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Impurity-induced orbital magnetization in a Rashba electron gas
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We investigate the induced orbital magnetization density in a Rashba electron gas with magnetic impurities.
Relying on classical electrodynamics, we obtain this quantity through the bound currents composed of
paramagnetic and diamagneticlike contributions which emerge from the spin-orbit interaction. Similar to Friedel
charge ripples, the bound currents and the orbital magnetization density oscillate as a function of distance away
from the impurity with characteristic wavelengths defined by the Fermi energy and the strength of the Rashba
spin-orbit interaction. The net induced orbital magnetization was found to be of the order of magnitude of its
spin counterpart. In addition to the exploration of the impact of the electronic filling of the impurity states,
we investigate and analyze the orbital magnetization induced by an equilateral frustrated trimer in various
noncollinear magnetic states. On the one hand, we confirm that nonvanishing three-spin chiralities generate a
finite orbital magnetization density. On the other hand, higher-order contributions lead to multiple-spin chiralities
affecting nontrivially and significantly the overall magnitude and sign of the orbital magnetization. This study
substantiates the notion that the orbital degrees of freedom are an essential aspect of nanoscale magnetism,
calling for further theoretical and experimental attention.
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I. INTRODUCTION

The inversion symmetry breaking at surfaces and interfaces
leads to the emergence of a wide variety of phenomena. Its
signature can be detected experimentally through different
physical quantities [1–3]. In combination with the spin-orbit
(SO) interaction, it leads to the Rashba effect, which consists
of an energy and spin splitting of the surface and interface
states [3–5]. The Rashba effect was observed experimentally
at noble-metallic surfaces using angle-resolved photoemission
spectroscopy [6–8] through the energy dispersion imaging of
the Rashba spin splitting. Since its first observations, several
studies were devoted to this effect, as reported in several
reviews [3,9]. For instance, it was shown that the Rashba spin
splitting can be manipulated by material engineering [10–12].
In the case of a Bi monolayer deposited on Si(111), the
splitting can be very large [10].

An alternative way to probe the spin splitting of the
surface states is using the Friedel oscillations [13] resulting
from the scattering of the surface electrons off defects or
impurities. They can be accessed experimentally via scanning
tunneling microscopy (STM) [14,15]. Although it was shown
theoretically that no signature of the Rashba spin splitting
can be observed in the charge density surrounding a single
nonmagnetic impurity [16], larger ensembles of impurities
such as quantum corrals do enable its detection [17]. Lounis
et al. [18] showed that the introduction of a magnetic impurity
into a Rashba electron gas causes Friedel oscillations in the
spin magnetization density where a signature of the spin
splitting can be observed: The induced spin magnetization
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exhibits a skyrmionlike spin texture. In addition, the mag-
netic impurities also generate finite ground-state spin currents,
leading to the emergence of the chiral Dzyaloshinskii-Moriya
interaction [19–21]. The latter is the key ingredient for the
stabilization of topological spin textures such as magnetic
skyrmions [22–25].

In addition to the induced spin magnetization and spin
currents, the combination of the Rashba SO interaction and
breaking of time-reversal symmetry (due to magnetic impuri-
ties or magnetic fields) generates bound charge currents and
also a large orbital magnetic susceptibility [26,27]. These
bound currents were explored in the context of magnetic
impurities and ferromagnetic islands coupled to superconduc-
tors [28], and as they represent electrons moving in a closed
circuit, they should also lead to a finite orbital magnetization.
In classical electrodynamics, the bound currents and orbital
magnetization are related via [29]

�j (�r ) = �∇�r × �ml (�r ), (1)

where �ml (�r ) is the orbital magnetization density and �j (�r ) is
the bound current density. The spin contribution to the mag-
netization is additive to the orbital one and was investigated in
Ref. [18]. In equilibrium, �j (�r ) is nondissipative and fulfills
the continuity equation for the electron density ρ(�r ) [see
Eq. (5)]. Recently, it was shown that a finite orbital magne-
tization emerges for certain types of magnetic structures even
in the absence of the spin-orbit interaction [30–32]. It then
arises from the scalar spin chirality of the magnetic texture,
Cijk = �Si · (�Sj × �Sk ), with �Si being the spin magnetic moment
direction at site i. Indeed, noncollinear spin textures can be
viewed as an emergent magnetic field that couples the spin and
orbital degrees of freedom [33,34], mimicking the effects of
the SO interaction. Moreover, for large magnetic skyrmions,
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the chirality-driven orbital magnetization is quantized and be-
comes topological (i.e., not affected by continuous deforma-
tions of the magnetic texture) and might be accessed experi-
mentally via x-ray magnetic circular dichroism (XMCD) [31].
The chiral orbital magnetization was also found in periodic
systems [35–37] as well as in continuous topological struc-
tures deposited on a Rashba electron gas [38]. Remarkably,
the time-reversal-invariant Rashba electron gas can also be
seen as having a compensated orbital magnetization [39].

In this paper, we investigate the induced orbital magneti-
zation generated when magnetic impurities are deposited on
a Rashba electron gas. This model was well characterized in
Ref. [40], which studied the long-range interactions between
the magnetic impurities mediated by the spin degrees of free-
dom of the Rashba electron gas. Here, we turn our attention
to their orbital degrees of freedom and study how they lead
to orbital magnetism. We consider a single impurity or a
trimer with a noncollinear spin state and show that the orbital
and spin magnetizations can be of comparable magnitude.
Furthermore, we demonstrate that higher-order spin chiralities
can provide a substantial contribution to the induced orbital
magnetization generated by clusters involving more than one
impurity. This study substantiates the notion that the orbital
degrees of freedom are an essential contribution to nanoscale
magnetism and merit further theoretical and experimental
attention. The paper is structured as follows: First, we discuss
the bound currents and their different contributions (paramag-
netic and diamagnetic), which are evaluated analytically for
the single-impurity case. Second, the induced orbital magne-
tization density is computed starting from the bound currents
by numerically solving a Poisson equation. The impact of
the impurity’s nature on the orbital magnetization from tuning
the scattering phase shifts is also considered. Finally, we
compute the orbital magnetization for a magnetic trimer in
an equilateral triangle with and without the SO interaction
and provide functional forms connecting the spin impurity
moments to the orbital magnetization.

II. RASHBA MODEL

The SO interaction leads, in a structure-asymmetric en-
vironment such as surfaces and interfaces, to a spin split-
ting of the degenerate eigenstates for the two-dimensional
free-electron gas. The model of Bychkov and Rashba [4,5]
describes this splitting by adding a linear term in momentum
�p to the kinetic energy of the free electrons. The so-called
Rashba Hamiltonian is given by

HR = p2
x + p2

y

2m∗ 12 − αR

h̄
(σ xpy − σ ypx ), (2)

where {px, py} are the components of the momentum operator
�p in Cartesian coordinates of the surface plane whose normal
points along �ez and m∗ is the effective mass of the electron.
σ x and σ y are Pauli matrices, and 12 is the unit matrix in spin
space with a global spin frame of reference parallel to the z

axis. αR is known as the Rashba parameter and represents the
strength of the SO interaction. The linear term in Eq. (2) is
induced by a SO gauge field given by [41,42]

�AR = m∗αR

eh̄
(−σ y, σ x ), (3)

where e is the electron charge. Using this SO gauge field, the
Hamiltonian is expressed as

HR = ( �p − e �AR)2

2m∗ − VR, (4)

with VR = m∗α2
R

h̄2 being a constant. Since [Ax
R, Ay

R] �= 0, �AR

is a non-Abelian gauge field, which complicates any possi-
ble approach relying on gauge transformations [42]. Starting
from the time-dependent Schrödinger equation, ih̄

∂ψ (�r,t )
∂t

=
HR ψ (�r, t ), we arrive at a continuity equation relating the
electron charge density ρ(�r, t ) = |ψ (�r, t )|2 and the current
density �j (�r, t ),

∂ρ(�r, t )

∂t
+ �∇�r · �j (�r, t ) = 0. (5)

The current density is the expectation value of the current
operator [43],

�j = lim
�r ′→�r

(
h̄ ( �∇�r − �∇�r ′ )

2m∗i
12 − e

m∗
�AR

)
, (6)

written in a form suitable to operate on the off-diagonal
elements of the density matrix,

�j (�r, t ) = 〈�j〉 = Tr �j ψ (�r, t )ψ†(�r ′, t )

= − 1

π
Im Tr �j G(�r, �r ′; t, t+), (7)

where G(�r, �r ′; t, t+) is the retarded single-particle Green’s
function, which will be used in the following. The first term
in Eq. (6) is the paramagnetic contribution to the current oper-
ator, while the second term is a diamagneticlike contribution
arising from the SO gauge field. Both parts are included in
the calculations presented in this paper. Furthermore, when
starting from the Dirac Hamiltonian and performing an expan-
sion in the nonrelativistic limit, one finds an extra contribution
to the current operator coming from the Zeeman term of the
Hamiltonian, �jZeeman = h̄

2m∗ lim�r ′→�r �∇�r × �σ . It may be in-
duced either by a magnetic field or a finite magnetization [44].
However, this term is not included in our discussion since it
does not contribute to the orbital magnetization, which is the
quantity of interest in this paper.

III. BOUND CURRENTS EMERGING FROM A SINGLE
MAGNETIC IMPURITY ON A RASHBA ELECTRON GAS

The introduction of magnetic impurities into the system
leads to the breaking of time-reversal symmetry, which in
the presence of SO interaction is expected to induce a finite
orbital magnetization [29]. The magnetic impurities are em-
bedded into the Rashba electron gas using a Green’s function
approach in real space via the Dyson equation

G(�r, �r ′, ε) = GR(�r, �r ′, ε)

+
∑
ij

GR(�r, �ri, ε) τ ij (ε) GR( �rj , �r ′, ε), (8)

relating the Green’s function of the Rashba electron gas
GR(�r, �r ′, ε) (see Appendix A for an explicit expression) to the
Green’s function of the Rashba electron gas with impurities
G(�r, �r ′, ε) through the scattering path operators τ ij (ε) (i, j
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running over the impurities). The latter describes single- and
multiple-scattering processes experienced by the electrons
at the impurities and can be computed from the transition
matrices for isolated impurities (t matrix) t i (ε) as

τ ij (ε) = t i (ε) δij

+
∑

k

t i (ε) GR
ik (ε) (1 − δik ) τ kj (ε). (9)

Furthermore, considering that the Fermi wavelength of the
Rashba electrons is much larger than the spatial extension
of the impurities, we employ the s-wave approximation [15].
When the magnetic moment of the impurity is along the
z axis, the transition matrix is fully characterized by two
quantities, tσi (ε) = ih̄

m∗ (e2iδσ
i (ε) − 1). σ = ↑,↓ are labels for

the spin projection of an electron belonging to the surface
along the quantization axis defined by the orientation of the
magnetic moment of the impurity, and δσ

i (ε) is the corre-
sponding scattering phase shift. For a general orientation, the
transition matrix becomes

t i (ε) = U i

(
t
↑
i (ε) 0

0 t
↓
i (ε)

)
U †

i , (10)

with U i being the spin rotation matrix transforming the spin
quantization axis from the z axis to the orientation of the
magnetic moment of the impurity. This form can be derived
by assuming a contact interaction between the electrons and
the impurity, including magnetic and nonmagnetic scattering.
The phase shifts encode the chemical and magnetic nature of
the impurity. For instance, Fe can be approximated by δ

↑
i = π

and δ
↓
i = π

2 [40].
When only one impurity is present, Eq. (9) reduces to

τ ij (ε) = t i (ε) δij , and �j (�r ) can be computed analytically.
Placing the impurity at the origin with its magnetic moment
pointing perpendicular to the surface (i.e., along the z axis),
the cylindrical symmetry of the Rashba electron gas is pre-
served, and the current density in cylindrical coordinates �r =
(r cos θ, r sin θ ) reads

�j (�r ) = − h̄

m∗π
Im

∫ εF

0
dε

[
G2

ND(r, ε)

r

− 2m∗αR

h̄2 GD(r, ε)GND(r, ε)

]
�ti (ε) �eθ . (11)

Here, �eθ = (sin θ,− cos θ ) is the azimuthal unit vector at
point �r . GD(r, ε) and GND(r, ε) are functions of the distance
r = |�r| and energy ε and represent the diagonal and off-
diagonal parts of the Rashba Green’s function in spin space,
respectively. More details on this derivation are given in Ap-
pendix A. The dependence of the current on the intrinsic prop-
erties of the impurity is entirely encoded in �ti (ε) = t

↑
i (ε) −

t
↓
i (ε). This result reveals, in a clear fashion, that a finite orbital

magnetization requires a spin magnetization/magnetic field
breaking time-reversal symmetry [i.e., t

↑
i (ε) �= t

↓
i (ε)] and a

broken space-inversion symmetry environment with the SO
interaction [i.e., GND(r, ε) �= 0]. The first term in Eq. (11)
represents the paramagnetic part of the current density, while
the second is the diamagnetic one. �j (�r ) has no radial com-
ponent, thus swirling around the magnetic impurity. Similar

results were obtained for magnetic impurities deposited on
superconductors with Rashba spin-orbit interaction [28].

A comment concerning the energy integration in Eq. (11)
is in order. The integration is performed only from [0, εF].

The energy range [−εR, 0], with εR = m∗α2
R

2h̄2 being the Rashba
energy, is not included for two reasons. First, for realistic
values of the Rashba parameter we have εR � εF, so this
energy range is very small. Second, although this energy
range contains a Van Hove singularity, a careful analysis
shows that the t matrix cancels the singularity and leads to
a smooth energy dependence of the Green’s function [40,45].
Combining both arguments, we conclude that one can safely
neglect the contribution from this energy range.

In Fig. 1(a), we show the ground-state charge currents
induced by a single Fe impurity deposited on the Rashba
surface states of a Au(111) surface, computed from Eq. (11).
The Rashba model parameters are αR = −0.4 eV Å, m∗ =
0.26me (me is the electron mass), and εF = 410 meV [17].
These swirling bound currents are dissipationless (i.e., with
zero divergence) with an oscillating amplitude reminiscent
of the Friedel oscillations present in the charge and spin
densities. A cut at y = 0 is shown in Fig. 1(b), where the
oscillating current density displays a beating effect at x ∼
60 Å similar to the one observed in the spin magnetization
density and magnetic exchange interactions characterizing
single impurities embedded in a Rashba electron gas [18,40].
Two wavelengths are at play in settling the oscillatory behav-
ior of the current density: a short one given by the Fermi
wavelength λF ∼ 18.5 Å and a long one induced by the SO
interaction λR ∼ 130 Å. This behavior can be understood
when considering the analytical form of the current density
obtained in the asymptotic limit [i.e., expanding GD(r, ε) and
GND(r, ε) for r → ∞]:

�j (r ) = − m∗

h̄3πr
Im �ti

{
6k2

R[CI(2kFr ) − CI(2|kR|r )]

− 2k2
R

[
sin(2kFr )

2kFr
− sin(2|kR|r )

2|kR|r
]}

�eθ

+ 2(m∗)2αR

h̄4π
Im �ti

{
4k2

R[SI(2kFr ) − SI(2|kR|r )]

+ 1

r2
[sin(2kFr ) − sin(2|kR|r )]

}
�eθ . (12)

CI(x) and SI(x) represent the sine and cosine integrated
functions of x, while kR = m∗αR

h̄2 . Equation (12) shows that in
the asymptotic limit, the current density oscillates with two
different wavelengths, λF = π

kF
and λR ∝ π

kR
.

IV. METHOD FOR THE EVALUATION OF THE ORBITAL
MAGNETIZATION

In the previous section, we showed that a system with
broken time- and space-inversion symmetry hosts ground-
state charge currents. These currents give rise to a finite
orbital magnetization within the Rashba electron gas. In the
absence of free charge currents and time-dependent external
fields, the orbital magnetization density �ml (�r ) is related to
the ground-state charge current via Eq. (1). Let us begin

125420-3



BOUAZIZ, DIAS, GUIMARÃES, BLÜGEL, AND LOUNIS PHYSICAL REVIEW B 98, 125420 (2018)

−40 −20 0 20 40

x (Å)
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x(Å)

−1

0

1

2

3

4

j y
( r

)
(a

.u
)

(a) (b)

FIG. 1. Ground-state charge currents induced by a single Fe impurity on Au(111) with a magnetic moment perpendicular to the surface
plane (along the z axis). αR = −0.4 eV Å, m∗ = 0.26me, and εF = 410 meV [17] are the Rashba model parameters for the Au(111) surface
state. The Fe impurity is considered in the s-wave approximation [40]. (a) The dissipationless currents are swirling around the magnetic
impurity, in agreement with the continuity equation and the axial symmetry of the system. (b) Evolution of the y component of the current
density as a function of the distance from the impurity. It displays an oscillatory behavior with two wavelengths, λF ∼ 18.5 Å and λR ∼ 130 Å.

by showing that there is no indeterminacy in this relation,
contrary to the three-dimensional case [46]. Due to the two-
dimensional geometry, the current density lies in the xy plane,
so the orbital magnetization is restricted to the z direction.
The standard indeterminacy in Eq. (1) consists of adding the
gradient of an arbitrary function to the orbital magnetization,
which does not affect the current density. Since only the z

component of the gradient is compatible with this geometry
and it vanishes identically, there is no remaining freedom in
the definition of the orbital magnetization density. Therefore,
we can use Eq. (1) to define the orbital magnetization density
by rewriting it as a Poisson equation [recall that �r = (x, y)],

�∇ × �j (�r ) = �∇ × �∇ × �ml (�r ),

= �∇ ( �∇ · �ml (�r )) − ∇2 �ml (�r ).
(13)

In this two-dimensional geometry, we finally obtain

∂x jy (�r ) − ∂y jx (�r ) = −∇2 ml,z(�r ), (14)

which can be solved numerically using a Fourier series in a
large finite-simulation box. The Fourier components ml,z(�k)
of the orbital magnetization are

ml,z(�k) = i
ky jx (�k) − kx jy (�k)

k2
x + k2

y

, (15)

where �k = (kx, ky ) and jα (�k) is the Fourier transform of jα (�r ),
defined as

jα (�k) =
Nr∑
i=1

jα (�ri ) e
�k·�ri . (16)

In practice, we consider Fe impurities deposited on

Au(111) [40] in a box of 210 × 210 Å
2

divided into a grid
of Nr = 1000 × 1000 points in real space. In our calculations,
the Fermi wavelength is set to λF ∼ 18.5 Å. The ratio between
λF and the grid spacing is thus 0.01, which was found to
lead to converged results. This large box also ensures that
�j (�r ) � 0 at the edges of the box to avoid interactions between
the impurity and its periodic copies. Last, ml,z(�k) is Fourier
transformed back to real space, providing ml,z(�r ).

V. ORBITAL MAGNETIZATION INDUCED
BY A SINGLE IMPURITY

We now discuss the orbital magnetization obtained for the
setup discussed in Sec. IV in the presence of a single magnetic
impurity with a spin moment pointing perpendicular to the
plane (z axis) and also when it points in the plane along the
x axis. The orbital magnetization densities obtained using
Eq. (14) are shown in Figs. 2(a) and 2(b). In the first case,
we observe isotropic Friedel oscillations in the induced orbital
magnetization around the Fe impurity since the spin moment
does not break the cylindrical symmetry. Similar to the current
density, ml,z(�r ) oscillates with two characteristic wavelengths,
λF and λR. These oscillations decay as 1

r
, which is slower than

the induced spin magnetization [18]. Nonetheless, ml,z(�r ) is
one order of magnitude smaller than the induced spin magne-
tization density. The net orbital and spin magnetizations are
Ml,z = −0.58μB and Ms,z = 2.11μB, respectively.

For the in-plane orientation depicted in Fig. 2(b), where the
cylindrical symmetry is broken, two oscillation wavelengths
are also found: λF and λR. The orbital magnetization density
ml,z(�r ), however, oscillates around a positive (negative) value
for x < 0 (x > 0). The oscillations are less pronounced than
in the case where the impurity has a moment along the z

axis in Fig. 2(a). Nevertheless, the order of magnitude and
the asymptotic decay of ml,z(�r ) at large distances are similar
in both cases. Furthermore, when the spin moment points in
the plane, ml,z(x, y) = −ml,z(−x, y), and therefore, the total
induced orbital magnetization sums to zero. The net induced
spin magnetization vanishes as well.

VI. ORBITAL MAGNETIZATION FOR DIFFERENT TYPES
OF IMPURITIES

Here, we consider a single impurity with �Si ‖ z axis and in-
vestigate the dependence of the induced orbital magnetization
on the nature of the magnetic impurities. This is achieved by
shifting the position of the impurity resonance with respect to
the Fermi energy of the Rashba electron gas, which represents
different charge and spin states of the impurity. The impurities
are modeled using a scattering phase shift δσ

i (ε) that can be
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FIG. 2. Induced orbital magnetization map for a single Fe adatom deposited on a Rashba electron gas using the same model parameters as
in Sec. III. The Fe impurity taken in the s-wave approximation [15] is represented by a green sphere located at the origin, while its magnetic
moment is represented by a green arrow. (a) When the impurity spin moment points along the z direction, the induced orbital magnetization
consists of concentric rings centered around the Fe impurity oscillating with two characteristic wavelengths λF and λR. (b) When the impurity
spin moment lies in the plane, along the x direction, the orbital magnetization is strongly anisotropic since mz

l is positive (negative) for negative
(positive) x.

related to its local density of states ni (ε) via the Friedel sum
rule [13]

ni (ε) = 1

π

dδσ
i (ε)

dε
. (17)

We focus on 3d transition-metal impurities for which the local
density of states has a Lorentzian-like shape [47,48]. Thus, the
scattering phase shift can be computed analytically and reads

δσ
i (ε) = π

2
+ atan

(
ε − εσ

i

�σ

)
, (18)

where εσ
i is the resonance position for the spin channel σ and

�σ is the resonance width at half maximum. The broaden-
ing of the impurity states is induced by hybridization with
the Rashba electron gas and with other substrate electronic
states not explicitly being considered. Furthermore, for the
3d transition-metal impurities of interest, the majority spin is
fully occupied [i.e., δ

↑
i (ε) = π ] and does not contribute to the

bound current density (see Sec. III).
The net orbital magnetization can be obtained by integrat-

ing the orbital magnetization density computed with Eq. (14)
over the simulation box. Alternatively, we can provide an
approximate connection between Ml,z and the transition ma-
trices [and therefore with δσ

i (ε)] using the classical formula

�Ml = 1

2

∫
S

d�r �r × �j (�r ). (19)

Starting from Eq. (11) and using the asymptotic forms of
GD(r, ε) and GND(r, ε) for r → ∞ and then performing the
spatial integral in the previous equation, we find the following
approximate expression:

M
app
l,z ∝ Re

∫ εF

0
dε

�ti (ε)√
ε

. (20)

In Fig. 3, we show Ml,z and M
app
l,z as a function of the

resonance position of the minority-spin channel ε↓. �ti (ε) is
computed using the energy-dependent scattering phase shift
given in Eq. (18). Both quantities follow the same trend
and display a steplike feature, showing a dependence on the

valence of the impurity. Furthermore, since we assumed that
the majority impurity resonance is fully occupied, in the limit
ε

↓
i → −∞, both resonances become fully occupied, and the

net orbital magnetization vanishes. Moreover, when ε
↓
i →

+∞, Ml,z vanishes as well since the occupied Rashba states
do not hybridize with the impurity states. This shows that
the nature of the impurity has a deep impact on the induced
orbital magnetization, and the valence of the impurity can be
employed to tune its magnitude.

VII. ORBITAL MAGNETIZATION OF A TRIMER
ON A RASHBA ELECTRON GAS

After investigating the emerging orbital magnetization in-
duced by a single magnetic impurity, we consider now a more
complex nanostructure composed of three Fe atoms forming
an equilateral triangle centered at the origin. The distance
between the Fe impurities is d = 10.42 Å, corresponding
to the seventh-nearest-neighbor distance on Au(111) (long-
distance regime where the s-wave approximation is valid).
For this separation the impurity Fe magnetic moments are
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ε↓i (meV)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

M
l,
z
(μ

B
)

εF −0.2

−0.1

0.0

0.1

M
ap

p
l,
z

(a
.u

)

FIG. 3. Evolution of Ml,z (blue curve) and of M
app
l,z (red curve)

as a function of the impurity resonance position εi
↓ (minority-spin

channel). The curves have a similar behavior and display a band-
filling effect. The broadening of the minority-spin channel is set to
�↓ = 115 meV, and the Fermi energy εF = 410 meV.
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FIG. 4. Induced orbital magnetization map for an Fe trimer deposited on a Rashba electron gas with an equilateral-triangle geometry. We
used the same model parameters as in Sec. III. The Fe impurities are represented by a green sphere located at the origin, while their magnetic
moment is represented by a green arrow (the Fe impurities are considered in the s-wave approximation [15]). The magnetic trimer has an
opening angle of θ = 60◦, and the azimuthal angles are φi = {330◦, 90◦, 210◦}. (a) In the absence of SO interaction, the orbital magnetization
remains finite; it follows C3v symmetry and is rather small. (b) In the presence of SO interaction, the orbital magnetization is two orders of
magnitude higher in comparison with the previous case and displays a constructive interference at the center of mass of the equilateral triangle.

coupled antiferromagnetically [40], leading to a noncollinear
magnetic state. The ground state without the presence of
spin-orbit interaction is a Néel state with an angle between
the impurity spins of 120◦. We first begin by omitting the
contribution of the SO interaction and assume that the mo-
ments are noncoplanar with an opening polar angle of θ = 60◦
and an azimuthal angle φi = {330◦, 90◦, 210◦}. The resulting
orbital magnetization is shown in Fig. 4(a). Even though the
SO interaction is absent, ml,z(�r ) is finite and follows the
C3v symmetry of the system [31]. In this case, the current
density and, consequently, the induced angular momentum
have their origin in the noncollinearity of the moments and
can be traced to the scalar three-spin chirality �Si · (�Sj × �Sk )
and its higher-order generalizations (see Appendix B). For
that reason, we refer to this contribution as chiral orbital mag-
netization. Like in the single-atom case, ml,z(�r ) oscillates with
two wavelengths (λF and λR). The results obtained in Fig. 4(a)
also reveal that the induced net chiral orbital magnetization
vanishes by symmetry in the simulation box. The net induced
spin magnetization is, however, finite, Ms,z = −0.16μB.

Including the contribution of the SO interaction, the ob-
tained orbital magnetization is shown in Fig. 4(b). Like in the
SO-interaction-free case, ml,z(�r ) obeys C3v symmetry and has
a 1/r decay, but now with values two orders of magnitude
larger than the chiral contribution. The oscillation in ml,z(�r ) is
more pronounced, and the constructive interference at the cen-
ter of mass of the triangle gives rise to large values of ml,z(�r ).
The net induced spin and orbital magnetizations are Ms,z =
−0.49μB and Ml,z = −0.35μB, respectively. In the presence
of SO interaction, the connection between ml,z(�r ) and the
noncollinear spin texture is more complex. It was shown
previously in Ref. [38] that for continuous spin textures,
the presence of two noncollinear spin moments is enough
to influence the orbital magnetization. In the limit of fast-
rotating spin textures, similar terms arise in Ml,z. However, as
shown in the following, higher-order contributions besides the
three-spin chirality can be of crucial importance and strongly
influence its angular dependence.

To study the dependence of the total induced orbital mag-
netization Ml,z (including both chiral and SO contributions)

on the spin orientation of the impurities, we computed it for
different opening angles θ . The result is shown in Fig. 5,
where we notice that Ml,z can be rather large, reaching
−0.4μB for θ = 70◦. Then by performing a Born expansion
of the Green function and retaining only terms up to first order
in SO interaction (similar to what we do in Appendix B), Ml,z

can be written as

Ml,z = β1 cos θ + β2 cos
γ

2

+β3 sin2 θ cos θ + β4 cos2 γ

2

+β5 cos γ sin2 θ cos θ, (21)

where γ = arccos(�S1 · �S2) is the angle between �S1 and �S2.
As shown in Appendix B, in the absence of SO interaction
β1 = β2 = β4 = 0, and the functional form includes only the
odd powers of the spin moments. We also show in Fig. 5
the different fits of the orbital magnetization obtained when
truncating Eq. (21) at different orders and provide the values
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FIG. 5. Net orbital magnetization Ml,z as a function of the open-
ing polar angle θ of an Fe trimer in an equilateral-triangle geometry
(see Fig. 4). The black crosses indicate the values of the net orbital
magnetization computed using Eq. (15). The solid curves represent
the fits of the net orbital magnetization up to different orders.
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TABLE I. Parameters used to fit the orbital magnetization up to
the fifth power of spin impurity moment. MCi stands for the fit of the
orbital magnetization up to the ith order. C stands for chirality. The
fits are displayed in Fig. 5.

Parameter β1 β2 β3 β4 β5

MC1 −0.019
MC2 0.409 −0.397
MC3 0.242 −0.065 −0.843
MC4 −7.653 −7.385 4.817 15.136
MC5 1.854 2.042 −2.244 −3.836 1.932

of the coefficients βi in Table I. This reveals the importance of
higher-order contributions to capture the right angular depen-
dence of Ml,z in the entire range of angles taken into account.
The low-order expansions would be able to reproduce the
correct behavior only in a small angular window.

VIII. DISCUSSION AND CONCLUSION

In this paper, we used a model approach relying on
the Rashba Hamiltonian to understand the emergence of
an induced orbital magnetization when magnetic impurities
are incorporated into a Rashba electron gas. The magnetic
impurities were described using scattering phase shifts that
either were taken to be constant or were obtained with a
Lorentzian-like shape of the impurity density of states. We
computed the dissipationless bound currents present in the
system, which consist of paramagnetic and diamagneticlike
contributions, devising a method applicable to any ensem-
ble of impurities with an arbitrary magnetic configuration.
Afterwards, we showed analytically that, in the presence of
a single magnetic impurity with its moment parallel to the
z axis, a finite orbital magnetization arises when time- and
space-inversion symmetries are simultaneously broken. The
net orbital magnetization was found to be of the order of
magnitude of its spin counterpart. However, it vanishes by
symmetry when the impurity spin moment lies in the surface
plane.

The dependence of the net orbital magnetization on the
nature of the impurity was also addressed. Its magnitude
and sign strongly depend on the impurity type (namely, its
valence and the location of the impurity resonances with
respect to the Fermi energy of the electron gas). Moreover, we
considered a more complex magnetic structure consisting of
a magnetic trimer in an equilateral geometry. In the absence
of SO interaction and when the spin texture displays a non-
vanishing scalar spin chirality, a chiral orbital magnetization
is observed [31]. This result was also recovered analytically.
When the SO interaction is turned on, the dependence of the
net orbital magnetization on the spin texture is more complex,
and higher-order powers of the spin chirality can be of crucial
importance. In this case, the orbital magnetization density was
two orders of magnitude higher than in the case where the SO
interaction is not present.

Finally, we foresee the possibility of measuring the total
(spin/orbital) induced magnetization at the surface utilizing
spin-polarized STM [49]. Distinguishing, however, the spin
from the orbital magnetization is not trivial. One has to con-

sider the asymptotic behavior and the specific decay of both
types of magnetization. Since the magnetization density pro-
duces stray fields, measurements exploiting nitrogen-vacancy
centers might enable their detection [50]. Moreover, we be-
lieve that XMCD is a possible technique to track higher-order
spin chiralities, which play a major role in the determination
of induced orbital magnetization by altering the topological
properties of the orbital magnetization induced by complex
magnetic structures such as magnetic skyrmions [31].
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APPENDIX A: SINGLE-MAGNETIC-ADATOM
GROUND-STATE CHARGE CURRENT

In this appendix, we derive the ground-state charge cur-
rent induced by magnetic impurities with a spin moment
perpendicular to the plane containing the Rashba electron
gas (i.e., along the z axis). The current operator given in
Eq. (6) contains a gradient acting on the Green’s function.
Since the cylindrical symmetry of the Rashba electron gas is
preserved when the moment points out of the plane, we write
the gradient in cylindrical coordinates as

�∇�r = �er

∂

∂r
+ 1

r
�eθ

∂

∂θ
. (A1)

Here, �er and �eθ are the radial and azimuthal unit vectors,
respectively. Assuming an impurity located at position �Ri ,
we define the gradient accordingly as �∇�ri

. Furthermore, the
Rashba Green’s function is a matrix in spin space, given
by [43]

GR( �R, ε + i0+) =
(

GD(R, ε) −GND(R, ε) e−iβ

GND(R, ε) eiβ GD(R, ε)

)
,

(A2)
where �R = �r − �r ′ and β is the angle between �R and the x

axis. GD(R, ε) and GND(R, ε) are given by linear combina-
tions of Hankel functions of zeroth and first order, respec-
tively,

GD(R, ε + i0+) = − im∗

2h̄2(k+ + k−)
[k+ H0(k+R + i0+)

+ k− H0(k−R + i0+)], (A3)

GND(R, ε + i0+) = − im∗

2h̄2(k+ + k−)
[k+ H1(k+R + i0+)

− k− H1(k−R + i0+)]. (A4)

The wave vectors k+ and k− are given by k+ = kR +√
k2

R + 2m∗ε
h̄2 and k− = −kR +

√
k2

R + 2m∗ε
h̄2 , with kR = m∗αR

h̄2 .

125420-7



BOUAZIZ, DIAS, GUIMARÃES, BLÜGEL, AND LOUNIS PHYSICAL REVIEW B 98, 125420 (2018)

The gradient of the Rashba Green’s function is given by

�∇�ri
GR(�ri, ε + i0+) =

( �eri

∂GD
∂ri

e−iθi
[ − �eri

∂GND
∂ri

+ i�eθi

GND
ri

]
eiθi

[�eri

∂GND
∂ri

+ i�eθi

GND
ri

] �eri

∂GD
∂ri

)
, (A5)

with �ri = �r − �Ri and �Ri being the position of the impurity i.

From Eq. (A5) ∂GD
∂ri

and ∂GND
∂ri

are needed. This involves
first-order derivatives of Hankel functions, which can be com-
puted using recursion:

dHn(x)

dx
=

[
nHn(x)

x
− Hn+1(x)

]
. (A6)

For the Rashba Green’s function one needs the derivatives of
H0(x) and H1(x):

dH0(x)

dx
= −H1(x),

dH1(x)

dx
=

[
H1(x)

x
− H2(x)

]
.

After computing �∇�ri
GR(�ri, ε + i0+), one can easily access

�∇�ri
G(�ri, ε + i0+) via Eq. (8), which is employed to compute

the expectation value of �j given in Eq. (6) via

�j (�r ) =
∫ εF

−∞
dε Tr �j G(�r, ε), (A7)

where the trace is taken over the spin degree of freedom.

APPENDIX B: PARAMAGNETIC CHARGE CURRENT
WITHOUT SO INTERACTION

Here, we derive the connection between the chiral orbital
magnetization and the scalar chirality (and the spin texture
in general) up to fifth order. We consider that the spin-orbit
interaction is zero (i.e., αR = 0); thus, the Rashba Green’s
function becomes spin diagonal. Then we perform a Born
expansion of Eq. (9) as

G(�r, �r ′, ε) = GR(�r, �r ′, ε) + G(1)(�r, �r ′, ε)

+ G(2)(�r, �r ′, ε) + G(3)(�r, �r ′, ε)

+ G(4)(�r, �r ′, ε) + G(5)(�r, �r ′, ε) + · · · .

(B1)

The different elements of the expansion G(i)(�r, �r ′, ε) are

G(1)(�r, �r ′, ε) =
∑

i

GR(�r, �ri, ε) t i (ε) GR(�ri, �r ′, ε), (B2)

G(2)(�r, �r ′, ε) =
∑
ij

GR(�r, �ri, ε) t i (ε) GR(�ri, �rj , ε)

× tj (ε) GR( �rj , �r ′, ε), (B3)

G(3)(�r, �r ′, ε) =
∑
ijk

GR(�r, �ri, ε) t i (ε) GR(�ri, �rj , ε) tj (ε)

× GR( �rj , �rk, ε)tk (ε) GR( �rk, �r ′, ε), (B4)

G(4)(�r, �r ′, ε) =
∑
ijkm

GR(�r, �ri, ε) t i (ε) GR(�ri, �rj , ε) tj (ε)

× GR( �rj , �rk, ε)tk (ε) GR( �rk, �rm, ε)

× tm(ε) GR(�rm, �r ′, ε), (B5)

G(5)(�r, �r ′, ε) =
∑
ijk

GR(�r, �ri, ε) t i (ε) GR(�ri, �rj , ε) tj (ε)

× GR(�rj , �rk, ε) tk (ε) GR( �rk, �r ′, ε) tm(ε)

× GR(�rm, �r ′, ε) t l (ε) GR(�rl, �r ′, ε). (B6)

In the absence of spin-orbit interaction, the current op-
erator given in Eq. (6) contains only the paramagnetic part
and reduces to eh̄

2m∗i lim�r ′→�r ( �∇�r − �∇�r ′ ). Therefore, the current
density is given by

�j (�r ) = �j (3)(�r ) + �j (5)(�r ), (B7)

where due to the cyclic properties of the trace, only the odd
powers of the expansion contribute to the current (the first-
order vanishes by symmetry). Furthermore, since GR(�r, �r ′, ε)
is spin diagonal, it can be taken out of the trace, and �j (3)(�r ) is
simply given by

�j (3)(�r ) ∝
∑
ijk

�∇�r GR(�r, �ri, ε) GR(�ri, �rj , ε) GR( �rj , �rk, ε)

×GR( �rk, �r, ε) Tr [t i (ε) tj (ε) tk (ε)

− tk (ε) tj (ε) t i (ε)], (B8)

while the fifth-order contribution reads

�j (5)(�r ) ∝
∑
ijkml

�∇�r GR(�r, �ri, ε) GR(�ri, �rj , ε) GR( �rj , �rk, ε)

× GR( �rk, �rm, ε) GR(�rm, �rl, ε) GR(�rl, �r, ε)

× Tr
[
t i (ε) tj (ε) tk (ε) tm(ε) t l (ε)

− t l (ε) tm(ε) tk (ε) tj (ε) t i (ε)
]
. (B9)

Further simplifications can be made to the expressions given
in Eqs. (B8) and (B9), considering that

t i = t
↑
i + t

↓
i

2
+ t

↑
i − t

↓
i

2
�σ · �Si, (B10)

and using the properties of the Pauli matrices, �j (3)(�r ) simpli-
fies to

�j (3)(�r ) =
∑
ijk

�f3(�r ) �Si · (�Sj × �Sk ), (B11)
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where �f3(�r ) is given by

�f3(�r ) = − 2eh̄

πm∗ Im �∇�r GR(�r, �ri, ε) GR(�ri, �rj , ε)

× GR( �rj , �rk, ε) GR( �rk, �r, ε). (B12)

The fifth-order contribution can also be simplified to

�j (5)(�r ) =
∑
ijkml

�f5(�r ) (�Si · �Sj ) [�Sk · (�Sm × �Sl )], (B13)

where �f5(�r ) reads

�f5(�r ) = − 4eh̄

πm∗ Im �∇�r GR(�r, �ri, ε) GR(�ri, �rj , ε) GR( �rj , �rk, ε)

× GR( �rk, �rm, ε) GR(�rm, �rl, ε) GR(�rl, �r, ε). (B14)

The previous equations show that in the absence of the
spin-orbit interaction the induced bound currents (i.e., orbital
magnetization) can be expanded as a function of the odd
powers of the spin chirality.
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