� = 1
2�μν (k)dkμ∧dkν, (2)

where ∧ is the antisymmetric wedge product. Note that expres-
sions (1) and (2) can be generalized to include degeneracies
between energy bands, in which case each component of the
Berry curvature becomes a matrix [51]. However, here we re-
strict ourselves to considering a single, isolated, nondegenerate
energy band as stated above.

Crucially, the Berry curvature provides a basis for defining
important topological invariants of an energy band, depending
on the symmetries and dimensionality of the system [12].
Here, we focus on noninteracting systems without additional
local symmetries, in which case the key topological invariants
are Chern numbers [7,12,46]. As topological invariants, these
Chern numbers are global properties of the energy band that
are constrained to take only integer values. They are then topo-
logically robust to small perturbations and only change when
the band gap to neighboring bands is closed. Consequently,
they can lead to remarkably robust physical phenomena such
as the quantum Hall effects which we discuss here.

In a system with two spatial dimensions, only the first Chern
number is relevant. It can be defined as

ν1 = 1

2π

∫
T2

d2k �xy = 1

2π

∫
T2

� ∈ Z, (3)

where we chose the 2D system to lie in the (xy) plane.
The integral is taken over the entire 2D BZ, denoted here
by T2 to emphasize its equivalence with a two-torus due to
the periodicity of the crystal quasimomenta. Physically, the
first Chern number is the integer topological invariant that
underlies the robust quantization of conductance found in the
2D quantum Hall effect [6,7]. Experimentally, it has also been
measured from the center-of-mass drift of an atomic cloud [62],
from dynamical vortex trajectories in a quenched cold-atom
gas [63], or from the heating rate of shaken systems [64–66]
and, as will be reviewed in more detail in Sec. III, from 1D
topological pumping [42,43]. In addition, it has also been
proposed to extract the first Chern number from the steady
state of driven-dissipative systems [24,61,67].

Going up to four spatial dimensions, the second Chern
number emerges as a new topological invariant, defined as
[13,15,16,18]

ν2 = 1

32π2

∫
T4

d4k εαβγ δ�
αβ�γ δ

= 1

8π2

∫
T4

� ∧ � ∈ Z, (4)

125431-2



SIX-DIMENSIONAL QUANTUM HALL EFFECT AND … PHYSICAL REVIEW B 98, 125431 (2018)

where T4 denotes the 4D BZ and where εαβγ δ is the 4D Levi-
Civita symbol, ensuring that this topological invariant vanishes
in lower dimensions. The second Chern number is responsible
for the nonlinear 4D quantum Hall response of a system with
four spatial dimensions [14–18]. It has recently been measured
experimentally using two-dimensional topological pumps,
which realize a dynamical version of the 4D quantum Hall
effect [44], as well as in an effective parameter space associated
with different internal states of a Bose-Einstein condensate [68]
(see also Refs. [69,70] for related proposals). The associated
topological boundary phenomena of two-dimensional pumps
were studied using photonic waveguide arrays [45].

In six spatial dimensions, the key topological invariant is
the third Chern number [12,18,46]

ν3 = 1

(2π )3

∫
T6

d6k
1

23 × 3!
εμνδειρ�

μν�δε�ιρ

= 1

(2π )3

∫
T6

1

3!
� ∧ � ∧ � ∈ Z, (5)

where the 6D BZ is denoted by T6 and where we have
introduced the 6D Levi-Civita symbol εμνδειρ . From the 6D
Levi-Civita symbol it can be seen that the third Chern number
is inherently a 6D topological invariant as it vanishes for
systems with fewer than six spatial dimensions. As we shall
show semiclassically in the following sections, the third Chern
number then underlies the 6D quantum Hall effect. Continuing
further up in dimensionality, a new quantum Hall effect
and a new Chern number emerge every time the number of
dimensions is increased by two, where each successive Chern
number can be defined as a higher wedge product of the Berry
curvature differential form [12,18,46].

Restricting ourselves to six dimensions, it is important to
remember that the lower-dimensional topological invariants,
namely, the first and second Chern numbers, can still be
defined, but now with respect to the various two-dimensional
planes and four-dimensional subvolumes of the system [46].
In total, each energy band in the 6D system is characterized by
(i) a set of first Chern numbers, associated with each possible
2D plane; (ii) a set of second Chern numbers, associated with
each possible 4D subvolume; and (iii) a single third Chern
number, associated with the full 6D system.

In the following, it will be convenient to introduce additional
notation for contributions related to these first and second
Chern numbers in a 6D system. In particular, we will use ν

μν
1 to

denote the first Chern-number-like contribution coming from
the (μν) plane

ν
μν
1 = 1

2π

∫
T6

d6k

(2π )4
�μν, (6)

and ν
μνσρ
2 to denote the second Chern-number-like contribu-

tion coming from the (μνσρ) subvolume

ν
μνσρ
2 = 1

(2π )2

∫
T6

d6k

(2π )2
(�μν�σρ + �μσ�ρν + �μρ�νσ ).

(7)

As can be seen, these expressions correspond to generalizing
Eqs. (3) and (4), respectively, to a 6D BZ. However, note that
these are not integer-valued quantities as the integrals run over

the full 6D BZ, instead of only a 2D or 4D closed manifold,
respectively; consequently, these quantities depend both on the
relevant lower-dimensional invariant as well as on the size of
the perpendicular Brillouin zone to the selected 2D plane or
4D subvolume [17,25].

B. Semiclassical equations of motion

We now review how the geometrical properties of energy
bands affect the semiclassical motion of a wave packet under
perturbing electromagnetic fields [17,25,51,71–74]. As these
semiclassical equations of motion apply to systems with
dimensions d � 2, the discussion will be general and applies
also for a 6D system. We will, however, need to consider effects
up to third order in the perturbing electromagnetic fields as it is
only at this order that the 6D quantum Hall effect appears; this
is in contrast to the previously studied 2D and 4D quantum Hall
effects, which appear at first and second order in the external
fields, respectively [7,17,18].

The semiclassical equations of motion describe a wave
packet of charge −e moving in the presence of weak elec-
tromagnetic perturbations: namely, a weak electric field E =
Eμeμ and a weak magnetic field of strength Bμν =∂μAν −
∂νAμ, where A = Aμeμ is the electromagnetic vector poten-
tial. These external fields are taken to be both spatially uniform
and time independent. Note that any strong electromagnetic
fields present are included intrinsically in the energy band
structure, and so are captured by the band dispersion and the
Berry curvature [25,51]. Hereafter, we take h̄=e=1.

In the semiclassical description, the wave packet has a well-
defined center-of-mass position rc =r

μ
c eμ and momentum

kc =kc
μeμ. The wave packet is also assumed to move adiabat-

ically, such that it can always be constructed out of the same
subset of eigenstates throughout its motion. The choice of basis
for the construction of the wave packet, therefore, determines
the strength of external fields that can be considered. To
illustrate this, we first review the usual semiclassical approach
that is valid up to first order in the external perturbations
[71,75], before generalizing our discussion to higher orders.

In a first-order approach, the full Hamiltonian is expanded
as H ≈ Hc + H ′ + H ′′, where Hc is the full Hamiltonian
evaluated at the center-of-mass position and where H ′ (H ′′)
are the first- (second-) order corrections due to the external
electromagnetic fields [72,74]. Then, as the external fields are
sufficiently weak, the wave packet can be built directly from
the eigenstates |n(k, r )〉 of an isolated energy band of Hc as
[71,75]

|W0〉 :=
∫
Td

ddk w(k, t ) |n(k, r )〉 , (8)

where ddk is the volume element of the d-dimensional
Brillouin zone, denoted by Td , and where w(k, t ) is the
momentum-space distribution function of the wave packet. The
distribution function is chosen such that the center-of-mass
position rc and momentum kc of the wave packet are defined
as

kc :=
∫
Td

ddk|w(k, t )|2k and rc := 〈W0| r̂ |W0〉 , (9)
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where hereafter the subscript c is omitted. The semiclassical
motion of this wave packet is then described by the first-order
equations of motion [71,75]

ṙμ = ∂E (k)

∂kμ

− k̇ν�
μν, k̇μ = −ṙ νBμν − Eμ, (10)

where Einstein summation convention is assumed. As can be
seen, the Berry curvature appears as an “anomalous velocity”
term in addition to the usual group velocity contribution [76]
(appearing as the gradient of the energy band dispersion). This
anomalous velocity can be understood as a momentum-space
analog of the magnetic Lorentz force, in which the Berry
curvature acts like a magnetic field in momentum space [53–
55]. This term has important physical consequences for semi-
classical motion, and can be used to map out the distribution
of the Berry curvature over an energy band [56,57,77].

In order to consider higher orders in the perturbing fields,
the wave packet must be instead constructed out of perturbed
eigenstates. At second order, the appropriate basis is given
by |ñ0〉 = |n〉 + |n′〉, where |n′〉 are the first-order eigenstate
corrections. However, the equations of motion remarkably
have the same form as in Eq. (10), but with modified band
dispersion and Berry curvature [74,78]. Going to third order,
we construct our wave packet from the basis |ñ〉 = |n〉 + |n′〉 +
|n′′〉, where |n′′〉 are the second-order eigenstate correction
[79]. In this basis, the equations of motion have the same form
as in first order [Eq. (10)] and second order [74], except with
a further modified band dispersion Ẽ (k) and Berry curvature
�̃μν . The modifications consist of additional gauge-invariant
contributions, which will vanish when considering the quan-
tum Hall response of a filled energy band [79]. As the focus of
this work is on quantized topological responses of filled bands,
we will omit these corrections in what follows and use Eq. (10)
directly.

With this simplification, we can find the wave-packet
velocity to third order in the applied fields, by recursively
solving the equations of motion as

ṙμ(k) � ∂E
∂kμ

+ Eν�
μν +

{
∂E
∂kρ

+ Eσ�ρσ +
[

∂E
∂kδ

+ Eξ�
δξ

+
(

∂E
∂kε

+ · · ·
)

Bωε�
δω

]
Bλδ�

ρλ

}
Bνρ�

μν, (11)

where all indices run over all d spatial dimensions.

C. Quantum Hall response of a filled band

To find the 6D quantum Hall response, we now need to
consider the current density associated with a filled band of
a system with six spatial dimensions. From our semiclassical
equations, this can be calculated by taking the mean velocity
in Eq. (11) and summing over states within a band, according
to

jμ = 1

V

∑
k

ρ(k) ṙμ(k), (12)

where V is the real-space volume of the 6D system and
ρ(k) is the distribution function for the band occupation.
Hereafter, we will consider a filled band of spinless fermions
for which ρ(k)=1, although we note that all results can

straightforwardly be applied to a uniformly filled band of
bosons [ρ(k)=ρ] by using [25] jμ(ρ)→ρjμ(ρ =1).

In the semiclassical approximation, the sum over occupied
states is converted into an integral of quasimomenta k over the
6D Brillouin zone according to

1

V

∑
k

ρ(k)ṙμ(k) −→
∫
T6

d6k

(2π )6
D6D(r, k)ṙμ(k), (13)

where we have introduced the modified density of states
D6D(r, k) for a six-dimensional system, which we now discuss
in more detail.

1. 6D modified density of states

The modified density of states must be introduced in a
semiclassical description to take into account the change in
the number of available states in each energy band when
both the Berry curvature and the external magnetic field are
present [17,25,80–83]. In the absence of either one of these
corrections, the 6D phase-space density of states will simply
be a constant given by D6D(r, k) =1. This can be understood
classically from Liouville’s theorem, which states that, if the
dynamics are Hamiltonian, the phase-space volume element is
conserved.

However, Liouville’s theorem applies to canonical rather
than physical coordinates, and these are not trivially related
to one another when both a nonvanishing Berry curvature
and external magnetic fields are present [17,25,80–83]. To see
this, we first consider a system subjected only to a magnetic
field perturbation. In this case, the physical momentum k is
related to the canonical momentum K by minimal coupling
k = K − A(r ), where A(r ) is the magnetic-vector potential.
Alternatively, if we consider a system having a nonvanish-
ing Berry curvature, the physical position r is related to
the canonical position R by r = R + A(k), where A(k) is
the Berry connection [cf. Eq. (1)]. In the presence of both
nonvanishing Berry curvature and external magnetic field, both
physical coordinates differ from the canonical coordinates, and
generalized Peierls substitutions are required [80–83]. These
differences are then captured by the modified density of states,
which can be understood in terms of the Jacobian of the
transformation between physical and canonical coordinates,
up to a multiplicative constant [81].

Importantly, the modified density of states depends on the
dimensionality of the system [17,25,80]. To calculate it in
6D, we treat the equations of motion [Eq. (10)] as classical
equations and recast them in the form [81]

ωij ξ̇
j = ∂h

∂ξ i
, (14)

where h is the classical Hamiltonian, ξ i are the collective
phase-space physical coordinates, and ωij is a symplectic
matrix given by

ω =
(−B −I6

I6 �

)
, (15)
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where I6 is a size six identity matrix and B, � are 6 × 6 anti-
symmetric matrices with components Bij , �ij . The modified
density of states can then be calculated as

D6D(r, k) =
√

det(ω) (16)

to find

D6D(r, k) = 1 + 1

2
Bμν�

μν

+ 1

82 × 2
(εμνρσλξBρσBλξ )(εμνγωδι�

γω�δι)

+ 1

482
(ερσξωδιBρσ BξωBδι)(εμνγ ηκα�μν�γ η�κα ).

(17)

Note that the last term will vanish in less than six dimensions
due to the Levi-Civita symbols, whereas the second-to-last
term will survive down to four dimensions as two of the indices
in the Levi-Civita tensors are summed over.

2. Total current response

We are now ready to calculate the total current response (12)
of a 6D quantum Hall system by combining the mean velocity
(11) with the 6D modified density of states (17) and keeping
terms up to third order in the perturbing electromagnetic
fields. As this expression initially contains many terms, we
will consider subsets of terms sequentially, according to their
increasing order in the magnetic field strength.

Order O(B0). At zeroth order in the magnetic field, there
are only two terms appearing

∫
T6

d6k

(2π )6

(
∂E
∂kμ

+ Eν�
μν

)
= Eν

ν
μν
1

2π
, (18)

where the first term vanishes after integration over the Brillouin
zone due to the periodicity of the dispersion energy E (k).
The second term is related to the 2D quantum Hall effect
as it depends on the first Chern-number-like contribution
introduced above [cf. Eq. (6)]. An analogous effect can emerge
in a 4D quantum Hall system, where the Berry curvature of a
particular plane is integrated over the 4D BZ instead of the 6D
BZ [17,18,25].

Order O(B1). At first order in the magnetic field, there are
two types of terms; the first of these depends on the group
velocity and is

∫
T6

d6k

(2π )6

(
1

2
Bρσ�ρσ ∂E

∂kμ

+ Bσρ�
μσ ∂E

∂kρ

)

=
∫
T6

d6k

(2π )6

1

2
BσρE

(
∂�ρσ

∂kμ

− ∂�μσ

∂kρ

+ ∂�μρ

∂kσ

)
, (19)

where we have used the antisymmetry of the magnetic field
components and where the equality is obtained through inte-
gration by parts. The terms in the parentheses vanish due to
the Bianchi identity

∂�ρσ

∂kμ

− ∂�μσ

∂kρ

+ ∂�μρ

∂kσ

= 0. (20)

The remaining two terms at order O(B1) are

∫
T6

d6k

(2π )6

(
�ρνBσρ�

μσEν + 1

2
Bσρ�

σρ�μνEν

)

= 1

2

ν
μνσρ
2

(2π )2
BσρEν, (21)

where the prefactor 1
2 takes care of overcounting from the Ein-

stein summation. Equation (21) is related to the 4D quantum
Hall effect, i.e., it depends on the second Chern-number-like
contribution introduced above [cf. Eq. (7)] and is second
order in the applied electromagnetic fields (cf. Ref. [17]).
Note that there can be up to 10 independent terms coming
from Eq. (21), corresponding to the number of unique four-
dimensional subvolumes that can generate such a response in
a given direction μ.

Order O(B2). To simplify the expressions at second order
in the magnetic field, we introduce the more compact notation
of

Qρσλξ := (�ρσ�λξ + �λρ�σξ + �ρξ�σλ). (22)

At this order, we can split the contributions into two parts. The
first set of second-order terms depends on the group velocity
and using our compact notation is written as

∫
T6

d6k

(2π )6

(
1

8
QρσλξBρσ Bλξ

∂E
∂kμ

+ 1

2
QμνσλBνσBλρ

∂E
∂kρ

)
.

(23)

Using the antisymmetric properties of the tensors, we can
rewrite Eq. (23) as

∫
T6

d6k

(2π )6

(
1

8
BνσBλρ

[
∂E
∂kρ

Qμνσλ + ∂E
∂kλ

Qμνρσ

+ ∂E
∂kσ

Qμλρν + ∂E
∂kν

Qμρλσ + ∂E
∂kμ

Qνσλρ

])

= −
∫
T6

d6k

(2π )6

(
1

8
BνσBλρE

[
∂Qμνσλ

∂kρ

+ ∂Qμνρσ

∂kλ

+ ∂Qμλρν

∂kσ

+ ∂Qμρλσ

∂kν

+ ∂Qνσλρ

∂kμ

])
, (24)

where the second equality is obtained using integration by
parts. Crucially, these terms vanish due to a generalized
Bianchi identity for [79] Qρσλξ :

∂Qμνσλ

∂kρ

+ cycl(ρμνσλ) = 0, (25)

where cycl(ρμνσλ) denotes all cyclic permutations of indices
for the quantity ∂Qμνσλ/∂kρ . Similar terms in systems of
four, or more, dimensions will vanish due to the above
identity.
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The remaining terms at second order in the magnetic field
are∫

T6

d6k

(2π )6

(
1

8
Bρσ BλξEν (�ρσ �λξ −�ρλ�σξ +�ρξ�σλ)�μν

+BδεBιρEν�
εν�ρδ�μι + 1

2
BειBρσ Eν�

νε�ρσ �μι

)

= 1

8

ν3

(2π )3
εμνδειρBδεBιρEν, (26)

where the 1
8 factor takes care of overcounting from the Einstein

summation, and where ν3 is the third Chern number introduced
above [cf. Eq. (5)]. This is the quantum Hall response which
emerges in systems with six dimensions. It depends on the
six-dimensional topological invariant and quantizes the third-
order response in the perturbing electromagnetic fields. This
response appears only in systems with six or more dimensions
while in 4D it vanishes due to the antisymmetry of the Levi-
Civita tensor (cf. Ref. [17]).

Order O(B3). For consistency reasons, we consider also
terms that are third order in the magnetic field. The relevant
terms are [79]∫

T6

d6k

(2π )6

(
1

8

∂E
∂kρ

Bνρ�
μνBξωBλιQξωλι

+ ∂E
∂kε

Bωε�
δωBλδ�

ρλBνρ�
μν

+ 1

48

∂E
∂kμ

Bρσ BξωBδιQρσξωδι

+ 1

2

∂E
∂kσ

Bεη�
εηBνρ�

μνBλσ�ρλ

)
, (27)

where we have introduced another shorthand
notation Qμνρξωλ := �μνQρξωλ + �μρQξνωλ + �μλQξωνρ +
�μξ Qνρωλ + �μωQξνλρ .

Further manipulation of these antisymmetric tensors and
once more using integration by parts [79], it can be shown
that these terms vanish under a generalized Bianchi identity
for Qμνρξωλ:

∂Qμνξωλι

∂kρ

+ cycl(ρμνξωλι) = 0, (28)

where cycl(ρμνξωλι) denotes all cyclic permutations of
indices for the quantity ∂Qμνξωλι/∂kρ .

Final result. Collecting together all the nonvanishing terms
[cf. Eqs. (18), (21), and (26)] for the current response of a fully
occupied band, we obtain

jμ = ν
μν
1

2π
Eν + 1

2

ν
μνσρ
2

(2π )2
BσρEν + 1

8

ν3

(2π )3
εμνδειρBδεBιρEν

(29)

up to third order in perturbing external fields. The induced
current has three topological contributions: (i) a first-order
correction related to the first Chern number. Such a term
arises in systems with two or more dimensions and in 2D it
corresponds to the well-known quantum Hall effect [6]. (ii) A
second-order correction related to the second Chern number,
manifesting only in systems with dimensionality greater or

equal to four (cf. Ref. [17]). (iii) A third-order correction
which is proportional to the third Chern number, present only
in systems with six or more dimensions (cf. Ref. [18]). We
note that higher-order corrections to the current response will
vanish due to the fact that Chern numbers of order higher than
the physical dimensions are zero because of antisymmetry.

As can be seen from Eq. (29), there are many possible
choices for the orientations of the magnetic- and electric
field perturbations, which will all lead to a third Chern-type
current density response of the same magnitude. However,
from the semiclassical analysis, it can be seen that these various
responses can have different microscopic origins [17,25],
depending on whether the relevant terms come from the particle
density [via the modified density of states in Eq. (17)] or from
a Lorentz-type response [via the mean velocity in Eq. (11)] or
from a combination of the two. For this reason, a particular third
Chern number response can be classified as a density-type,
Lorentz-type, or mixed density-Lorentz-type response; these
can be distinguished by looking at center-of-mass observables,
which are related to the particle density of the filled band, as
well as to the current density (cf. Ref. [25]).

III. TOPOLOGICAL PUMPS

We have derived the general bulk response of a 6D QH
system in Eq. (29), and now turn to discuss how such a response
could be probed experimentally. One avenue towards exploring
such effects is to engineer “synthetic dimensions,” in which sets
of internal states are parametrically coupled so as to simulate
motion along extra spatial dimensions [17,24–36]. The 6D
quantum Hall response could then be observed directly in
the current density or, depending on the type of response, in
center-of-mass observables, such as the center-of-mass drift of
an atomic cloud [17,25,62] or the driven-dissipative steady
state [24,61]. However, building a system with effectively
six spatial dimensions is technologically challenging, as it
would require adding and controlling at least three synthetic
dimensions in addition to the real spatial dimensions of the
physical system.

An alternative and powerful avenue towards realizing such
higher-dimensional topological responses involves adiabatic
and periodic scanning over auxiliary dimensions, so-called
“topological pumping” [19,23,37–45]. We shall now briefly
review in Sec. III A the route to generating a 1D topological
charge pump starting from the 2D quantum Hall effect, before
discussing the generalization of topological pumping to higher
dimensions in Sec. III B. In particular, we shall show how this
concept can be extended to realize 3D topological pumps with
a quantized third Chern number response.

A. 1D topological pumps

Let us start by considering a 2D QH system [see Fig. 1(a)].
As an example, we shall consider the Harper-Azbel-Hofstadter
(HAH) model [47–49], where particles move on a 2D square
lattice in the presence of a perpendicular magnetic field

H2D =
∑

r

Hxy

= −J
∑

r

[ĉ†r+aex
ĉr + ei2πᾱx ĉ

†
r+aey

ĉr + H.c.], (30)
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FIG. 1. Illustration of the relationship between a 2D quantum Hall system and a 1D topological charge pump. (a) The 2D quantum Hall
effect on a square lattice, also referred to as the Harper-Azbel-Hofstadter (HAH) model [47–49] [cf. Eq. (30)]. (b) Written in the Landau gauge
[as chosen in Eq. (30)], the HAH model can be written with periodic boundary conditions along the y axis, i.e., you can wrap the 2D system
onto a cylinder [see Eq. (31)]. Using Faraday’s induction law, an electric field perturbation Ey = ∂φx/∂t is generated by threading a magnetic
flux through the cylinder. (c) Using dimensional reduction [16,37,39,40,50], the 2D HAH model is mapped onto a 1D topological charge pump
model, where particles hop on a 1D periodic lattice in the presence of an onsite cosine potential [see Eq. (32)]. As a function of a periodic
modulation of the onsite potential, a quantized number of charges is pumped across the 1D system [cf. Eqs. (33) and (34)]. Plotted is the onsite
cosine potential with ᾱ = 13/21 and φx = 0. Disks mark the discrete sampling of the potential at lattice sites.

where ĉr is the annihilation operator of a particle at position
r = (x, y), J is the nearest-neighbor hopping amplitude with
ex, ey denoting unit vectors in the x, y directions, and where a

is the lattice spacing. A magnetic flux α = 2πᾱ in units of the
magnetic flux quantum �0 threads each plaquette of the model
and is written in the Landau gauge using the Peierls substitution
[84]. We choose this model as it leads to an experimentally
relevant 1D pumping model, variants of which have been
realized in cold atoms [42,43] and photonic waveguide arrays
[39,41]. It also emphasizes the generality of our analysis, as
in its semiclassical limit α 
 1, the HAH model describes the
continuum QH limit with a Landau-level spectrum, while in
other regimes it can describe a plethora of physics ranging
from graphene-like two-band effects [85] to quasiperiodic
phenomena [19,20,39,40].

As this is a 2D QH system, homogeneously filling a band
of the HAH model leads to a quantized Hall conductance,
proportional to the first Chern number [7]. To see how this is
related to 1D topological pumping, we place the HAH model on
a cylinder with periodic boundary conditions in the y direction.
Thanks to our chosen Landau gauge, we can then proceed by
Fourier transforming the model only in the y direction to obtain
[see Fig. 1(b)]

H2D =
∑
x,ky

Hxky

= −J
∑
x,ky

(
ĉ
†
x,ky

ĉx+aex ,ky
+ H.c.

+ 2 cos(2πᾱx − kya)ĉ†x,ky
ĉx,ky

)
. (31)

By applying the procedure of “dimensional reduction,” this
2D QH system can be directly related to a 1D pump. More
specifically, dimensional reduction corresponds to taking the
cylinder’s circumference to zero and reinterpreting the mo-
mentum ky in terms of an external parameter ϕ, i.e., reducing
the dimensionality of the Hamiltonian by one dimension,
makes the creation/annihilation operators ky independent and
removes the sum in Eq. (31) [16,37,39,40,50]. The resulting

1D model

Hx =−J
∑

x

[ĉ†x ĉx+aex
+ H.c. + 2 cos(2πᾱx − ϕ)ĉ†x ĉx

]

(32)

describes a particle hopping on a 1D lattice in the presence
of an onsite spatially varying potential, which is controlled
externally through the parameter ϕ [see Fig. 1(c)].

The 1D model (32) can be adiabatically pumped by slowly
changing the external parameter ϕ(t ) over time, i.e., by
temporally modulating the onsite energy in a periodic fashion.
At each time t , we can find the 1D bands of the system in
terms of Bloch functions |n(kx, ϕ(t ), x)〉 and eigenenergies
En(kx, ϕ(t )). Similar to the semiclassical approach of Sec. II,
the adiabatic motion of a wave packet with respect to a given
nondegenerate, instantaneous energy band can be captured by
the semiclassical equations of motion [51]

ẋ = ∂E (kx, ϕ)

∂kx

+ �xϕϕ̇, (33)

where x and kx now denote the center-of-mass position
and momentum of the wave packet, respectively. The Berry
curvature of the instantaneous band is now given by �xϕ =
i(〈∂ϕn|∂kx

n〉 − 〈∂kx
n|∂ϕn〉). As in Eq. (10), the first term on

the right-hand side describes the usual group velocity, while
the second term is the anomalous velocity [51,76] that is now
controlled by the pumping rate ϕ̇. Note that one can understand
the connection between this 1D anomalous velocity and the
standard 2D response through Faraday’s induction law, in
which an electric field perturbation is generated by threading
a magnetic flux through the aforementioned cylinder ϕ̇ = Ey

[see Fig. 1(b)]. In other words, an electric field perturbation
corresponds, in the pumping limit, to a time-dependent mod-
ulation of the potential.

As in a 2D QH system, the topological response is associ-
ated with a filled or homogeneously populated bulk band of
the 1D pump. To proceed, a similar approach to Sec. II C can
be applied to Eq. (33), except now the summation is over a
1D BZ as the model is one dimensional. The periodicity of
the eigenenergies En(kx, ϕ(t )) over this 1D BZ guarantees that
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the group velocity contribution for a filled band sums to zero.
However, in contrast to a 2D quantum Hall system, the current
response of the 1D pump is not itself topological as the Berry
curvature is only integrated over a single momentum, and so
is not related to the first Chern number.

Instead, the topological behavior emerges when we consider
particle transport of a filled band over a full pump cycle,
i.e., integrating the current response over time such that ϕ

varies from 0 to 2π . Then, the center-of-mass drift of a filled
band is given by δxCOM = aν1/α, where ν1 is the topological
first Chern number associated with the pumping process
[37,39,40,42,50]

ν1 = 1

2π

∫
T1

∫ 2π

0
�xϕ dϕ dkx (34)

and a/α is the length of the 1D unit cell. This topological
displacement has been directly measured in a 1D topological
pump of cold atoms [42,43], while the corresponding boundary
phenomena have been experimentally probed in photonic
waveguide arrays [39,41].

B. Higher-dimensional topological pumps

Having seen the connection between 2D QH physics and
1D topological pumps, we are in a position to discuss higher-
dimensional topological pumps and how these relate to higher-
dimensional quantum Hall effects. A key additional ingredient
for these higher-dimensional QH responses is the inclusion
of magnetic field perturbations [cf., e.g., Eq. (29)], on top of
the electric field responsible for the 2D QH response. In a
topological pump, as discussed above, the analog of the latter
is a time-dependent modulation of the onsite potential. As we
shall show below, the analog of a magnetic field perturbation
is then a static deformation of the onsite potential [19], as
was experimentally realized in Ref. [44] for a 2D topological
pump that probed the second Chern-type pumping response.
In this section, we shall first introduce a minimal model for
the 6D quantum Hall effect and then explain how it can be
implemented in a 3D topological pump so as to realize a third
Chern-type response.

We start by considering a minimal 6D QH model composed
of three copies of the HAH model in orthogonal planes [cf.
Eq. (30) and see Fig. 2(a)]

H6D =
∑

r

(Hxw + Hyu + Hzv ), (35)

where now the spinless electrons move on a 6D hypercubic
lattice with positions r = (x, y, z,w, u, v), nearest-neighbor
hopping amplitudes J , and where each plaquette in the xw,
yu, and zv plane is threaded by a magnetic flux αxw, αyu, αzv ,
respectively. As in Eq. (30), each copy of the HAH model is
in the Landau gauge of a particular plane, taking now eμ as a
6D unit vector along the μ direction.

The energy spectrum of H6D is given by a Minkowski sum
over the energy bands of the three constituent Hamiltonians:

E = {Exw + Eyu + Ezv|Exw ∈ σ (Hxw ),

Eyu ∈ σ (Hyu), Ezv ∈ σ (Hzv )}, (36)

where σ (H ) denotes the spectrum of the Hamiltonian H .
Correspondingly, the eigenstates of H6D are product states of
eigenstates from the three constituent Hamiltonians. There-
fore, there are nonvanishing Berry curvatures only within
the xw, yu, and zv planes, i.e., the curvature in a plane
μν associated with a given energy band can be written as
�μν = �xwδμxδνw + �yuδμyδνu + �zvδμzδνv . Consequently,
in this model the second and third Chern numbers can be
expressed as products of corresponding first Chern numbers,
e.g., ν3 = νxwνyuνzv .

To reduce the 6D QH model to a 3D topological pump, we
apply the procedure of dimensional reduction as introduced
above [see Fig. 2(b)]. In this chosen gauge, we apply periodic
boundary conditions in three directions w, u, and v, and Fourier
transform to find

H6D =
∑

�

(
Hxkw

+ Hyku
+ Hzkv

)
(37)

[cf. Eq. (32)], while remembering that, in 6D, all operators
and sums now run over the full set of � = (x, y, z, kw, ku, kv ).
From this, we can read off the corresponding 3D pump model
as

H3D = −J
∑

r′

(
c
†
r′+aex

cr′ + c
†
r′+aey

cr′ + c
†
r′+aez

cr′ + H.c.

+ [2 cos(2πᾱxwx − ϕx ) + 2 cos(2πᾱyuy − ϕy )

+ 2 cos(2πᾱzvz − ϕz)]c†r′cr′
)
, (38)

which is now describing a particle hopping on a 3D lattice,
at positions r′ = (x, y, z), in the presence of an onsite spa-
tially varying potential that is controlled by three external
parameters ϕx, ϕy , and ϕz [see Fig. 2(c)]. Such a model
could be realized in a 3D optical superlattice for ultracold
atoms, where the period of the superlattice potential in the
different directions reflects the number of magnetic flux
quanta αxw, αyu, and αzv of the original 6D model, similar
to the recent 1D and 2D topological pump experiments of
Refs. [42–44].

In order to observe a topological response, we now need
to consider how to include appropriate perturbations in the
3D topological pump model [Eq. (38)]. From Eq. (29), we
observe that we can incorporate a plethora of magnetic field
perturbations through different planes in the 6D QH model,
in order to study the various third Chern number responses.
However, some of these magnetic field perturbations are
irrelevant to the 3D pump because we cannot observe currents
in the reduced dimensions w, u, and v, i.e., we do not need
to consider magnetic perturbations involving Bμν with both
μ, ν ∈ {w, u, v}. The remaining range of possible magnetic
field perturbations involve at least one index that is a real
dimension in the 3D pump, and can be written in a gauge that
allows us to proceed with the dimensional reduction procedure.
Then, we obtain a general model that incorporates all possible
magnetic field perturbations in 6D as spatial deformations in
the dimensionally reduced 3D pump model

H3D =−J
∑

r′

(
c
†
r′+aex

cr′ + c
†
r′+aey

cr′ + c
†
r′+aez

cr′ + H.c.

+ [2 cos{2π [(ᾱxw + B̄wx )x + B̄wyy + B̄wzz] − ϕx}
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−2

−1

1

2

FIG. 2. Illustration of the relationship between a 6D quantum Hall system and a 3D topological charge pump. (a) The 6D quantum Hall
effect on a 6D hypercube lattice with αxw , αyu, and αzv threading the orthogonal xw, yu, and zv planes, respectively [cf. Eq. (35)]. Note, we
attempt to draw a 6D illustration using a 3D axes system: some imagination is required. An example of a third Chern quantized Hall response
involves the generation of Ev, Buz, and Bwy [see Eq. (29)]. (b) Written in the Landau gauge [as chosen in Eq. (35)], the model can be written
with periodic boundary conditions in the w, u, and v axes, i.e., you can wrap the 6D system onto three coupled cylinders [see Eq. (37)]. Using
Faraday’s induction law, an electric field perturbation Ev = ∂φz/∂t is generated by threading a magnetic flux through the zv cylinder. The
perturbing magnetic fields Buz and Bwy generate Lorentz forces Fu and Fw in the u and w axes, respectively. (c) Using dimensional reduction,
the 6D model (35) is mapped onto a 3D topological charge pump model where particles hop on a 3D periodic lattice in the presence of an
“egg-carton” onsite potential composed of a sum of three cosine potentials in the orthogonal physical axes x, y, z [see Eq. (39)]. For clarity, the
surface potential is plotted (left) with guiding dashed lines showing the skewness due to the magnetic fields. The bulk “egg-carton” potential
(right) is also shown for completeness. As in the 1D pump case, as a function of a periodic modulation of the onsite potential in the z direction,
a quantized number of charges is pumped along that axis. Spatial deformations of the potential couple the motion in the z direction onto motion
in the y axis, which then induces motion in the x axis, as expected from this Lorentz-type 3D pumping response [cf. Eq. (41)].

+ 2 cos{2π [(ᾱyu + B̄uy )y + B̄uzz + B̄uxx] − ϕy}
+ 2 cos{2π [(ᾱzv + B̄vz)z + B̄vyy + B̄vxx]

−ϕz}]c†r′cr′
)
, (39)

where B̄μν = Bμνa
2/�0. In terms of the original 6D model,

these possible perturbations can be divided into two types:
(i) those such as B̄wx which are in the same plane as an
intrinsic strong magnetic flux in Eq. (35) and which therefore
affect the particle density of a filled band, and (ii) those such
as B̄wy , which are in a plane in which there are no strong
magnetic fluxes and therefore leads to a Lorentz force on
moving particles [25,44]. In terms of the 3D pump, the analog
of these perturbations is to (i) modify the period of the potential
along a particular direction and (ii) couple different directions
within an onsite potential term. A perturbation of the latter type
was recently experimentally realized in a 2D topological pump
for ultracold atoms by introducing a small tilt angle in the 2D
optical superlattice [44].

Through an appropriate combination of these perturbing
fields [cf. Eq. (29)], a quantized third Chern-type bulk dis-
placement may be observed. Note that depending on which
perturbations are involved, this can be identified as a density-
type, Lorentz-type, or mixed density-Lorentz-type response,
as introduced above. While these different responses lead to
the same average current density, they can be distinguished
from center-of-mass observables, such as the center-of-mass
displacement of a filled band after a pump cycle [25].

As an example of how a third Chern-type response can be
probed in a 3D topological pump, we consider the 3D pump
model (39) with only two nonzero spatial perturbations B̄zu and

B̄yw, and where ϕz is pumped adiabatically and periodically
in time. Such a model could be realized in a 3D optical
superlattice of cold atoms, where the superlattice is tilted by
small angles in the xy and zw planes. In terms of the original
6D model, the analogous electromagnetic perturbations would
lead to a quantized current response (29) of

jx = ν3

(2π )3
BuzBwyEv,

jy = ν
yvuz

2

(2π )2
BuzEv,

j z = νzv
1

2π
Ev,

jw = ju = jv = 0, (40)

where the pumping of ϕz is analogous to the electric field
Ev and where the third Chern number only enters the cur-
rent density along jx . This corresponds to a Lorentz-type
response, as both magnetic perturbations enter the current
density through the mean velocity (11). Consequently, this
topological response can be clearly measured both from the
current density or from center-of-mass observables [25].

In the 3D topological pump, the corresponding center-of-
mass displacement of a filled band after a pump cycle in ϕz

is

δxc.m. = ν3B̄uzB̄wy

αxwαyuαzv

a, δyc.m. = ν
yz

2 B̄uz

αzvαyu

a, δzc.m. = νz
1

αzv

a,

(41)

where the third Chern number can be extracted from the center-
of-mass displacement, δxc.m., and the topological invariants of
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the pump cycle are defined as

ν3 = 1

8π3

∫
T3

∫ 2π

0
�xϕx �yϕy �zϕzdϕxdϕydϕzdkxdkydkz,

ν
yz

2 = 1

4π2

∫
T2

∫ 2π

0
�yϕy �zϕzdϕydϕzdkydkz,

νz
1 = 1

2π

∫
T1

∫ 2π

0
�zϕz dϕzdkz. (42)

IV. CONCLUSIONS

We have derived the bulk responses induced in a six-
dimensional topological Chern insulator under electromag-
netic perturbations up to third order and shown that these are
related to the topological indices of the occupied bands. In so
doing, we show that there is a nonlinear quantized topological
response, which is absent in lower dimensions and which is
proportional to the third Chern number: a 6D topological in-
variant. While the existence of this 6D topological invariant has
been derived mathematically [18,46] and postulated to exist by
symmetry arguments [1,2], our semiclassical analysis provides
the microscopic interpretation of how it manifests in a 6D
quantum Hall effect. Thanks to recent technological advances,
this higher-dimensional topological response could be probed
by using synthetic dimensions to effectively engineer a system
with six spatial dimensions or by using topological pumping
to scan over extra dimensions with time modulation.

As a concrete experimental proposal, we have constructed
a minimal 6D model that will exhibit a third Chern number
response, and also shown, using dimensional reduction, how
this model can be mapped onto a 3D topological pump. Such
a mapping can assist cold-atomic experiments to directly
probe the six-dimensional topology in the laboratory, building
on recent experiments which realized one-dimensional and
two-dimensional topological pumps using optical superlattices
[42–44]. Going further, it will be of great interest to study topo-
logical edge states and the effect of interparticle interactions in
both the 6D quantum Hall effect and the 3D topological pump.
So far, the role of many-body interactions is largely unexplored
in such systems, and these may yet hold promise for finding
new exotic quasiparticle excitations [15].

Note added. Recently, we became aware of a similar
work on higher-dimensional QH effects [86]. Our inde-
pendent derivations follow a similar semiclassical analysis
[17,25,51,71–74], and, following the online appearance of our
paper, also use the same generalized Bianchi identities [cf.
Eqs. (25) and (28)], which were initially derived here.
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