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Quantization of surface charge density on hyperboloidal and paraboloidal domains
with application to plasmon decay rate on nanoprobes
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Field quantization in high curvature geometries help understanding the elastic and inelastic scattering of
photons and electrons in nanostructures and probelike metallic domains. The results find important applications
in high-resolution photonic and electronic modalities of scanning probe microscopy, nano-optics, plasmonics,
and quantum sensing. We present a calculation of relevant photon interactions in both hyperboloidal and
paraboloidal material domains. The two morphologies are compared for their plasmon dispersion properties, field
distributions, and radiative decay rates, which are shown to be consistent with the corresponding quantities for the
finite prolate spheroidal domains. The results are relevant to other material domains that model a nanostructure
such as a probe tip, quantum dot, or nanoantenna.

DOI: 10.1103/PhysRevB.98.125413

I. INTRODUCTION

Materials confined to microscopic elongated “probelike”
domains, in addition to having been tremendously enabling
in various forms of scanning probe microscopy (SPM), hold
great potential for emerging applications in fields such as
quantum sensing [1–4]. Recent interest in the properties of
such tip-shaped material domains is reflected in the demon-
stration of laser pulse induced electron emission from a gold
solid tip under grating coupled plasmon excitation [5–7].
These applications make use of the excitation and resonant
properties of surface modes on bounding surfaces and inter-
faces of metallic, dielectric, and metallo-dielectric domains
that take the form of a tip [8]. Examples of systems that use
a probe tip include scanning tunneling microscope, photon
scanning tunneling microscope, apertured and apertureless
nearfield scanning optical microscope, nanoantennas, and pro-
cesses such as tip-enhanced spectroscopy and lithography.
The intriguing excitations, typically studied near the tip apex,
are expected to receive contributions not only from station-
ary modes, such as those occurring at the surfaces of finite
nanoparticles, but also from nonstationary modes propagating
at the infinite interfaces. The theoretical and modeling tools
for investigating the response of these systems and their
dependence specifically upon the geometric characteristics
have been indispensable in the development of these applica-
tions. In particular, analytical techniques that lend themselves
to provide complete or partial information on the system
are often regarded as necessary not only for obtaining the
system response (e.g., energy distribution in the nearfield of
the nanoparticles), but also for elucidating the inner work-
ing of the systems (e.g., the contributing eigenstates and
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eigenvalues). Calculation of geometric and material depen-
dencies of surface mode excitation, decay and scattering on
the bounding surfaces of nanoscale domains are both instruc-
tive and necessary for better design and fabrication.

Here, we investigate the radiative decay rate of plasmons
by quantizing the surface modes engendered on the surface
of a metallic probe modeled as one sheet of a two-sheeted
hyperboloid of revolution, shown in Fig. 1(a). This geometry
offers an elegant adaptability not only for the description
of the local curvature of a fabricated probe but also for the
modeling of nearly planar interfaces [8]. In addition, it has
the property that the hyperboloidal domain translates along its
symmetry axis when changing the opening angle θ0, that is,
smaller μ0 = cos θ0, yields smaller gap zmin, the apex distance
to origin o in Fig. 1(a). To provide a basis for comparison, we
quantize the surface charge density oscillations on the useful
system of a paraboloid of revolution, which offers a similar
apex morphology but a different asymptotic behavior away
from the apex. Importantly, the apex and off-apex curvature
of a paraboloid of revolution presents a more natural topology
for comparison of its spectral and scattering properties with
that of a finite body of similar curvature, e.g., a spheroidal
domain. Therefore, for the sake of validation, we extend our
investigations to also study the radiative decay of plasmons
excited on a prolate spheroid, which owing to its finite volume
presents a more tangible system.

Our presentation is organized as follows. In Sec. II, we treat
the paraboloidal plasmons. Here, within the quasistatic frame-
work, representing the material domain with a frequency-
dependent dielectric function, we derive the nonretarded plas-
mon dispersion relations, eigenmodes, and fields. From the
classical energy of paraboloidal charge density oscillations,
we then derive the Hamiltonian of the system. We then
proceed to quantize the plasmon field and, employing an inter-
action Hamiltonian derived from the first-order perturbation
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FIG. 1. Modeling systems and their potential distributions. (a)
One sheet of a two-sheeted hyperboloid of revolution modeling
a nanotip or a nanostructure with local curvature. Surface modes
of momentum κ , e.g., excited by incoming photons hω, decay
radiatively into a solid angle d�. The curvature of the tip apex is
set by the μ0 defining the hyperboloidal surface. Here, μ0 = cos θ0,
where θ0 is the angle between the z axis and an asymptote to the
hyperboloidal surface such that small θ0 yields a sharp probe while
θ0 → π/2 corresponds to xy plane. The apex point zmin = z0μ0,

near the focal point of the hyperboloid, is set by the scale factor
z0, as in Eq. (B1). (b), (c), and (d) show the spatial distribution of
the lowest lying eigenmodes of the quasistatic electric potential for
the three modeling domains investigated. For the same mode index
m, optimizing the apex curvature overlap within the same spatial
zx domains, and analyzing the potential distribution, leads to the
determination of the corresponding continuous eigenvalues λ of the
paraboloid (b) and q of the hyperboloid (d), respectively, as well as
the discrete eigenvalue l of the prolate spheroid (c). The geometric
parameters η0, μ0, and ζ0 determines the form of the considered
domains.

theory within the hydrodynamic model of an electron
gas [9,10], obtain an analytical expression for the radiative
decay rate of the plasmons. Having established the full treat-
ment of the paraboloidal system, in Sec. III, we proceed to
investigate the quantized charge density oscillations on the
surface of one sheet of a two-sheeted hyperboloidal of revolu-
tion. In both these sections, the use of nonretarded potentials
and dispersion relations is justified due to the subwavelength
dimension of the tip. In Sec. V, we discuss our findings and
compare both the paraboloidal and hyperboloidal results. An
interesting comparison of the paraboloidal domain can be
made with respect to the surface modes and radiation patterns
of a prolate spheroid, a finite geometric domain highly suit-
able for modeling of nanoparticles such as a quantum dot. In
specific cases, we further validate the results using computa-
tional techniques to obtain the lower energy eigenmodes and
farfield radiation patterns. Concluding remarks are provided
in Sec. V.

II. PLASMON EXCITATION AND RADIATIVE DECAY
ON PARABOLOIDAL SURFACES

Quantum calculations that take into account the geometric
effects of the bounding surfaces of the material domains
are important to corroborate experimental observations in
nanophysics. Here, our goal is to calculate the probability
amplitude that a surface plasmon in a given initial state,
engendered near the apex region of a probe-shaped material
domain, will emit a photon into a given final state. To model a
tiplike domain, we consider a surface of revolution about the
z axis resulting in the usual azimuthal symmetry. Using two
parameters r and β, such a surface can be parametrized as [11]

r = r(r, β ) = r cos β�i + r sin β �j + f (r )�k,

for any explicit equation of a surface of revolution written as
z = f (r ), where r =

√
x2 + y2. Here, we will employ three

specific cases of surfaces of revolution: a single sheet of a
two-sheeted hyperboloid, a paraboloid, and a prolate spheroid.
Figure 1(a) shows an example hyperboloid. In the following,
we will first treat a paraboloid, for which we begin by seeking
pertinent classical quantities.

A. Nonretarded potential, dispersion relations,
and classical energy of surface charge density

We consider a vacuum-bounded solid paraboloid of revo-
lution defined by η = η0, via the coordinates (ξ, η, ϕ) given
in Eqs. (A1) and (A2). Denoting the frequency ω depen-
dent dielectric function of the paraboloidal material domain
with ε1(ω), we set the outside medium dielectric constant
ε2 = 1, noting that for a general case we may retain ε2 as
a parameter. The quasistatic scalar electric potential � is
continuous everywhere in the space and satisfies the Laplace
equation everywhere except on the boundary surface η = η0.
Employing the Laplacian in Eqs. (A3)–(A5), and considering
the two resulting Sturm-Liouville problems Eqs. (A4) and
(A5), with unbounded domain η, ξ ∈ [0,∞) lead to a con-
tinuous spectrum of real eigenvalues and eigenfunctions [12]
in terms of Bessel and modified Bessel functions given by
Eqs. (10.3.64) and (10.3.65) [13]. Using the fact that the
potential is bounded on the z axis and vanishes as r → ∞,
together with the asymptotic behavior of the Bessel func-
tions [14,15], we denote the potentials with �i and �o, for
the interior and the exterior domains, respectively, and utilize
the Heaviside function � with the half-maximum convention
�(0) = 1/2 to write the total potential as

�(r, t ) = �(η0 − η)�i(r, t ) + �(η − η0)�o(r, t ),

or explicitly:

�(r, t ) =
∑
m,p

Sp
m(ϕ)

∫ ∞

0
Amλp(t )Jm(λξ )

× [�(η0 − η)Im(λη)Km(λη0)

+�(η − η0)Im(λη0)Km(λη)]dλ, (1)

where m = 0, 1, 2, . . . , and p = 0, 1, while Amλp(t ) are the
time t dependent amplitudes to be determined by the boundary
conditions, and {Sp

m(ϕ)} indicate the azimuthal symmetry of
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the eigenmodes, explicitly:

Sp
m(ϕ) = (2 − δ0m)δ0p cos mϕ + δ1p sin mϕ,

satisfying the orthogonality relation given in Eq. (A16). Thus
p determines the parity of the solutions. We also note that
Eq. (1) guarantees the continuity of the potential across the
boundary η = η0. With �∇2� = 0 for η < η0 and η > η0, see
Eqs. (A6)–(A9), noting that the derivative of Heaviside func-
tion is the Dirac delta function δ(x), the Poisson equation for
the surface charge density σ at the boundary surface η = η0

implies

�∇2� = δ(η − η0)

a2(ξ 2 + η2)

(
∂�o

∂η
− ∂�i

∂η

)
= −4π

hη

σδ(η − η0),

(2)

where hη, given by Eq. (A2), is a scale factor of the
paraboloidal system. Therefore, solving for the charge density
[following Eqs. (A10)–(A12)], we obtain

σ = 1

4πaη0

√
ξ 2 + η2

0

∑
m,p

Sp
m(ϕ)

∫ ∞

0
Amλp(t )Jm(λξ )dλ.

(3)

If we now let n0 denote the number density of free electrons
(mass me and charge −e) in the paraboloidal domain, and �u
denote the charge displacement vector, then from the defini-
tion of the polarization, the surface charge σ can be written
as σ = −en0 �u · êη|η0

. Furthermore, the equation of motion

for the electrons is given by me �̈u = e �∇�i. Thus we have
4πσ̈ = −ω2

p (êη · �∇�i )|η=η0
, and it follows that

σ̈ = − ω2
p

4πa

√
ξ 2 + η2

0

∑
m,p

Sp
m(ϕ)

∫ ∞

0
λAmλp(t )Jm(λξ )

× I ′
m(λη0)Km(λη0)dλ. (4)

Differentiating the charge density in Eq. (3) twice with respect
to time t and equating it with Eq. (4), it follows from the
orthogonality of system {Sp

m}m,p that for each fixed m and p:∫ ∞

0
Jm(λξ )

[
Ämλp(t ) + ω2

mλAmλp(t )
]
dλ = 0, (5)

where

ω2
mλ = ω2

p λη0 I ′
m(λη0) Km(λη0). (6)

The (allowed) resonant values of the dielectric function ε of
the paraboloid can also be independently calculated from a
transcendental equation obtained by imposing the quasistatic
boundary conditions at the bounding surfaces of the domain
within which the scalar electric field satisfies the Laplace
equation. Therefore it can be shown that ωmλ satisfies the
Drude model 1 − εmλ = ω2

P ω−2
mλ. Utilizing the orthogonality

relation for Bessel functions given by Eq. (11.59) [16] [also
see Appendix A, Eq. (A19)], it follows from Eq. (5) that the
amplitudes Amλp(t ) undergo harmonic oscillations at continu-
ous frequencies ωmλ given by Eq. (6), that is

Ämλp(t ) + ω2
mλAmλp(t ) = 0. (7)

The harmonic behavior of the field amplitudes will play an
essential role in the possibility of analytically calculating the

energy of the paraboloidal charge system prior to quantiza-
tion.

Having obtained closed form expressions for the potential
and induced surface charge density, we are now in the position
to calculate the potential energy V due to the polarization
charge distribution ρ as V = 1

2

∫
�

ρ � d�, where � denotes
the entire space. Since ρ is only confined to the paraboloidal
surface η = η0 and vanishes elsewhere in the space, one may
integrate over an infinitesimal thin cover across the bound-
ary: η0 − ε � η � η0 + ε. Letting ε → 0+ and making the
observation ρhη = δ(η − η0)σ , the potential energy can be
expressed as a surface integral given in Eq. (A15). From the
orthogonality relations for the trigonometric system {Sp

m(ϕ)}
and the Bessel functions along with the property of the delta
function, see Eqs. (A13)–(A19) in Appendix A, we obtain the
potential

V = a

8

∑
m,p

δ̂mp

∫ ∞

0

Im(λη0)Km(λη0)

λ
[Amλp(t )]2dλ, (8)

where δ̂mp is given in Eq. (A17).
We will now seek the kinetic energy T of the paraboloidal

charge system. Employing the charge displacement vector, we
write T = 1

2men0
∫
�

�̇u · �̇ud�. To obtain an expansion for �̇u,

we note that in the expression for the potential �i given by
Eq. (1), one may use the harmonic oscillator equation Eq. (7)
for the amplitudes to replace Amλp(t ) with −Ämλp(t )/ω2

mλ.

As a result, integrating the charge displacement vector with
respect to time, we obtain: me �̇u = −e �∇�̇, where

�(r, t) =
∑
m,p

Sp
m(ϕ)

∫ ∞

0

Amλp(t )

ω2
mλ

Jm(λξ )

× Im(λη)Km(λη0)dλ. (9)

With this expression in the integral for kinetic energy, fol-
lowed by utilization of the Gauss theorem and orthogonality
relations for {Sp

m} and Bessel functions, see Eqs. (A20)–(A24)
in Appendix A, we can calculate the kinetic energy as

T = a

8

∑
m,p

δ̂mp

∫ ∞

0

Im(λη0)Km(λη0)

λ ω2
mλ

[Ȧmλp(t )]2dλ. (10)

In view of Eqs. (8) and (10), we find that the total classical
energy E of the paraboloidal system takes the following form:

E = a

8

∑
m,p

δ̂mp

∫ ∞

0

Im(λη0)Km(λη0)

λ ω2
mλ

× {
[Ȧmλp(t )]2 + ω2

mλ[Amλp(t )]2
}
dλ,

which is the total energy of the surface plasmon field, suitable
for quantization.

B. Field quantization and interaction of plasmons with photons

To obtain the quantized plasmon field, the expression for
the classical field E needs to be rewritten in a suitable
form. We begin by noting that since the potential together
with the paraboloidal harmonics Im(λη), Jm(λξ ), Km(λη),
and S

p
m(ϕ) are all real-valued, we have that the amplitudes

Amλp(t ) are real-valued and satisfy the harmonic oscillator
equation Eq. (7). Therefore toward converting E into the
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Hamiltonian operator for a scalar boson field (plasmons are
spinless quasiparticles), we write

Amλp(t ) = αmpλ

2ωmλ

[amλp(t ) + a∗
mλp(t )], (11)

where amλp are complex-valued time dependent functions pro-
portional to e−iωmλt , and αmpλ are some real-valued constants
to be determined later. The time derivative of Eq. (11) can now
be expressed as

Ȧmλp(t ) = iαmpλ

2
[a∗

mλp(t ) − amλp(t )]. (12)

Performing field quantization [17,18], we replace the am-
plitudes amλp(t ) and a∗

mλp(t ) with operator valued distribu-

tions âmλp and its conjugate â
†
mλp, and note the commutation

relations [âmλp, â
†
m′λ′p′ ] = δmm′δpp′δ(λ − λ′). The continuous

spectrum of the eigenvalues λ originates from the infinite
axial dimension of the paraboloid. Taking the normal ordered
expansion of the noncommuting boson creation â

†
mλp and

annihilation âmλp operators, a comparison with the normal
ordered expression of the Hamiltonian operator for a scalar
boson field [17], yields the Hamiltonian

Hsp =
∑
m,p

∫ ∞

0
h̄ωmλâ

†
mλpâmλpdλ, (13)

if we choose

α2
mλp = 8 h̄ λ ω3

mλ δ̂−1
mp

a Im(λη0) Km(λη0)
. (14)

For the interaction of the plasmon system with a photon
field with Hamiltonian Hp, we require the plasmon-photon
interaction Hamiltonian Hi , which is required to determine
the radiative decay rate of surface plasmons excited on the
paraboloidal surface. Our full system, plasmon field + pho-
ton field is described by the tensor product of the Fock
spaces for the two constituent fields. Here, to describe the
plasmon-photon interaction, we resort to the hydrodynamical
formulation of the electron gas by Crowell and Ritchie [10]
and utilize the Hamiltonian: Hi = 1

c

∫
J · Ad�, where J is

the induced current density and A is the vector potential
operator of the photon field, see Eqs. (A25) in Appendix A.
This interaction has been used previously to describe the
emission of photons via plasmon decay on finite surfaces
of an oblate spheroid modeling silver nanoparticles vacuum
evaporated on a dielectric substrate [19]. Here, we will apply
this Hamiltonian to modeling the creation of a plasmon on
the surface of the paraboloid by a photon or the decay of
a paraboloidal plasmon and emission of a photon [17]. This
application requires the explicit determination of the current
density operator, which in light of the displacement operator
�̇u = −(e/me ) �∇�̇, can be written as J = −(n0e

2/me ) �∇�̇.

To write the photon field as a sum with discrete momentum
eigenstates as opposed to the continuous representation, we
consider our electromagnetic field to be confined to a volume
V, which is normally taken to be represented by a cube.
Taking the electromagnetic energy confined to a volume to
be independent of the shape of the volume [20,21], we take
as our quantization volume a paraboloidal structure given by

ξ = η = L with L 	 η0. The volume is then found to be π
2 L6.

In the paraboloidal coordinates, ξ and η have dimensions of
length1/2 and so our volume has dimension L3. The transition
to the discrete sum then follows the lattice strategy in quantum
electrodynamics [22]:

1

(2π )3/2

∫
d3s → 1√

V
∑

s

, (15)

and δ(s − s ′) = δss′ . Hence we write the discretized vector
potential as

A =
∑

s

∑
j=1,2

√
h̄c2

Vωs

êj (ĉsj e
is·r + ĉ

†
sj e

−is·r ), (16)

with s being the three-dimensional photon wave vector ωs =
sc, and ĉ

†
sj and ĉsj , the photon creation and annihilation

time-dependent operators, while êj , the polarization vector
being perpendicular to s for both values of j , satisfy the com-
mutation relations [ĉsj , ĉ

†
sj ] = δjj ′δ(s − s′). For the physical

quantities of interest in our work, we find that the quantization
volume V cancels out in our calculations. The photon field
Hamiltonian corresponding to the vector potential above is
Hp = ∑

sj h̄ωsĉ
†
sj ĉsj .

Taking A to be in the radiation gauge with both � = 0 and
�∇ · A = 0, we note ( �∇�̇ ) · A = �∇ · (�̇A), since the current
is confined to the surface of the paraboloid, we have

Hi = n0e
2

cme

∫ 2π

0

∫ ∞

0
(�̇A · êη )hξhϕ dξdϕ. (17)

Differentiating � given by Eq. (9) with respect to time and
replacing Ȧmλp(t ) using Eq. (12), we can now write the
interaction Hamiltonian as

Hi = n0e
2

2i me

∑
s

∑
j=1,2

√
h̄

Vωs

(êη · êj )(ĉsj e
is·r + ĉ

†
sj e

−is·r )

×
∑
m,p

∫ 2π

0

∫ L

0

[ ∫ ∞

0
Sm

p (ϕ)Jm(λξ )Im(λη0)Km(λη0)

× αmλp(t )

ω2
mλ

(â†
mλp − âmλp )dλ

]
hξhϕ dξdϕ, (18)

where we have taken the integral in ξ to be from 0 to L now
since our integral over space is bounded by ξ = L.

Having obtained the explicit form of the interaction Hamil-
tonian, we now aim to calculate the probability amplitude
that a surface plasmon in a given initial state, defined by
m, λ, and p will emit a j -polarized photon in s state with
momentum h̄s. The total radiative decay rate for a given initial
state, γmλp, is obtained by summing over final photon states,
γmλp = ∑

s

∑
j=1,2 γ

(js)
mλp, where by the Fermi Golden rule, the

transition probabilities are

γ
(js)
mλp = 2π

h̄

∣∣M(js)
mλp

∣∣2
δ(ωs − ωmλ) (19)

with M(js)
mλp = | 〈0| ĉjf sf

Hi â
†
miλipi

|0〉 | denoting the emission
matrix elements, f the final state, and i the initial state,
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invoking the commutation properties

〈0| âmλp â
†
m′λ′p′ |0〉 = δmm′δ(λ − λ′)δpp′ , (20)

〈0|ĉs′q ′ ĉ†sq |0〉 = δ(s − s′)δqq ′ , (21)

the nonvanishing terms yield

M(js)
mλp = n0e

2

2i me

√
h̄

Vωs

αmλp

ω2
mλ

Im(λη0)Km(λη0)I (j )
mλ, (22)

where we have dropped the i and f for convenience and

I (j )
mλ =

∫ 2π

0

∫ L

0
Sp

m(ϕ)(êη · êj )Jm(λξ )e−is·rhξhϕdξdϕ.

(23)

For an arbitrary photon wave vector of the form

s = ωs

c
(cos ψ, 0, sin ψ ),

we may consider the polarization vectors êj for s and p

polarizations, being perpendicular and parallel to ẑs plane,
respectively, noting s · êj = 0. Thus we consider the polar-
ization vectors ê1 = (0, 1, 0) and ê2 = (sin ψ, 0,− cos ψ ).
Under these polarization conditions, Eq. (23) leads to two
different integrals to be calculated:

I (1)
mλ = aη0

∫ 2π

0

∫ L

0
ξ 2 sin ϕEmλ(η, ξ )Jm(λξ )Sp

m(ϕ) dξdϕ

(24)
and

I (2)
mλ = aη0

∫ 2π

0

∫ L

0
(ξ 2 sin ψ cos ϕ + ξη cos ψ )

× Emλ(η, ξ )Jm(λξ )Sp
m(ϕ)dξdϕ, (25)

where Emλ(η, ξ ) = e−iA with A given by

A = −aωs

c

[
ξη0 cos ψ cos ϕ + sin ψ

(
ξ 2 − η2

0

)
2

]
.

Thus, depending on the choice of the polarization vector
êj , each integral contributes to a polarization state. In other
words, I (1)

mλ represents the s polarization and I (2)
mλ corresponds

to the p polarization. For a photon emitted pointing to the
solid angle d� as depicted in Fig. 1(a), final photon states
results in a continuous energy spectrum. Hence we let the
quantization volume V go to infinity so that we have a
continuum s states, that is,∑

s

→ V
(2π )3

∫
s2ds

∫
d�, (26)

where V/(2π )3 is the density of photon states per polarization.
In view of transition probability given in Eq. (19), the radiative
decay rate per unit solid angle may be written as

dγmλp

d�
=

∑
j=1,2

V
(2π )3

∫
γ

(js)
mλps2ds,

in which using ωs = sc, we obtain the final expression

dγmλp

d�
=

∑
j=1,2

V
(2π )3

ω2
mλ

c3

[
2π

h̄2

∣∣M(js)
mλp

∣∣2
]

ωs=ωmλ

, (27)

which is observed to be independent of the volume V as
it cancels out with V−1 in |M(js)

mλp|2. Thus we can take our
quantization volume to be infinite and convert the sum over
the photon states to an integral. Hence the paraboloidal decay
rate per solid angle is given by

dγmλp

d�
= λ δ̂−1

mp

aπc3

(
n0e

2

me

)2

Im(λη0)Km(λη0)

× [(
I (1)

mλ

)2 + (
I (2)

mλ

)2]
, (28)

where I (1)
mλ and I (2)

mλ are given by Eqs. (24) and (25), respec-
tively, and must be computed numerically.

III. PLASMON EXCITATION AND RADIATIVE DECAY
ON HYPERBOLOIDAL SURFACES

Similar to the paraboloidal case, the hyperboloidal domain,
shown in Fig. 1(a), is highly relevant for modeling of elec-
tronic and photonic response of probelike nanostructures [8].
Under the same assumptions as the paraboloidal case [see
Eqs. (B1)–(B8) in Appendix B], the potential now takes the
form

�(r, t ) =
∞∑

m=0

Hm(ϕ)
∫ ∞

0
Amq (t )Pmq (η)

× [�(μ − μ0)Pmq (−μ0)Pmq (μ)

+�(μ0 − μ) Pmq (μ0)Pmq (−μ)]dq, (29)

where Amq (t ) are real time dependent amplitudes and
Hm(ϕ) = (2 − δ0m) cos mϕ, and, for convenience, we use
Pmq (·) to denote P m

− 1
2 +iq

(·).
Following Eqs. (A6)–(A9) in Appendix A, the surface

charge density σ on μ = μ0 is found to be

σ = −1

4πz0

√
1 − μ2

η2 − μ2
0

∑
m

Hm(ϕ)

×
∫ ∞

0
Amq (t )Pmq (η)Wmq (μ0)dq,

where the Wronskian identity for Wmq (μ0) is given in
Eq. (B13). It follows from the orthogonality relation for the
system {Hm(ϕ)}, given in Eq. (B9), that for each fixed m =
0, 1, 2, . . . , we have∫ ∞

0
Pmq (η)

[
Wmq (μ0) Ämq (t )

+ ω2
pPmq (−μ0)P ′

mq (μ0) Amq (t )
]
dq = 0. (30)

Applying the Van Nostrand orthogonality relation for the
conical functions given in Eq. (B6) and the exact expression
for the Wronskian given in Eq. (B14), it follows from Eq. (30)
that for each fixed m and q � 1 the amplitudes Amq (t ) sat-
isfy the harmonic oscillator model Ämq (t ) + ω2

mqAmq (t ) = 0,

where the frequencies ω2
mq are given by

ω2
mq =

ω2
p π

√
1 − μ2

0

2Zm
q cosh(πq )

Pmq (−μ0)P ′
mq (μ0), (31)
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with Zm
q defined by (B15). Again, these resonant values

can also be independently calculated from the transcendental
equation generated by satisfying the boundary conditions.

To calculate the classical energy E, we follow the exact
same argument as in the case of a paraboloid outlined in
Sec. II and Appendix A. Consequently, using the orthogonal-
ity relations in the hyperboloidal case given by Eqs. (B9) and
(B6), one finds the hyperboloidal energy:

E = z0

4π

√
1 − μ2

0

∑
m

δ̂0m

∫ ∞

0

[
Zm

q cosh(πq )
]2

q sinh(πq ) ω2
mq

× Pmq (−μ0) Pmq (μ0)
{
[Ȧmq (t )]2 + ω2

mq[Amq (t )]2
}
dq.

(32)

Using similar ansatz for Amq (t ) and Ȧmq (t ) as in Eqs. (11) and
(12), the coefficients α2

mq can be obtained by a comparison of
Eq. (32) with the Hamiltonian Eq. (13) as

α2
mq = 4πh̄ δ̂−1

0m

z0

√
1 − μ2

0

q ω3
mq sinh(πq )[

Zm
q cosh(πq )

]2
Pmq (−μ0) Pmq (μ0)

,

(33)

where δ̂0m is given by Eq. (B10).
Utilizing Eq. (16) and the hyperboloidal analog of Eq. (17),

setting up the plasmon current density, the interaction Hamil-
tonian for the photon emission can be expressed as

Hi = n0e
2

2i me

∑
s

∑
j=1,2

√
h̄

Vωs

(êμ · êj )[ĉsj e
is·r + ĉ

†
sj e

−is·r]

×
∑
m

∫ 2π

0

∫ L

1

[ ∫ ∞

0
Hm(ϕ)Pmq (η)Pmq (−μ0)Pmq (μ)

× αmq

ω2
mq

(â†
mq − âmq )dq

]
hϕhη dϕdη. (34)

Thus we may calculate the hyperboloidal emission matrix
element as

M(js)
mq = n0e

2

2i me

√
h̄

Vωs

αmq

ω2
mq

Pmq (−μ0)Pmq (μ0)I (j )
mq , (35)

where for different polarization directions, we obtain

I (1)
mq = −z0μ0

√
1 − μ2

0

∫ 2π

0

∫ L

1

√
η2 − 1Pmq (η)

× sin ϕHm(ϕ)Emq (η, ϕ)dηdϕ (36)

and

I (2)
mq = z0

√
1 − μ2

0

∫ 2π

0

∫ L

1
Pmq (η)

× [
μ0

√
η2 − 1 sin ψ cos ϕ +

√
1 − μ2

0 cos ψη
]

× Hm(ϕ)Emq (η, ϕ)dηdϕ, (37)

where we have put Emq (η, ϕ) = e−iB with

B = z0ωs

c

[√
(η2 − 1)

(
1 − μ2

0

)
cos ψ cos ϕ + μ0 sin ψη

]
.

The wave vector s and the polarization vectors ê1, ê2 re-
main the same as before. Moreover, similar to the case for
paraboloid, the choice of the polarization vector êj in each in-
tegral determines the polarization state. Hence I (1)

mq represents
the s polarization and I (2)

mq corresponds to the p polarization.
Using Eq. (33) in Eq. (27), and now the position vector in
hyperboloidal coordinates given by Eq. (B1), we arrive at

dγmq

d�
= q sinh(πq )δ̂−1

0m

4πz0c3
√

1 − μ2
0

(
n0e

2

me

)2
Pmq (−μ0)Pmq (μ0)[

Zm
q cosh(πq )

]2

× [(
I (1)

mq

)2 + (
I (2)

mq

)2]
. (38)

IV. PLASMON EXCITATION AND RADIATIVE DECAY
ON PROLATE SPEROIDAL SURFACES

In order to provide a geometric basis for comparison, we
now treat the case of plasmon excitation on the surface of a
prolate spheroidal domain. This structure presents an almost
identical curvature to that of the paraboloid but encompasses
a finite domain, making the interpretation of the surface
modes and their associated radiation patterns more tangible.
The closely related structure of an oblate spheroid has been
employed in previous plasmon studies [19]. In both prolate
and oblate systems, a limiting case is that of a sphere [10,17],
which can serve to validate the results. To obtain the quantized
surface modes of the prolate spheroid, we closely follow the
oblate case [19].

A prolate spheroid is defined by fixing the coordinate η =
η0 in coordinate system given in Eq. (B1). The quasistatic
scalar potential for a spheroid defined by ζ = ζ0 may then be
written as

�(r, t ) =
∑
m,l,p

Amlp(t )Yp

lm(μ, ϕ)
[
�(ζ0 − ζ )P m

l (ζ )

× Qm
l (ζ0) + �(ζ − ζ0)P m

l (ζ0)Qm
l (ζ )

]
, (39)

for some real coefficients Amlp(t ), with l = 1, 2, 3, . . . , m =
0, . . . , l, p = 0, 1 and P m

l (·) and Qm
l (·) being the associated

Legendre polynomial of first and second kind, respectively,
while Y

p

lm(μ, ϕ) are the real spherical harmonics [Eq. (C1)].
The allowed values of the dielectric function εlm are then
found to be

εlm = 1 − (l + m)!(
ζ 2

0 − 1
)
(l − m)!

[
(−1)m

P ′m
l (ζ0)Qm

l (ζ0)

]
, (40)

following similar steps for Eqs. (1)–(6). We then obtain the
matrix elements for photon emission,

M(js)
lm = z0 ω2

p (−i)l αlmp

2ω2
lm

√
h̄

Vωs

P m
l (ζ0) Qm

l (ζ0)

× êj · �∇s ′
[
jl (z0s̃) Y

p

lm(θ̃ , ϕ̃)
]
, (41)

using an initial expression as in Eq. (C3), similar to the oblate
spheroidal case in [19], with êj being the unit polarization
vector for the emitted light, jl (·) a spherical Bessel function
of order l [see Eq. (C5)], and �∇s ′ the gradient of the wave
vector given in spherical coordinates (s ′, θ ′, ϕ′), where αlmp,
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and using the classical energy as

α2
lmp = 8π h̄

z0

(−1)m+1 (l − m)! ω3
lm

(l + m)! P m
l (ζ0) Qm

l (ζ0)
.

Following the same quantization scheme as before, the radia-
tive decay rate of plasmons per unit solid angle �, is then
calculated to be

dγlmp

d�
=

∑
j=1,2

z0ω
4
lm(1 − εlm(ωlm))P m

l (ζ0)

c3(ζ 2 − 1)P ′m
l (ζ0)

× [
F

(j )
lmp(s, θ, ϕ)

]2
, (42)

where

F
(j )
lmp(s, θ, ϕ) = jl (z0s

′′)
s

[
δ1j

√
ζ 2

0 − 1
∂Y

p

lm(θ ′′, ϕ′′)
∂θ ′′

+ δ2j

ζ0

sin θ

∂Y
p

lm(θ ′′, ϕ′′)
∂ϕ′′

]
,

with (s ′′, θ ′′, ϕ′′) denoting the wave vector in spherical coor-
dinate for which the transformations are given in Eq. (C6) and
for the two polarization states s and p [19].

V. RESULTS AND DISCUSSIONS

The harmonic functions, making up the eigenmodes of the
hyperboloidal and paraboloidal systems, represent the normal
modes of the charge density. The infinite axial dimension of
these domains results in the corresponding eigenvalues (λ and
q) to form continuous spectra as opposed to the discrete value
spectrum (l) of finite domains such as spheroidal particles.
While this difference in the nature of the eigenvalues is
less noticeable when visualizing the potentials, as seen in
Figs. 1(b)–1(d), it becomes noteworthy when performing the
quantization since now an integration over the corresponding
eigenvalue spectrum enters the Hamiltonian, Eqs. (18) and
(34). However, an inspection of the asymptotic properties of
the integrands in the Hamiltonians reveal fast convergence
facilitating the calculation of the needed matrix elements. To
proceed, we note that for a more reasonable comparison of
the two systems, their physical dimensions must be made
comparable. Therefore we geometrically adjust the paraboloid
and the hyperboloid so as to control and match their apex
curvature and further match it with that of a finite prolate
spheroidal domain. The latter, due to its finite domain, makes a
natural case to validate the findings for the two infinite domain
cases investigated.

For settings consistent with nanofabrication and pho-
ton scattering experiments involving gold probes, where
strong plasmon excitation has been reported [7,23], we em-
ploy the following settings: η0 = 60 nm and μ0 = 86 nm
for the systems in Figs. 1(b)–1(d). The close relationship of
the calculated eigenvalues with the surface plasmon momenta
are clearly observable from the “wavelength” of the charge
density oscillations in Figs. 1(b)–1(d) and 7. For proper geo-
metric and modal adjustments, the similarities in the potential
distributions are clearly evident from the contour plots. Since
for the argument values μ ≈ 1,−1, the conical functions
become singular, a numerical artifact in the form of a disconti-
nuity in the contour lines appear near the symmetry axis of the
hyperboloids, where μ attains those values. Comparison with

the corresponding potential distribution in the spheroidal case
can be facilitated by taking ζ0 = 65 nm matching its curvature
with that of the apexes in paraboloidal and hyperboloidal
domains. With the dimensions adjusted, using Eqs. (1), (29),
and (39) to simulate the spatial distributions of the potentials
for the three cases, one clearly observes the analogous role
of λ and q to the discrete spectrum l. The lowest azimuthal
mode m = 0 for the three domains shown in Figs. 1(b)–1(d)
was simulated by taking the second indices as λ = 1, q = 0.2,
and l = 1, generating relatively same potential distributions.
The potential distributions for higher modes are shown in
Fig. 6, where two higher modes for each domain (shape pa-
rameters η0, μ0 and ζ0) are shown. In doing so, the Legendre
functions Pmq (μ) of imaginary order and their derivates have
been calculated using the computational algorithm of Gil
and Segura [24], and the integral expansion of Kölbig [25].
Analogous to plasmon wave vector in the case of excitations
on a planar interface (or a Cartesian thin film), which can be
emulated by μ0 → π/2 in Fig. 1(a), the higher the λ, q, and
l for the same m, the higher the number of fluctuations for
the same spatial domains, as shown in Fig. 7. Furthermore,
from the spheroidal nearfield distribution, one can readily ob-
serve the multipole order so that (m, l) = (0, 1) corresponds
to a dipolar distributions, whereas (m, l) = (0, 2) leads to
a quadrupolar behavior, etc. Similarly, for (m, q ) = (0, 1.5)
or (m, λ) = (0, 2), one obtains the corresponding multipolar
nearfield distributions of the apex regions. Thus, guided by
these charge density oscillations, controlled by the parameters
(m, λ, η0), (m, q,μ0), and (m, l, ζ0) for the three cases and
by a geometric matching of their apex curvatures, one may
discuss the eigenmode dependent radiative decay rates.

In addition to the material-specific electronic and optical
properties, in as far as the effect of the local curvature is con-
cerned, we expect the considered cases to exhibit similarities
in their resonance spectra. The plasmon dispersion relations
are good indicators of this resemblance. To study the relation
between resonance modes of isolated solid paraboloids and
hyperboloids in vacuum, we assume a local dielectric function
and calculate their eigenmode dependent allowed values εmλ

and εmq using Eqs. (6) and (31). A comparison of the lowest
lying plasmon modes (m = 0, 1, 2, and 3 of fixed probes η0

and μ0) is given in Fig. 2. The modes may alternatively be dis-
played with reference to bulk plasma frequency ωp. Interest-
ingly, the higher m modes show a higher sensitivity to the mor-
phological differences between the two systems, in particular
for lower λ and q values, that is, in the long wavelength limit,
which in analogy with the planar plasmons would be near the
light line, where retardation effects are more pronounced [8].
We also note that in the hyperboloidal case, in the limit
μt → 0, we have εmq → −1; that is, the modes asymptoti-
cally approach the surface plasmon resonance (ω → ωp/

√
2),

as expected for a Cartesian half-space. This limit is also
approached by large m values as seen in Fig. 2. In the short-
wavelength regime λ, q → ∞, the dielectric function reads

εmq ∼ −1 − cot(θt )

q
, (43)

yielding the same surface plasmon limit [8,26]. Similar to the
paraboloidal case, using the asymptotic behavior of modified
Bessel functions Im(λη) and Km(λη) for large order m and
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FIG. 2. Paraboloidal and hyperboloidal nonretarded surface plas-
mon dispersion relations. The resonance values of the dielectric
function ε are shown for low lying modes as a function of the contin-
uous eigenvalue λ for a paraboloid (black) and q for a hyperboloid
(red). The surfaces of the paraboloid and hyperboloid are set by the
parameter η0 and μ0, respectively. The discrete modes are denoted
by m for the azimuthal oscillations.

large arguments λ and η (see Eqs. (9.7.8) and (9.7.9) in
Ref. [27]), we can write

εmλ ∼ −1 − 1

2λη
, (44)

which implies the same limit for large λ.
Following the field distribution and resonant dielectric

values corresponding to the normal modes of the surface
charge density oscillations, we may assume that a plasmon
has been created in a given eigenmode (m, o, p) where o =
λ, q, l designating the paraboloid, the hyperboloid and the
spheroid, respectively. If the plasmons on the paraboloidal,
hyperboloidal or spheroidal surface are in the initial state
â
†
(mop)i |0〉 , the probability amplitude for their emission into

the final photon state ĉ
†
(sj )f |0〉 could be obtained using ex-

pressions (22), (35) and (41). The |0〉 indicates that the fields
have been populated with 0 plasmons or photons (noting
amop |0〉 = c(sj ) |0〉 = 0) whereas a general photon-plasmon
state is written as |�〉 = |nsj 〉 ⊗ |nmop〉 , that is, a state with
nsj j -polarized photons of momentum s, and nmop plasmons
in the (m, o, p) state.

Keeping the mode patterns, here, the ϕ = 0, π -plane pro-
jection of the relative potential distributions in Figs. 1(b)–1(d)
and dispersion relations in Fig. 2 in mind, we now compare the
radiative decay rate per solid angle of plasmons engendered
on the three domains, using Eq. (28) (paraboloid with η0 =
60 nm), Eq. (38) (hyperboloid with μ0 = 86 nm) and Eq. (42)
(prolate spheroid with ζ0 = 65 nm) for two lowest azimuthal
mods m = 0 and 1. To calculate the matrix elements given
in Eqs. (22) and (35), the integrations I (j )

mλ and I (j )
mq (in case

for paraboloid and hyperboloid, respectively) must be carried
out numerically as they lack analytical solutions in variable ξ

in the case for paraboloid and η in the case for hyperboloid.
The choice of polarization vectors êj for j = 1, 2 corresponds
to I (1)

mλ given by Eq. (24) to represent the s polarization, and

FIG. 3. The radiative decay rate of plasmons engendered on
paraboloidal, hyperboloidal, and prolate spheroidal surfaces. The
decay rate of paraboloidal plasmons (blue) is computed from Eq. (28)
for the single eigenmode m = 0 (right), m = 1 (left) and λ = 1 when
the shape parameter is η0 = 60 nm. Similarly, the decay rate of
hyperboloidal plasmons (green) computed from Eq. (38) corresponds
to the eigenmode m = 0 and q = 0.2 for a shape parameter μ0 =
86 nm. For comparison, the radiative decay rate (red) for plasmons
excited on a prolate spheroidal surface is computed using Eq. (42) for
ζ0 = 65 nm and m = 0, l = 1, corresponding to the dipolar mode. To
facilitate visual comparison within the same plot window, note that
the spheroidal case for m = 0 (right) has been multiplied by 0.006
and for the case m = 1 (left) by 0.01. The composition of the specific
parameters for comparison was guided by the potential distribution
in each case.

I (2)
mλ given by Eq. (25), the p polarization. Inspecting the inte-

grands for their convergence, we compute the integrals using
an iterative numerical integration scheme (Runge-Kutta) due
to lack of fast oscillations. The result is shown in Fig. 3.
Note that to facilitate visual comparison within the same
plot window, the radiative decay rate for prolate spheroid for
modes m = 0 and m = 1 have been multiplied by 0.006 and
0.01, respectively. The effect of higher index modes λ, q,
and l with the same azimuthal order m on radiative decay
rate per solid angle may also be studied, as shown in Fig. 4.
As one may expect from the nearfield patterns of higher λ,

and q, analogous to l = 2, a quadrupolar pattern appears for
the emitted photons. Here, it is understood that an angular
segment is occupied by the probe itself, as opposed to the
0–2π range for the finite volume spheroidal systems. It is

FIG. 4. Comparison of the higher-order modes’ radiative decay
rates for the three different cases described in Fig. 3. In the case
of the prolate spheroidal plasmons, the emitted radiation pattern
corresponds to the quadropolar charge density oscillations.
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FIG. 5. Curvature induced shift in the radiation pattern asso-
ciated with the decay of plasmons excited on the hyperboloidal
surfaces for the modes m = 0 (left) and m = 1 (right) and q = 0.2.
To facilitate comparison within the same plot window, the case for
μ1 has been multiplied by 20 (left) and by 50 (right).

further understood that for larger particles or probe apex size
retardation effects may modify the higher-order modes.

The dependence of the radiative decay rate upon the param-
eter that sets the boundary, allows for control of the curvature
and thus the photon emission pattern. As can be seen from
Fig. 5, for the m = 0 mode, the higher the curvature of the
hyperboloidal apex, the lower the amplitude and the narrower
the angular distribution of the emitted photons. Moreover, for
the m = 1 the higher curvature while resulting in a lower
amplitude does not result in in a higher angular confinement.

VI. CONCLUSIONS

The presented quantization of charge density oscillations
on the surface of geometric entities with local curvature but
with an extended dimension constitutes first time results with
potential for modeling quantum effects in plasmonics. The
obtained analytical expressions for the operators associated
with surface plasmon quantities, help calculating interactions
with other quantized fields, e.g., the interaction of the probe
with a nearby quantum emitter, or with the radiation field
of a quantum dipole. Owing to their apex symmetry and
curvature, the comparison of the calculated quantities show
that hyperboloidal and paraboloidal plasmons qualitatively
exhibit similar dispersion relations and radiative decay rates.
We conclude that, the quantitative differences observed in the
allowed resonance values of the dielectric function and the
emitted radiation patterns are therefore primarily attributed
to the difference in curvature in the asymptotic region, away
from the apex. From a comparison with the modes excited on
a prolate spheroidal surface, for which experimentally typi-
cally only low energy dipolar and quadrupolar eigenmodes or
their mixtures have been observed to contribute to far field
radiation in the visible spectrum, we expect that also only
low lying modes will contribute to the emission spectra of the
probe. Unlike the all discrete spectrum of the quantum num-
bers associated with the spheroidal modes, the eigenvalues
characterizing the hyperboloidal or paraboloidal plasmons
along their infinite dimensions exhibit a continuous spectrum,
making a direct comparison of plasmon wave vectors unclear.

FIG. 6. The spatial distribution of low and high lying eigen-
modes of the quasistatic electric potential for the three modeling
domains investigated. For the same mode index m, optimizing the
apex curvature overlap within the same spatial zx domains, and
analyzing the potential distribution, leads to the determination of the
corresponding continuous eigenvalues λ of the paraboloid (top) and
q of the hyperboloid (middle), respectively, as well as the discrete
eigenvalue l of the prolate spheroid (bottom). The geometric param-
eters η0, μ0, and ζ determines the form of the considered domains.
For proper geometric and modal adjustments, the similarities in the
potential distributions are clearly evident from the contour plots.
The discontinuity in the contour lines near the symmetry axis of the
hyperboloids is due to the singularity in the conical functions there.

However, visualization of the eigenmode field patterns, that
is, how the fields fluctuate for given continuous eigenvalues
in the case of hyperboloids and paraboloids, can facilitate the
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comparison with the discrete eigenvalues for the spheroidal
case. For a given set of eigenmodes, photon emission from
the higher apex curvature tips occurs with a more localized
radiation pattern. Following the presented results for the al-
lowed values of the dielectric functions εml (ζ0), εmλ(η0), and
εmq (μ0), the corresponding dispersion relations and radiative
decay rates can be obtained for real materials from a com-
parison with the experimentally determined optical properties
of solids (such the compilation by Hageman [28] or by Pa-
lik [29]). In summary, the presented results can aid the design
and fabrication of tips with specific photonic and plasmonic
characteristics. For example, for a gold or silver tip, such
as those used in electron emission experiments [23], using
the presented results one may determine both the fabrication
design parameters and the excitation laser wavelength and
polarization. In such applications, a comparison of Figs. 2 and
7 with the optical properties of, for example silver [28], indi-
cates the availability of several resonance modes in the visible.
The results can help the analysis of the radiation emitted from
the nanotips as a result of electron or photon scattering, which
are of importance to plasmonics in experiments such as EELS
(electron energy loss spectroscopy) and SPM. For a specific
material typically employed in plasmonics such as gold and
silver, the results offer estimates of the polarization, angular,
and spectral properties of the emitted radiation. In such in-
stances, the emitted photons may be analyzed for the specific
eigenmode of charge density oscillation (m, λ) that created
them. In light of the obtained multiparameter dependence, any
agreement with the theory would require fabrication control of
the geometric features of the nanostructure.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [30].
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APPENDIX A

In Appendix A, we provide the detailed calculations for
the formulas and results claimed in Sec. II. The paraboloidal
domain allows the parametric study of the various scatter-
ing processes as functions of the local curvature without
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FIG. 7. Paraboloidal, hyperboloidal, and prolate spheroidal non-
retarded surface plasmon dispersion relations. The resonance values
of the dielectric function ε are shown for low lying modes as
a function of the continuous eigenvalue λ for a paraboloid (top)
and q for a hyperboloid (middle), and as a function of the shape
parameter ζ for a prolate spheroid. The surfaces of the paraboloid and
hyperboloids are set by the parameter η0 and μ0, respectively, while
ζ defines the form of the spheroidal surface (bottom). The discrete
modes are denoted by m for the azimuthal oscillations and by l in the
spheroidal case.
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displacement of the domain. The quasistatic solution of the
electric scalar potential near a paraboloidal domain has been
reported in Ref. [31]. The paraboloidal coordinates (ξ, η, ϕ),
are related to the rectangular coordinates by

x = a ξ η cos ϕ, y = a ξ η sin ϕ, z = a

2
(ξ 2 − η2),

(A1)

with the corresponding scale factors

hξ = hη = a
√

ξ 2 + η2 and hϕ = aξη, (A2)

where 0 � ϕ < 2π denotes the usual azimuthal angle, a > 0
is a dimensionless constant to be determined later, and the two
coordinates η, ξ � 0 are such that the surfaces of constant η >

0 and ξ > 0 describe upward and downward paraboloids of
revolution about the z-axis, respectively.

Laplacian is given by

�∇2 = 1

a2(ξ 2 + η2)

[
∂2

∂ξ 2
+ 1

ξ

∂

∂ξ
+ ∂2

∂η2

+ 1

η

∂

∂η
+

(
1

ξ 2
+ 1

η2

)
∂2

∂ϕ2

]
. (A3)

Assuming the ansatz [14] �(ξ, η, ϕ) = F (λξ )G(λη)eimϕ, F

satisfies the Bessel equation:[
d2

dξ 2
+ 1

ξ

d

dξ
+

(
1 − m2

ξ 2

)]
Fm(λξ ) = 0, (A4)

with the Bessel functions of the first and second kind Jm(λξ )
and Ym(λξ ) forming a set of solutions, allowing us to express
any general solution in terms of these functions. Likewise, G

satisfies the modified Bessel equation:[
d2

dη2
+ 1

η

d

dη
−

(
1 + m2

η2

)]
Gm(λη) = 0, (A5)

with now the modified Bessel Functions Im(λη),Km(λη)
forming the basis for our solutions.

Calculation of �∇2�. The potential � could be written as

� = �(η0 − η)�i(r, t ) + �(η − η0)�o(r, t ),

where the inside and outside potentials �i and �o are given
by Eq. (1). The Laplacian of � in paraboloidal coordinates
is given by Eq. (A3). Since the Heaviside function depends
on the coordinate η, we only need to consider ∂�/∂η and
∂2�/∂η2 as the partial derivatives of � with respect to the
other coordinates ξ and ϕ can be trivially expressed in terms
the corresponding partials of �i and �o, respectively. Using
the fact that the derivative of Heaviside function is the Dirac
delta function δ (in the distributional sense), one finds

∂�

∂η
= �(η0 − η)

∂�i

∂η
+ �(η − η0)

∂�o

∂η

− δ(η0 − η)�i + δ(η − η0)�o, (A6)

where the last two terms of the above expression vanish due
to the fact that �i = �o at the boundary η = η0. Thus

∂�

∂η
= �(η0 − η)

∂�i

∂η
+ �(η − η0)

∂�o

∂η
(A7)

and as a result

∂2�

∂η2
= �(η0 − η)

∂2�i

∂η2
+ �(η − η0)

∂2�o

∂η2

− δ(η0 − η)
∂�i

∂η
+ δ(η − η0)

∂�o

∂η
. (A8)

Substituting Eqs. (A7) and (A8), together with partials deriva-
tives of � with respect to ξ and ϕ, into the Laplacian Eq. (A3)
gives

�∇2� = 1

a2(ξ 2 + η2)

[
δ(η − η0)

(
∂�o

∂η
− ∂�i

∂η

)

+ �(η0 − η) �∇2�i + �(η − η0) �∇2�o

]
. (A9)

Treating the above expression in the sense of a distribution in
η only and noting that �∇2�i and �∇2�0 vanish for η < η0 and
η > η0, respectively, we obtain the claimed identity Eq. (2)
for the Laplacian of �.

From Eq. (2), one can solve for the charge density to obtain

σ = − 1

4πa
√

ξ 2 + η2

(
∂�o

∂η
− ∂�i

∂η

)∣∣∣∣
η=η0

. (A10)

The expression on the right-hand side of Eq. (A10) can be
easily calculated from Eq. (1) as(

∂�o

∂η
− ∂�i

∂η

)∣∣∣∣
η=η0

=
∑
m,p

Sp
m(ϕ)

∫ ∞

0
λAmλp(t )Jm(λξ )Wm(λη0)dλ, (A11)

where Wm(·) denotes the Wronskian given by

Wm(z) = Im(z)K ′
m(z) − I ′

m(z)Km(z). (A12)

In view of the identity Wm(z) = − 1
z

(z �= 0) for the modified
Bessel functions [14], and from Eqs. (A10) and (A12) we
obtain Eq. (3).

Calculation of the potential energy V . The potential energy
is given by

V = 1

2

∫
η=η0

σ �i|η=η0
dS

= 1

2

∫ 2π

0

∫ ∞

0
σ �i|η=η0

hξhϕ dξdϕ. (A13)

From Eq. (1), the potential �i|η=η0
is given by

�i|η=η0
=

∑
m,p

Sp
m(ϕ)

∫ ∞

0
Amλp(t )Im(λη0)

× Km(λη0)Jm(λξ )dλ. (A14)

Substituting Eq. (A14) and the expressions for σ, hξ , and
hϕ from Eqs. (5) and (A2) into the above integral for V
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gives

V = a

8π

∑
m′,p′

∑
m,p

∫ ∞

0

∫ 2π

0
Sp

m(ϕ)Sp′
m′ (ϕ)

×
[ ∫ ∞

0
Am′λ′p′ (t )Im′ (λ′η0)Km′ (λ′η0)Jm′ (λ′ξ )dλ′

×
∫ ∞

0
Amλp(t )Jm(λξ )dλ

]
ξ dϕdξ. (A15)

Using the orthogonality relation for {Sp
m}m,p,∫ 2π

0
Sp

m(ϕ)Sp′
m′ (ϕ) dϕ = πδ̂mpδmm′δpp′ , (A16)

where

δ̂mp = 4δ0p + δ1p − 2 δm0δ0p, (A17)

we can write Eq. (A15) as

V = a

8

∑
m,p

δ̂mp

∫ ∞

0

[ ∫ ∞

0
Amλ′p(t )Im(λ′η0)Km(λ′η0)

× Jm(λ′ξ )dλ′
∫ ∞

0
Amλp(t )Jm(λξ )dλ

]
ξ dξ. (A18)

Finally, in view of the orthogonality relation for Bessel func-
tions given by Eq. (11.59) [16]∫ ∞

0
ξJm(λξ )Jm(λ′ξ )dξ = δ(λ − λ′)

λ
, (A19)

for m � −1, and λ, λ′ > 0, we obtain Eq. (8).
Note that in the above calculations, we have changed the

order of integration to simplify the obtained expressions. This
is done in view of the Fubini’s theorem based on the absolute
integrability of the above expressions. Our argument is based
on the asymptotic behavior of Bessel functions, see [14],
Eqs. (5.11.6), (5.11.8), and (5.11.9), and the fact that the
potential, and thus Eq. (1), is finite in the entire space. The
mathematical details, however, is beyond the scope of this
paper, and is therefore omitted. The same argument is also
used in the other cases using the asymptotic behavior of the
corresponding eigefunctions, but has been omitted in this
presentation.

Calculation of the kinetic energy T . Comparing the expres-
sion for � given by Eq. (9) with the inside potential given by
Eq. (1), it is clear that � also satisfies the Laplace equation
�∇2� = 0. Using the vector identity �∇�̇ · �∇�̇ = �∇(�̇ �∇�̇ ) −
(�̇ �∇2�̇ ), together with the fact �∇2�̇ = d

dt
�∇2� = 0, it fol-

lows that �∇�̇ · �∇�̇ = �∇(�̇ �∇�̇ ), and, as a consequence,

�̇u · �̇u = e2

m2
e

�∇ · (�̇ �∇�̇ ). (A20)

Next, we substitute Eq. (A20) in the expression for T and
apply Gauss’s theorem to obtain

T = e2n0

2me

∫
surf.

(�̇ �∇�̇ )
∣∣∣
η=η0

· n̂ dA, (A21)

where, as in the case of potential V , the integral is taken
over the surface η = η0 with the surface area element

dA = hξhφdξdϕ. Using the formula for gradient in the
paraboloidal coordinates and noting n̂ = eη on the surface,
one gets

T = e2n0

2me

∫ 2π

0

∫ ∞

0

(
�̇

1

hη

∂�̇

∂η

)∣∣∣∣∣
η=η0

hξhϕdξdϕ. (A22)

Using the definition of � given by Eq. (9) and the expressions
for the scale factors Eq. (A2), the right-hand side of Eq. (A22)
can be written as

T = aη0
e2n0

2me

∑
m,p

∑
m′,p′

∫ 2π

0
Sp

m(ϕ)Sp′
m′ (ϕ) dϕ

×
∫ ∞

0

[ ∫ ∞

0

Ḃmpλ(t )

ω2
mλ

Jm(λξ ) Im(λη0)Km(λη0)dλ

×
∫ ∞

0
λ

Ḃm′p′λ′ (t )

ω2
m′λ′

Jm′ (λ′ξ )I ′
m′ (λ′η0)Km′ (λ′η0)dλ′

]
ξ dξ.

(A23)

Invoking the orthogonality relations Eq. (A16) and Eq. (A19)
in Eq. (A23) by using a similar argument as the one given for
the case of the potential, it follows that

T = aη0ω
2
p

8

∑
m,p

δ̂mp

∫ ∞

0

1

ω4
mλ

[Ḃmpλ(t )]2

× Im(λη0)I ′
m(λη0)[Km(λη0)]2dλ. (A24)

Now in view of Eq. (6), we have

η0ω
2
p/ω2

mλ = (λKm(λη0)I ′
m(λη0))−1.

This substitution in Eq. (A24) gives Eq. (10).
Interaction Hamiltonian. Briefly, the hydrodynamical for-

mulation of the electron gas by Crowell and Ritchie [10]
yields

�∇ ∂

∂t
�(r, t ) = − e

m
�∇�(r, t ) + β2

n0

�∇n(r, t ),

�∇2�(r, t ) = 4πe n(r, t ), (A25)

�∇2�(r, t ) = ∂

∂t
n(r, t )/n0,

where �(r, t), �(r, t), and n(r, t) are the electric potential,
velocity potential, and electronic density, respectively, in the
electron gas, while n0 is the electronic density in the undis-
turbed state of the electron gas and β is the propagation speed
of the disturbance through electron gas. By linearizing these
equations, employing perturbation theory, Ritchie obtained
the first order interaction Hamiltonian Hi = 1

c

∫
J · Ad�,

where J is the induced current density and A is the vector
potential operator of the photon field.

APPENDIX B

Appendix B provides the details for the formulas and
results claimed in Sec. III. An arbitrary point in the Cartesian
space can be expressed in terms of the prolate spheroidal
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coordinates (η,μ, ϕ) [14,32] by

x = z0

√
(η2 − 1)(1 − μ2) cos ϕ,

y = z0

√
(η2 − 1)(1 − μ2) sin ϕ, (B1)

z = z0 η μ,

with the corresponding scale factors

hη = z0

√
η2 − μ2

η2 − 1
,

hμ = z0

√
η2 − μ2

1 − μ2
, (B2)

hϕ = z0

√
(1 − μ2)(η2 − 1),

where z0 > 0 is an overall scale factor, 1 � η < ∞, −1 �
μ � 1, and 0 � ϕ < 2π denotes the usual azimuthal angle.
The surfaces of constant μ define hyperboloids of revolution
about the z axis, while the surfaces of constant η correspond to
prolate spheroids. It is often customary to use the substitutions
sinh ζ = η and sin θ = μ with 1 � η < ∞, and −1 � μ � 1;
however, in this presentation the surfaces of constant coordi-
nates are no longer geometrically meaningful.

Considering a solid hyperboloid of revolution μ � μ0

(μ0 > 0) with dielectric constant ε1 immersed in a medium
whose dielectric constant ε2 can be assumed with no loss
of generality to be 1, it follows that the potential of the
electric �(μ, η, ϕ) has to satisfy the Laplace equation �∇2� =
0 everywhere except on the boundary surface μ = μ0, where
the Laplacian is given by [14]

�∇2 = 1

z2
0(η2 − μ2)

{
∂

∂η

[
(η2 − 1)

∂

∂η

]
+ ∂

∂μ

[
(1 − μ2)

∂

∂μ

]

+
[

η2 − μ2

(η2 − 1)(1 − μ2)

]
∂2

∂ϕ2

}
. (B3)

Assuming the ansatz [14] �(μ, η, ϕ) = F (η)G(μ)eimϕ, one
finds that F and G satisfy the differential equations:

d

dη

[
(η2 − 1)

dFm

dη

]
− m2

η2 − 1
Fm = c Fm, (B4)

d

dμ

[
(1 − μ2)

dGm

dμ

]
− m2

1 − μ2
Gm = −c Gm. (B5)

Letting c = ν(ν + 1) (see Refs. [12,14,33]), where ν =
−1/2 + iq and q ∈ [0,∞), one can obtain a continuous spec-
trum of real eigenvalues and eigenfunctions in terms of the
associated Legendre functions or conical functions P m

− 1
2 +iq

(z)

[denoted by Pmq (z)] of complex lower index with −∞ < z <

∞ satisfying the orthogonality relation [12]∫ ∞

1
Pmq (η)Pmq ′ (η)dη = Zm

q

q tanh(πq )
δ(q − q ′), (B6)

A bounded satisfactory real-valued solution to the first equa-
tion in Eq. (B4) is given by P m

− 1
2 +iq

(η) (see [12,14,33]),

whereas a pair of satisfactory real-valued solutions to the
second equation in Eq. (B4) are given by P m

− 1
2 +iq

(μ) and

P m

− 1
2 +iq

(−μ) [14,26,34]. Avoiding the singularity at μ = −1

[14], we shall choose the solution P m

− 1
2 +iq

(μ) for the inside

region μ0 � μ � 1 and P m

− 1
2 +iq

(−μ) for the outside region

−1 � μ � μ0. Thus the inside and outside potentials �i and
�o are expressed as sums over the Fourier harmonics∫ ∞

0
Amq (t )P m

− 1
2 +iq

(η)P m

− 1
2 +iq

(μ) dq eimϕ (B7)

and ∫ ∞

0
Bmq (t )P m

− 1
2 +iq

(η)P m

− 1
2 +iq

(−μ) dq eimϕ, (B8)

respectively, where Amq (t ) and Bmq (t ) are complex valued
amplitudes and m ∈ Z. Using the fact [35] that �(1/2 +
m − iq )P m

− 1
2 +iq

(z) = �(1/2 − m − iq )P −m

− 1
2 +iq

(z) for all z ∈
R and m � 0, it follows that one only needs to expand �i and
�o in terms of cos mϕ, for m = 0, 1, 2, . . . More precisely,
we use the system Hm(ϕ) = (2 − δ0m) cos ϕ satisfying the
orthogonality relation∫ 2π

0
Hm(ϕ)Hm′ (ϕ) dϕ = πδ̂0mδmm′ , (B9)

where

δ̂0m = 1 + δ0m. (B10)

Finally, imposing the continuity of the potential across the
boundary μ = μ0, we find the inside and outside potentials,
which are expressed in Eq. (29).

Applying the Laplacian in Eq. (B3) to the potential Eq. (29)
and using a similar argument given in Eqs. (A6)–(A9), we find

�∇2� = − 1 − μ2

z2
0(η2 − μ2)

(
∂�o

∂μ
− ∂�i

∂μ

)
δ(μ − μ0). (B11)

Using the expressions for �i and �o in Eq. (29), we get(
∂�o

∂μ
− ∂�i

∂μ

)∣∣∣∣
μ=μ0

=
∑
m

Hm(ϕ)
∫ ∞

0
Amq (t ) × Pmq (η)Wmq (μ0) dq, (B12)

where Wmq (μ) denotes the Wronskian for the conical func-
tions

Wmq (μ) = Pmq (μ)
dPmq (−μ)

dμ
− Pmq (−μ)

dPmq (μ)

dμ
.

(B13)

The exact value of Eq. (B13) is given by [12]

Wmq (μ) = 2Zm
q cosh(πq )

π
√

1 − μ2
, (B14)

where

Zm
q = (−1)m

m∏
k=1

(
q2 + (2k − 1)2

4

)
. (B15)
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APPENDIX C

Here are some relations we have used in Sec. IV. The known real spherical harmonics are given by [35]

Y
p

lm(μ, ϕ) =
√

(2 − δ0m)(2l + 1)(l − m)!

4π (l + m)!
P m

l (μ)
[
δ1
p cos(mϕ) + δ−1

p cos(mϕ)
]
, (C1)

with associated Legendre functions P m
l (·) and orthogonality relation:∫ 2π

0

∫ 1

−1
Y

p

lm(μ, ϕ)Yp′
l′m′ (μ, ϕ) dμdϕ = δll′δmm′δpp′ . (C2)

Emission matrix element in prolate spheroidal case following the same relations as in the paraboloidal and hyperboloidal
cases could be obtained as

M(js)
em = n0e

2

m0

√
h̄

Vωs

αlmp

2iω2
lm

P m
l (ζ0)Qm

l (ζ0)
∫∫

(êη · êj )Yp

lm(μ, ϕ)e−is·rhμhϕ dμdϕ

∣∣∣∣
ζ=ζ0

. (C3)

The following integral identity has been used in calculation of prolate spheroidal matrix element given by Eq. (16.127) [36]:

eik·x = 4π

∞∑
l=0

il jl (kr )
l∑

m=−l

Y ∗
lm(θ, ϕ)Ylm(θ ′, ϕ′), (C4)

where jl (kr ) is the spherical Bessel function of order l whose relation with regular Bessel function Jl (·) is given by

jl (x) =
√

π

2x
Jl+ 1

2
(x). (C5)

Lastly, the relations between spherical wave vectors s′ and s′′ in spherical coordinate are determined by taking the following
transformations:

s′ = sx

ζ0

�i + sy

ζ0

�j + ζ0 sz

ζ 2
0 − 1

�k, (C6)

s′′ =
√

ζ 2
0 − 1sx

�i +
√

ζ 2
0 − 1sy

�j + ζ0 sz
�k. (C7)

[1] K. V. Garapati, M. Salhi, S. Kouchekian, G. Siopsis, and A.
Passian, Poloidal and toroidal plasmons and fields of multilayer
nanorings, Phys. Rev. B 95, 165422 (2017).

[2] K. V. Garapati, M. Bagherian, A. Passian, and S. Kouchekian,
Plasmon dispersion in a multilayer solid torus in terms of three-
term vector recurrence relations and matrix continued fractions,
J. Phys. Commun. 2, 015031 (2018).

[3] E. Dumitrescu and B. Lawrie, Antibunching dynamics of plas-
monically mediated entanglement generation, Phys. Rev. A 96,
053826 (2017).

[4] A. Passian and G. Siopsis, Quantum state atomic force mi-
croscopy, Phys. Rev. A 95, 043812 (2017).

[5] M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu,
A. M. Wodtke, S. Schäfer, and C. Ropers, Ultrafast low-energy
electron diffraction in transmission resolves polymer/graphene
superstructure dynamics, Science 345, 200 (2014).

[6] M. Müller, A. Paarmann, and R. Ernstorfer, Femtosecond elec-
trons probing currents and atomic structure in nanomaterials,
Nat. Commun. 5, 5292 (2014),

[7] M. Müller, V. Kravtsov, A. Paarmann, M. B. Raschke, and
R. Ernstorfer, Nanofocused plasmon-driven sub-10 fs electron
point source, ACS Photon. 3, 611 (2016).

[8] A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L.
Ferrell, Curvature effects in surface plasmon dispersion and
coupling, Phys. Rev. B 71, 115425 (2005).

[9] R. H. Ritchie and R. E. Wilems, Photon-Plasmon Interaction in
a Nonuniform Electron Gas. I, Phys. Rev. 178, 372 (1969).

[10] J. Crowell and R. H. Ritchie, Radiative decay of Coulomb-
stimulated plasmons in spheres, Phys. Rev. 172, 436 (1968).

[11] S. N. Krivoshapko and V. N. Ivanov, Encyclopedia of Analytical
Surfaces (Springer, Cham, Switzerland, 2015).

[12] A. Passian, S. Kouchekian, S. Yakubovich, and T. Thundat,
Properties of index transforms in modeling of nanostructures
and plasmonic systems, J. Math. Phys. 51, 023518 (2010).

[13] P. M. C. Morse and H. Feshbach, Methods of Theoretical
Physics, International Series in Pure and Applied Physics Vol. 2
(McGraw-Hill, New York, 1953).

[14] N. N. Lebedev, in Special Functions & Their Applications,
translated and edited by R. A. Silverman, Dover Books on
Mathematics (Dover Publications, New York, 1972).

[15] F. Bowman, Introduction to Bessel Functions, Dover Books on
Mathematics (Dover Publications, New York, 2012).

[16] G. B. Arfken and H. J. Weber, Mathematical Methods for
Physicists (Elsevier Science, Amsterdam, 2013).

[17] R. H. Ritchie, J. C. Ashley, and T. L. Ferrell, The interaction
of photons with surface plasmons, in Electromagnetic Surface
Modes, edited by A. D. Boardman (Wiley, Chichester, 1982),
Chap. 2.

[18] S. S. Schweber, An Introduction to Relativistic Quantum Field
Theory (Dover Publications, New York, 2011).

125413-14

https://doi.org/10.1103/PhysRevB.95.165422
https://doi.org/10.1103/PhysRevB.95.165422
https://doi.org/10.1103/PhysRevB.95.165422
https://doi.org/10.1103/PhysRevB.95.165422
https://doi.org/10.1088/2399-6528/aaa4e3
https://doi.org/10.1088/2399-6528/aaa4e3
https://doi.org/10.1088/2399-6528/aaa4e3
https://doi.org/10.1088/2399-6528/aaa4e3
https://doi.org/10.1103/PhysRevA.96.053826
https://doi.org/10.1103/PhysRevA.96.053826
https://doi.org/10.1103/PhysRevA.96.053826
https://doi.org/10.1103/PhysRevA.96.053826
https://doi.org/10.1103/PhysRevA.95.043812
https://doi.org/10.1103/PhysRevA.95.043812
https://doi.org/10.1103/PhysRevA.95.043812
https://doi.org/10.1103/PhysRevA.95.043812
https://doi.org/10.1126/science.1250658
https://doi.org/10.1126/science.1250658
https://doi.org/10.1126/science.1250658
https://doi.org/10.1126/science.1250658
https://doi.org/10.1038/ncomms6292
https://doi.org/10.1038/ncomms6292
https://doi.org/10.1038/ncomms6292
https://doi.org/10.1038/ncomms6292
https://doi.org/10.1021/acsphotonics.5b00710
https://doi.org/10.1021/acsphotonics.5b00710
https://doi.org/10.1021/acsphotonics.5b00710
https://doi.org/10.1021/acsphotonics.5b00710
https://doi.org/10.1103/PhysRevB.71.115425
https://doi.org/10.1103/PhysRevB.71.115425
https://doi.org/10.1103/PhysRevB.71.115425
https://doi.org/10.1103/PhysRevB.71.115425
https://doi.org/10.1103/PhysRev.178.372
https://doi.org/10.1103/PhysRev.178.372
https://doi.org/10.1103/PhysRev.178.372
https://doi.org/10.1103/PhysRev.178.372
https://doi.org/10.1103/PhysRev.172.436
https://doi.org/10.1103/PhysRev.172.436
https://doi.org/10.1103/PhysRev.172.436
https://doi.org/10.1103/PhysRev.172.436
https://doi.org/10.1063/1.3294165
https://doi.org/10.1063/1.3294165
https://doi.org/10.1063/1.3294165
https://doi.org/10.1063/1.3294165


QUANTIZATION OF SURFACE CHARGE DENSITY ON … PHYSICAL REVIEW B 98, 125413 (2018)

[19] J. W. Little, T. L. Ferrell, T. A. Callcott, and E. T. Arakawa,
Radiative decay of surface plasmons on oblate spheroids,
Phys. Rev. B 26, 5953 (1982).

[20] R. Bennett, T. A. Barlow, and A. Beige, A physically motivated
quantization of the electromagnetic field, Eur. J. Phys. 37,
014001 (2016).

[21] A. V. Belinsky, On the possibility of an incorrect choice of a
quantization volume, Moscow Univ. Phys. Bull. 72, 76 (2017).

[22] E. Zeidler, Quantum Field Theory II: Quantum Electrodynamics
(Springer, Berlin, Heidelberg, 2009).

[23] S. Keramati, A. Passian, V. Khullar, P. Lougovski, and H.
Batelaan, Low power laser-driven electron source based on
plasmon enhanced metalized optical fiber tips, in 49th Annual
Meeting of the APS Division of Atomic, Molecular and Optical
Physics APS Meeting, Bulletin of the American Physical Soci-
ety, 2018 (AIP, 2018).

[24] A. Gil, J. Segura, and N. M. Temme, An improved algorithm
and a Fortran 90 module for computing the conical function
P − 1/2 + iτm(x), Comput. Phys. Commun. 183, 794 (2012).

[25] K. S. Kölbig, A program for computing the conical functions of
the first kind Pm-12+i(x) for m = 0 and m = 1, Comput. Phys.
Commun. 23, 51 (1981).

[26] M. I. Zhurina and L. N. Karmazina, Tables of The Legen-
dre Functions P1/2+it(x): Mathematical Tables Series Part I
(Elsevier Science, Amsterdam, 2016).

[27] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions: with Formulas, Graphs, and Mathematical Tables,

Dover Books on Mathematics (National Bureau of Standards,
Washington, 1970).

[28] H. J. Hagemann, W. Gudat, and C. Kunz, Optical constants from
the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C,
and Al2O3, J. Opt. Soc. Am. 65, 742 (1975).

[29] E. D. Palik, Handbook of Optical Constants of Solids, Five-
Volume Set: Handbook of Thermo-Optic Coefficients of Optical
Materials with Applications (Elsevier Science, Amsterdam,
1997).

[30] http://energy.gov/downloads/doe-public-access-plan.
[31] A. B. Petrin, Extremely tight focusing of light at the

nanoapex of a metal microtip, Quantum Electron. 46, 159
(2016).

[32] N. N. Lebedev, I. P. Skalskaya, and I. A. S. Uflyand, in
Worked Problems in Applied Mathematics, translated by R. A.
Silverman, Dover Books on Mathematics (Dover Publications,
New York, 1979).

[33] N. A. Belova, and I. A. S. Uflyand, Dirichlet problem
for a toroidal segment, J. Appl. Math. Mech. 31, 59
(1967).

[34] M. I. Zhurina and L. N. Karmazina, in Tables of the Legendre
Functions P-1/2+i[tau](.) Part II, translated by D. E. Brown
(The Macmillan Company, New York, 1965).

[35] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products (Academic Press, New York, 2014).

[36] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1975).

125413-15

https://doi.org/10.1103/PhysRevB.26.5953
https://doi.org/10.1103/PhysRevB.26.5953
https://doi.org/10.1103/PhysRevB.26.5953
https://doi.org/10.1103/PhysRevB.26.5953
https://doi.org/10.1088/0143-0807/37/1/014001
https://doi.org/10.1088/0143-0807/37/1/014001
https://doi.org/10.1088/0143-0807/37/1/014001
https://doi.org/10.1088/0143-0807/37/1/014001
https://doi.org/10.3103/S0027134917010039
https://doi.org/10.3103/S0027134917010039
https://doi.org/10.3103/S0027134917010039
https://doi.org/10.3103/S0027134917010039
https://doi.org/10.1016/j.cpc.2011.11.025
https://doi.org/10.1016/j.cpc.2011.11.025
https://doi.org/10.1016/j.cpc.2011.11.025
https://doi.org/10.1016/j.cpc.2011.11.025
https://doi.org/10.1016/0010-4655(81)90129-6
https://doi.org/10.1016/0010-4655(81)90129-6
https://doi.org/10.1016/0010-4655(81)90129-6
https://doi.org/10.1016/0010-4655(81)90129-6
https://doi.org/10.1364/JOSA.65.000742
https://doi.org/10.1364/JOSA.65.000742
https://doi.org/10.1364/JOSA.65.000742
https://doi.org/10.1364/JOSA.65.000742
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1070/QEL15861
https://doi.org/10.1070/QEL15861
https://doi.org/10.1070/QEL15861
https://doi.org/10.1070/QEL15861
https://doi.org/10.1016/0021-8928(67)90065-2
https://doi.org/10.1016/0021-8928(67)90065-2
https://doi.org/10.1016/0021-8928(67)90065-2
https://doi.org/10.1016/0021-8928(67)90065-2



