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Fundamentally fastest optical processes at the surface of a topological insulator
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We predict that a single oscillation of a strong optical pulse can significantly populate the surface conduction
band of a three-dimensional topological insulator, Bi2Se3. Both linearly- and circularly-polarized pulses generate
chiral textures of interference fringes of population in the surface Brillouin zones. These fringes constitute a
self-referenced electron hologram carrying information on the topology of the surface Bloch bands, in particular,
on the effect of the warping term of the low-energy Hamiltonian. These electron-interference phenomena are in
sharp contrast to graphene where there are no chiral textures for a linearly-polarized pulse and no interference
fringes for circularly-polarized pulse. These predicted reciprocal space electron-population textures can be
measured experimentally by time resolved angle resolved photoelectron spectroscopy (TR-ARPES) to gain direct
access to non-Abelian Berry curvature at topological insulator surfaces.
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I. INTRODUCTION

Topological insulators (TI’s) represent a modern class of
crystalline materials where the bulk is semiconducting and the
surfaces are semimetallic [1–4]. The � point of the surface-
state band is a Dirac point where the electron dispersion
is gapless and linear as characteristic of Dirac fermions. In
a good approximation, there is locking of spin and linear
momentum caused by a strong spin-orbit interaction. This
provides protection against backscattering and Anderson lo-
calization. The absence of the band gap and, consequently,
the linear electron dispersion at the � point, are protected by
time-reversal (T ) symmetry. The Bloch bands near the Dirac
point are chiral and carry the Berry phase of ±π .

To resolve chirality of the surface states of TI’s and related
spin textures one has to use a chiral probe: circularly polar-
ized excitation radiation [5–7] or detection of the spin state
of electrons in spin resolved angle resolved photoemission
spectroscopy (SR-ARPES) [2]. A unique property of the
surface bands of a TI—band-dependent locking of the spin
and momentum—allows one to manipulate the spin states
by controlling the electron momentum in the Bloch bands.
Keeping in mind both fundamental interest and spintronics
applications, it is important to perform such manipulation as
fast as possible, that is within a single optical cycle. Such
ultrafast manipulation would allow avoiding significant relax-
ation, including quantum decoherence during the excitation
cycle. It also would open up unique possibilities for ultra-
fast, PHz-band scale, information processing. Note that the
existing experiments on TI’s employed relatively long (�100
fs) excitation pulses of moderate field amplitudes [6], F0 �
10−3 V/Å. There have been also time-resolved experiments
[8–10] on graphene and transition metal dichalcogenides with
ultrafast pulses as short as 15–30 fs. These are still much
longer than the times on the order of a single optical period
that are the aim of this paper.

The goal of this paper is to theoretically show for a
three-dimensional (3D) TI a possibility to manipulate electron
population, crystal momentum, and consequently spin, in a

fundamentally fastest way—during only single cycle of a
chiral optical pulse with a moderately strong optical field,
F0 ∼ 0.05–0.2 V/Å (see field estimates at the end of this
section). We have predicted such ultrafast processes earlier
for graphene both for linear polarization [11] and circular
polarization [12,13]. Electrical currents and charge transfer
associated with ultrafast strong-field excitation of graphene
have been recently observed experimentally [14]. The un-
derlying chiral distributions of excited electrons in the full
Brillouin zone in both the conduction band (CB) and valence
band (VB) can fundamentally be observed using time resolved
ARPES (TR-ARPES) [8,15–17]. However, such studies have
not yet been done.

We predict that, similar to graphene, a significant CB popu-
lation is induced during a single optical oscillation. The main
mechanism responsible for this process is Bloch motion of
electrons in reciprocal space induced by strong optical fields.
In contrast to graphene, the resulting electron CB distribution
in the reciprocal space is highly anisotropic and chiral; to a
significant degree it is defined by the so-called warping terms
in the effective Hamiltonian [18]. The electron relaxation,
which follows the excitation pulse, will cause surface currents
and generation of THz radiation. The latter also provides
an access to the initial CB electron distribution [19]. Yet
another approach to get access to the electron distribution
of the surface CB in TIs is ultrafast time-resolved transient
reflectivity and Kerr rotation [20].

Specifically, in this work, we study ultrafast electron dy-
namics on the surfaces of a 3D TI Bi2Se3, which has a bulk
band gap of ≈ 0.3 eV and gapless surface states [18,21,22].
These gapless surface states are protected by the time reversal
symmetry and possess a single Dirac cone located at the
� point in the reciprocal space [18,23,23,24]. Similar to
graphene, the interband dipole coupling at the surface of 3D
TI is singular at the Dirac point, and the energy dispersion
near the Dirac point is linear (quasirelativistic). The main
difference from graphene is that the effective low-energy
Hamiltonian in 3D TI’s has large nonlinear (cubic) terms.
Such terms, which are known as the warping terms, reduce
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the point symmetry of the system to threefold (C3) [18]. This
lower symmetry results in unique features in the ultrafast
electron dynamics. In particular, as we show below in this
paper, for a single-oscillation circularly-polarized pulse, the
CB population distribution in the reciprocal space shows a
pronounced chirality and a pattern of interference fringes.

Because surface Bloch bands of a TI are gapless, the
processes of the electron transfer between the valence band
(VB) and CB is nonresonant and, consequently, broadband.
Therefore, the dependence on the mean (carrier) frequency
or duration of the pulse is very smooth. As an example we
choose a pulse with duration of 5 fs (mean carrier frequency
ω̄ ≈ 1.2 eV/h̄). This duration is chosen to be shorter than the
fastest electron scattering time [19] in TI’s, which is �10 fs.
The pulse electric field causes electron motion in the recip-
rocal space within each band where the crystal momentum
excursion is defined by the Bloch acceleration theorem—see
Eq. (7) below. The VB → CB transitions occur when an elec-
tron passes in a vicinity of the Dirac point (� point) or other
points where the interband transition dipole matrix element
is enhanced. The excursion of electron crystal momentum
during the pulse can be estimated as �k ∼ πeF0/(h̄ω̄), where
e is electron charge and F0 is the field amplitude. To travel
a half of the Brillouin zone, this excursion should be �k ∼
π/a, where a is a lattice constant. Assuming a ≈ 4 Å, we
obtain F0 ≈ h̄ω̄/(ea) ≈ 0.2 V/Å. Correspondingly, we con-
sider a field amplitude range that includes this value, F0 =
0.05–0.5 V/Å.

The paper is organized as follows. In Sec. II, a model and
main equations, which are used to calculate the electron dy-
namics in the presence of ultrafast external electric fields, are
introduced. In Sec. III, the results for linearly and circularly
polarized pulses are presented and discussed.

II. MODEL AND MAIN EQUATIONS

An effective low-energy surface Hamiltonian of Bi2Se3

near the Dirac point has the following form [18]

H0 = A1k
2 + A2(σxky − σykx ) + A3(k3

+ + k3
−)σz, (1)

where σx , σy , and σz are Pauli matrices, (kx, ky ) is crystal

momentum, k± = kx ± iky = ke±iθ , k = (k2
x + k2

y )1/2, and

A1, A2, and A3 are constants that are equal to 23.725 eV Å2,
3.297 eVÅ, and 25.045 eV Å3, respectively. The cubic term in
this low-energy Hamiltonian leads to a sixth-order warping of
the band energy surfaces [cf. Fig. 1 below] and, therefore, is
called the hexagonal warping term [25]. The energies of the
VB and the CB can be found from the above Hamiltonian as

Ec(k) = A1k
2 +

√
A2

2k
2 + 4A2

3k
2
x

(
k2
x − 3k2

y

)2
,

Ev (k) = A1k
2 −

√
A2

2k
2 + 4A2

3k
2
x

(
k2
x − 3k2

y

)2
, (2)

where indices c and v stand for the CB and VB, respectively.
Near the � point (for k → 0), this dispersion simplifies to
two Dirac cones: Ec,v = ±A2k. This energy dispersion is
displayed in Fig. 1 where the � point is at k = (0, 0). Below
we assume that the system is undoped, with the Fermi energy
at 0, where the VB is fully occupied and the CB is com-

FIG. 1. (a) Low-energy electron dispersion of the surface state
around the Dirac point, i.e., the � point at k = (0, 0), as a function of
wave vector k. The Dirac cone at the Gamma point is clearly visible.
(b) Energy dispersion in a wide range where the sixth-order warping
is manifest.

pletely empty. This energy dispersion has sixfold symmetry
[see Fig. 1(b)], which is due to the warping term.

As we have already argued above in Sec. I, during an
ultrashort optical pulse with the duration of ∼5 fs, electron
dynamics is coherent since the electron scattering times in
Bi2Se3 are �20 fs. Then the evolution of the system can
be described by the time-dependent Schrödinger equation
(TDSE),

ih̄
d�

dt
= H (t )�, (3)

with Hamiltonian

H (t ) = H0 − eF(t )r, (4)

where F(t ) is the pulse’s electric field.
We will be employing moderately intense fields with am-

plitude F0 � 0.1 V/Å. At such intensities, the number of
photons, Np, per pulse within the minimum coherence area
of ∼λ2, where λ ∼ 1 μm is wavelength,

Np ∼ cτpλ2F 2
0

4πh̄ω̄
∼ 5 × 107 , (5)

where c is speed of light; we assume realistic parameters:
τp ∼ 3 fs is the pulse duration, and h̄ω̄ ∼ 1 eV is the mean
photon energy. With such a large photon number involved,
it is legitimate to describe F(t ) as a classical electric field
keeping quantum-mechanical description of the solid. This is
a usual approach in high-field optics—see, e.g., Refs. [26–28].
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Note that quantized optical fields are used for much lower
intensities [29,30]. Such a full quantum mechanical approach
is not needed for the fields of the amplitude we consider.
Instead, we employ the conventional semiclassical approach
where the optical field, F(t ), is considered as classical but the
underlying solid is treated fully quantum mechanically. We
solve the Schrödinger equation in the truncated Houston basis
numerically without further approximations. Our pulse is just
a single optical oscillation; therefore field F(t ) is not periodic,
and its effect cannot be described as band gap modification as
in Refs. [29,31]. However, the dynamic Stark effect and other
field-dressing effects during the pulse are indeed fully taken
into account by our solution.

In solids, the applied electric field generates both the
intraband and interband electron dynamics. The intraband
dynamics is determined by the Bloch acceleration theorem
[32] for time evolution of the crystal momentum k,

h̄
dk
dt

= eF(t ). (6)

From this, for an electron with an initial crystal momentum q,
time-dependent crystal momentum k(q, t ) is expressed as

k(q, t ) = q + e

h̄

∫ t

−∞
F(t ′)dt ′. (7)

The corresponding wave functions, which are solutions of the
Schrödinger equation (3) within a single band α, i.e., without
interband coupling, are the well-known Houston functions
[33],

�(H )
αq (r, t ) = �

(α)
k(q,t )(r)e− i

h̄

∫ t

−∞ dt1Eα [k(q,t1 )] , (8)

where α = v, c for the VB and CB, correspondingly, and �
(α)
k

are Bloch-band eigenfunctions in the absence of the pulse
field, and Eα (k) are the corresponding eigenenergies.

The interband electron dynamics is determined by the
solution of the TDSE (3). Such a solution can be expanded
in the basis of the Houston functions �(H )

αq (r, t ),

�q(r, t ) =
∑

α=c,v

βαq(t )�(H )
αq (r, t ), (9)

where βαq(t ) are expansion coefficients.
Let us introduce the following quantities

Dcv (q, t ) = Acv[k(q, t )] exp
(
iφ(d)

cv (q, t )
)
, (10)

φ(d)
cv (q, t ) = 1

h̄

∫ t

−∞
dt ′(Ec[k(q, t ′)] − Ev[k(q, t ′)]), (11)

Acv (q) =
〈
� (c)

q

∣∣∣∣i ∂

∂q

∣∣∣∣� (v)
q

〉
. (12)

Here � (v)
q and � (c)

q are periodic Bloch functions, i.e., eigen-
functions of the Hamiltonian without an optical field; ma-
trix element Acv (q) is the well-known non-Abelian Berry
connection [34–36], and φ(d)

cv (q, t ) is the dynamic phase; the
trajectory in the reciprocal space, k(q, t ), is given by the
Bloch theorem (7). Note that the interband dipole matrix
element, which determines optical transitions between the VB
and the CB at crystal momentum q, is Dcv (q) = eAcv (q).

In these terms, we introduce Schrödinger equation in the
interaction representation in the adiabatic basis of the Houston
functions as

ih̄
∂Bq(t )

∂t
= H ′(q, t )Bq(t ) , (13)

where wave function (vector of state) Bq (t ) and Hamiltonian
H ′(q, t ) are defined as

Bq(t ) =
[
βcq(t )
βvq(t )

]
, (14)

H ′(q, t ) = −eF(t )G(q, t ) , (15)

G(q, t ) =
[

0 Dcv (q, t )
D∗

cv (q, t ) 0

]
. (16)

Schrödinger equation (13) defines a solution for dynamics
of the system, whose accuracy is limited by the size of the
basis set (i.e., truncation of the Hilbert space of the surface
states of the TI). In particular, it contains such phenomenon as
band-gap opening in the field of a circularly-polarized pulse.
A formal general solution of this equation can be presented in
terms of the evolution operator, Ŝ(q, t ), as

Bq(t ) = Ŝ(q, t )Bq(−∞) , (17)

Ŝ(q, t ) = T̂ exp

[
i

∫ t

−∞
G(q, t ′)dk(q, t ′)

]
, (18)

where T̂ is the well-known time-ordering operator [37], and
the integral is affected along the Bloch trajectory [Eq. (7)].

We introduce Cartesian components of non-Abelian Berry
connection as a vector {Ax (k),Ay (k)} = Acv (k). Substitut-
ing the eigenfunctions of the field-free Hamiltonian (1) into
Eq. (12), we obtain for its components

Ax (k) = N

⎛
⎝−1

2

ky

k2
− i

2k4
x + 3k2

y

(
k2
x − k2

y

)
k2

√
4k2

x

(
k2
x − 3k2

y

)2 + (
A2
A3

k
)2

⎞
⎠ ,

(19)

Ay (k) = N

⎛
⎝1

2

kx

k2
+ i

kxky

(
7k2

x + 3k2
y

)
k2

√
4k2

x

(
k2
x − 3k2

y

)2 + (
A2
A3

k
)2

⎞
⎠ ,

(20)

where the normalization coefficient is

N =
(

1 + 4k2
x

(
k2
x − 3k2

y

)2

(
A2
A3

k
)2

)− 1
2

.

Similar to graphene, there are singularities at the Dirac point,
k = 0, for both Ax (k) and Ay (k)—see Fig. 2. However,
unlike graphene, Ax (k) and Ay (k) have both imaginary and
real parts due to the warping term in the surface Hamiltonian
(1). Consequently, there is a nontrivial dependence on angle,
tan−1(ky/kx ): The components of the non-Abelian Berry
connection, Ax and Ay , exhibit sharp maxima along six and
four ridges, which are clearly seen in Figs. 2(a) and 2(c),
respectively.
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FIG. 2. Complex vector of non-Abelian Berry connection A =
Acv . (a) Magnitude of x-component |Ax (k)| (in units of Å) as a
function of crystal momentum k. (b) Phase �x (k) = arg (Ax (k)) as
a function of crystal momentum k. (c) Same as (a) but for Ay (k). (d)
Same as (b) but for �y (k) = arg (Ay (k)).

When an electron is compelled by the optical field to move
within a band, the transitions will occur when its trajectory
k(q, t ), which is defined by the Bloch acceleration theorem
(7)], crosses these ridges and passes in the vicinity of the
Dirac point. The corresponding transition amplitudes will
interfere generating a texture of fringes in the reciprocal
space.

We solve Eq. (13) numerically with an initial condition cor-
responding to an occupied VB and an empty CB [βvq(−∞) =
1 and βcq(−∞) = 0]. As a result. we obtain the occupation
amplitudes of the VB and CB as functions of time, βvq(t ) and
βcq(t ). At each moment of time, they satisfy the normalization
condition

|βvq(t )|2 + |βcq(t )|2 = 1 . (21)

We introduce residual population probabilities of the va-
lence and conduction bands as a function of crystal momen-
tum as

N
(res)
VB (q) = |βvq(t = ∞)|2, N

(res)
CB (q) = |βcq(t = ∞)|2 ,

(22)

and the mean residual CB population probability as

nc = 1

N

∑
q∈BZ

N
(res)
CB (q) , (23)

where N is the total number of electrons per unit cell, and the
summation over the crystal momentum in the first Brillouin
zone (BZ) is conventionally defined as

∑
q∈BZ

(. . . ) = A

∫
BZ

(. . . )
d2k

(2π )2
, (24)

and A is the area of the (real-space) unit cell. For an elec-
troneutral system where the Fermi energy is at the Dirac point,

A

∫
BZ

d2k

(2π )2
= N , (25)

so nc is a positive dimensionless number between 0 and 1, as
should be for the mean probability. The mean residual density
of the CB electrons is Nnc/A. Note that in the absence of the
spin-momentum locking, a quantity in the right-hand side of
Eq. (25) would be N/2.

Compare results for 3D TI with the corresponding results
for graphene where the low-energy Dirac Hamiltonian is

H
(gr)
0 = h̄vF (σxkx + σyky ), (26)

where vF ∼ 106 m/s is the Fermi velocity. Then the energies
of the CB and VB are

E(gr)
c (k) = h̄vF k

E(gr)
v (k) = −h̄vF k . (27)

The corresponding components of the non-Abelian Berry
connection for graphene are

A(gr)
x (k) = − 1

2ky

k2
x + k2

y

, (28)

A(gr)
y (k) =

1
2kx

k2
x + k2

y

. (29)

These are obviously real quantities in contrast to Eqs. (19) and
(20).

III. RESULTS AND DISCUSSION

A. Linearly polarized pulse

We apply a linearly-polarized single-oscillation optical
pulse incident normally to the surface of 3D TI. The electric
field waveform of the pulse in the surface plane of the TI is
parametrized in the following form

F(t ) = {Fx (t ), Fy (t )} = F (t ){cos(θ ), sin(θ}), (30)

where F (t ) = F0e
−u2

(1 − 2u2), F0 is the amplitude of the
field, u = t/τ , τ is (on the order of magnitude) a half duration
of the optical oscillation (in calculations, we choose τ = 1 fs),
and θ is the polarization angle of the applied field. Before
the pulse, the CB is empty, and the VB is fully occupied.
During the pulse, the electron dynamics is characterized by
redistribution of electrons between the VB and the CB. After
the pulse, there is a significant residual CB population—
see Fig. 3—manifesting irreversibility related to the gapless
spectrum of the TI’s surface states. Note that an earlier work
[28,38,39] showed that strong-field induced CB population is
highly reversible, i.e., disappearing after the pulse end, for
insulators such as silica and alumina (quartz and sapphire).
This reversibility is due to the presence of a wide band gap
(≈10 eV) between the VB and the CB, which significantly
exceeds the characteristic frequency of the excitation pulse.
Such a condition causes the CB population to adiabatically
follow the magnitude (modulus) of the pulse field, |F (t )|. This
is not the case for TI’s since their surface-band spectrum is
gapless.
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FIG. 3. Residual CB population, N (res), on the surface of Bi2Se3

as a function of wave vector k for different values of angle θ .
Amplitude of the electric field is F0 = 0.10 V/Å. The angle is (a)
θ = 0, (b) θ = π/4, (c) θ = π/3, and (d) θ = π/2.

The distribution of the residual CB population in the first
Brillouin zone of the surface bands of Bi2Se3 is shown in
Fig. 3 for different angles between the polarization direction
and the positive x axis: (a) θ = 0, (b) θ = π/4, (c) θ =
π/3, and (d) θ = π/2. The amplitude of the electric field is
F0 = 0.1 V/Å. There is a pattern of “hot spots” with a large
CB population and with adjacent interference fringes that are
clearly visible. The pair of hot spots seen in each panel is an
image of the Dirac point split by a dark line passing through
the � point in the polarization direction. Note that this dark
line originates from electrons passing twice through the Dirac
point, which results in their return back to the VB and the
zero CB population. This can also be interpreted as a result of
the pseudospin conservation. The interference fringes farther
from the Dirac point in Figs. 3(a)–3(c) show a pronounced
chirality. These fringes originate from the electron VB → CB
transitions caused the warping term in the Hamiltonian and
replicate its symmetry.

Note that somewhat similar electron distributions have
been predicted by us for crystalline TI’s [40]. There is also an
interference pattern predicted, which consists of the two hot
spots originating from the M-point and peripheral interference
fringes caused by quadratic terms in the Hamiltonian.

The components of the non-Abelian Berry connection,
which are responsible for the interband coupling for a given
direction of polarization, are Ax (k) and Ay (k) for θ = 0 and
θ = π/2, respectively, cf. Fig. 2. The distribution of N

(res)
CB (k)

reflects the profile of the corresponding components, Ax (k)
and Ay (k), see Figs. 3(a) and 3(d), respectively.

This behavior of the residual CB population is somewhat
similar to but also possesses significant differences from
what is calculated for graphene near the Dirac points (K or
K ′), see Fig. 4, where the residual CB population is shown
for a low-energy effective model of graphene [Eq. (26)] for
different polarization directions. The distribution of N

(res)
CB (k)

for graphene is symmetric with respect to the polarization

FIG. 4. Residual CB population, N (res)
CB , of graphene as a function

of wave vector k for different values of angle θ . Amplitude of the
electric field is F0 = 0.10 V/Å. The angle is (a) θ = 0, (b) θ = π/4,
(c) θ = π/3, and (d) θ = π/2. The dynamics of the graphene system
is modeled within the low energy effective Dirac model.

plane in contrast to the 3D TI, cf. Fig. 3, where this symmetry
is broken by the warping term.

There is also another fundamental physical difference
between the electron-distribution textures in graphene and
TI. In the Dirac approximation, there is locking of crystal
momentum and pseudospin in graphene, and this locking
is opposite in the VB and CB. For TIs, there is locking
of crystal momentum and real electron spin, which is also
opposite for the VB and the CB. Such locking is valid in
the Dirac approximation, which is applicable close enough
to the � point. Thus the textures of the electron population
in the reciprocal space are simultaneously spin-polarization
textures. Potentially, such momentum/spin textures can be
directly measured using spin-polarized TR-ARPES [2,41].

The mean residual CB population (averaged over a part of
the surface Brillouin zone close to the Dirac point), nc, as a
function of field amplitude, F0, is shown for the linearly polar-
ized pulse in Fig. 5. This population monotonically increases
with F0 and has only a weak dependence on the direction
of polarization. For a given field amplitude, the maximum
CB population is realized for the y polarized pulse, θ = π/2,
while the minimum is at θ ≈ π/8 (see inset).

B. Circularly polarized pulse

Two-dimensional solids and topological crystals in the
reciprocal space possess nontrivial topological properties
(chirality) related to the Berry-Zak phase [35,42,43]. In this
section, we will study this topology using circularly-polarized
ultrashort pulses. These fundamentally promise reacher re-
sponses of chiral systems because they probe the system’s
chirality with their own chirality.

A one-cycle circularly-polarized pulse we will use has
electric field that can be parametrized as the following
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FIG. 5. Mean residual CB population nc as a function of field
amplitude F0 for different values of θ : θ = 0 (blue solid line),
θ = π/4 (red solid line), θ = π/3 (green dashed line), and θ =
π/2 (black solid line). Inset: total residual CB population, nc, as a
function of θ for the amplitude of the electric field of F0 = 0.18 V/Å.

waveform:

F(t ) = {Fx (t ), Fy (t )},
Fx (t ) = ±F0e

−u2
(1 − 2u2),

Fy (t ) = 2F0ue−u2
, (31)

where sign ± determines the handedness of the pulse [+ is
for a right-hand circularly polarized pulse (RCP), and − is
for a left-hand circularly polarized pulse (LCP)]. For brevity,
we denote such one-cycle RCP as 1R and one-cycle LCP
as 1L. These 1R and 1L pulses are related by reflection in
the yz plane (Pyz reflection). Note that the same change of
handedness can be obtained by T reversal plus reflection
in the coordinate center, i.e., T PyzPxz transformation. The
pairs of pulses with opposite chirality are ideally suited to
probe the chirality of the surface Bloch bands because the
resulting electron distributions depend on the sign of the Berry
curvature with respect to the pulse chirality.

Following this line, for a 1R pulse, residual CB population
distributions in the reciprocal space are shown in Fig. 6 for
several field amplitudes F0. Similar to the linear-polarization
case considered above in Sec. III A, here the residual CB
population is also large for F0 � 0.1 V/Å implying that the
electron dynamics is highly irreversible. The CB population
distribution shows a chiral pattern, which is correlated with
the handedness of the pulse.

A solid closed black curve seen in Figs. 6(b)–6(e) is the
separatrix [12]. This is defined as a set of initial points q
for which electron trajectories pass precisely through the
Dirac (�) point. Its parametric equation is q(t ) = −k(0, t ),
where t ∈ (−∞,∞) is a parameter, and k(q, t ) is a Bloch
trajectory originating at a point q as given by Eq. (7). Thus,
the separatrix is an electron trajectory starting at k = 0 (i.e.,
at the � point) and reflected in the xz plane (Pxz reflection).
For initial crystal momentum q inside of the separatrix, the

FIG. 6. Residual CB population as a function of crystal mo-
mentum. Excitation pulse is right-handed circularly polarized; its
waveform is shown in panel (a). The amplitude of the pulse is (b)
F0 = 0.05 V/Å, (c) F0 = 0.10 V/Å, (d) F0 = 0.15 V/Å, and (e)
F0 = 0.20 V/Å. The solid closed black lines display the separatrices
(see the text) for the corresponding pulses.

electron trajectory, k(q, t ), encircles the � point, otherwise it
does not.

Because the coupling dipole matrix element (the non-
Abelian Berry connection) is large (singular) at the � point
[see Fig. 2], one may expect that the residual CB population
will be enhanced close to the separatrix. This was the case for
graphene in Ref. [12] (see also Fig. 7 and its discussion below
in this section) but it is not pronounced in the present study,
as Fig. 6 demonstrates.

FIG. 7. Residual CB population in the vicinity of a Dirac point
for graphene for circularly-polarized right-handed one-cycle pulse
with amplitude of (a) F0 = 0.05 V/Å, (b) F0 = 0.10 V/Å, (c) F0 =
0.15 V/Å, and (d) F0 = 0.20 V/Å. The solid closed black lines
display the separatrices (see the text) for the corresponding pulses.
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A fundamental difference between the TI and graphene is
that the non-Abelian Berry curvature, �cv (k) = ∂

∂k × Acv (k),
a gauge-invariant field whose integral over reciprocal space
area is equal to the Berry phase, for graphene is real and
singular—it has a δ-function singularity localized at the Dirac
(K and K ′) points. For a circular pulse for graphene, there
is only one passage of an electron, which is moving in the
reciprocal space, by the Dirac point. Thus there is only one
significant amplitude to undergo a VB → CB transition, and,
consequently, there is no pronounced interference along the
separatrix, see Fig. 7. Note that these illustrative data for
graphene were calculated as in Ref. [12].

In a sharp contrast, in the present model of TI, there are
regions along the radial lines emanating from the � point,
which are seen as ridges in Fig. 2, where the non-Abelian
Berry connection (dipole matrix element) is increased and
possesses a nontrivial phase. These regions overlap in the
vicinity of the � point close to the separatrix. Consequently,
the corresponding amplitudes of the VB → CB transitions
interfere causing the chiral pattern of interference fringes seen
in Fig. 6. The separatrix itself is surrounded by regions of high
CB population but not seen as a continuous arc in contrast to
the case of graphene—cf. Fig. 7 and Ref. [12].

For high enough fields, F0 � 0.1 V/Å, there is a pro-
nounced pattern of interference fringes in Figs. 6(b)–6(e).
Note that this pattern is a self-referenced electron interfer-
rogram whose chirality is due to the nontrivial phase of the
non-Abelian Berry connection. This interference is caused
by passing a ridge of A twice during one optical cycle
and, also, additionally by passing close to the Dirac point
where the VB → CB transitions predominantly occur. The
corresponding transition amplitudes interfere generating the
fringes, which carry information about both the non-Abelian
Berry curvature and the dynamic phase.

The CB population for the left-handed pulse (1L) is shown
in Fig. 8. Obviously it is related to the pattern in Fig. 6 by the
Pyz reflection. This is exactly as expected from the symmetry
of the problem. Correspondingly, the distributions in Fig. 8
exhibit opposite chiralities but otherwise are similar to those
in Fig. 6.

We consider also pulses consisting of two optical cycles
with opposite chiralities whose waveforms are parametrized
as

Fx (t ) = F0
(
e−u2

(1 − 2u2)

± e−(u−u0 )2
(1 − 2(u − u0)2)

)
,

Fy (t ) = 2F0
(
ue−u2 + (u − u0)e−(u−u0 )2)

, (32)

where u0 = t0/τ and τ = 1 fs. The delay time (the time
between the two cycles) is t0 = 4 fs. Here the plus sign in
the above expression corresponds to two right-handed cycles
(2R), while the minus sign corresponds to one right-handed
cycle followed by one left-handed cycle (1R+1L). Note these
opposite-chirality pulses are related by the Pyz reflection
instead of the T reversal.

The residual CB population for the two-cycle pulse is
shown in Fig. 9(a) for the 2R pulse and Fig. 9(b) for the
1R+1L pulse. In comparison to the corresponding one-cycle
1R pulse [Fig. 6(c)], the CB population for two-cycle pulses

FIG. 8. Residual CB population for circularly-polarized left-
handed one-cycle pulse [waveform is shown on panel (a)] with
amplitude of (b) F0 = 0.05 V/Å, (c) F0 = 0.10 V/Å, (d) F0 =
0.15 V/Å, and (e) F0 = 0.20 V/Å. The solid closed black lines
display the separatrices (see the text) for the corresponding pulses.

shows more interference fringes, which is due to the inter-
ference of the transition amplitudes accumulated during the
two constituent subcycles. The CB population distribution
also has a chiral pattern for all types of two-cycle pulses
(2R and 1R+1L). This chirality is due to non-Abelian Berry
phase, which is nonzero due to the warping terms in the
Hamiltonian of Eq. (1). In a sharp contrast, in graphene the
non-Abelian Berry connection is real—see Eqs. (28) and (29).
Consequently, the residual CB population for any pulses of the
same chirality (1R, 1L, 2R, or 2L) is nonchiral and symmetric
with respect to the Pyz reflection [12].

There is an interesting analogy of the two-cycle chiral
pulse discussed above in the previous paragraph and periodic
circularly-polarized excitation studied in Ref. [6]. The latter
shows a pattern of repeated Floquet-Bloch bands separated by
the characteristic excitation frequency ∼ω̄. Though our pulse
is strictly speaking aperiodic, for the case of two subpulses,
there is a sense of repetition with frequency ω̄. In fact, in

FIG. 9. Residual CB population for two-cycle circularly polar-
ized pulse with the amplitude of 0.1 V/Å. The two-cycle pulses
are 2R (a) and 1R+1L (b). The solid closed black lines display the
separatrices (see the text).
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FIG. 10. Residual electron population after 1R single-oscillation
pulse with amplitude F0 = 0.1 V/Å. The corresponding carrier-
envelope phase (i.e., the angle between the maximum field, F0, and
the positive x axis) is indicated in the corresponding panels.

Fig. 9, there is a repeated pattern of interference fringes
separated by a crystal momentum �k ∼ ω̄/vF ; this separation
is proportional to the mean excitation frequency ω̄ and does
not depend on field amplitude just like for quasienergies in
the Floquet-Bloch picture of Ref. [6]. Moreover, the energy
separation between the fringes, �E ∼ h̄vF �k ∼ h̄ω̄ is the
same on the order of magnitude as the separation of the
Floquet-Bloch bands.

As we have already discussed above in conjunction with
Eqs. (19) and (20), for the TI’s surface reciprocal space, the
Berry curvature is distributed (not localized) bringing about
a nontrivial phase that leads to chirality of the CB residual
electron distribution. In Figs. 10(a)–10(d) [see also Fig. 6(c)
for comparison], we illustrate the dependence of this chirality
on the orientation of the 1R pulses for a moderate pulse
amplitude, F0 = 0.1 V/Å. Note that this orientation is deter-
mined by the angle between the direction of the maximum
field, F0, and the positive x axis, which is nothing else as the
carrier-envelope phase, θ , of the pulse. As we see from these
figures, the chirality is present for θ = 0, π/3, and 2π/3;
it is completely absent for θ = π/6 (a reflection symmetry
plane is at θ = 2π/3) and θ = π/2 (the symmetry plane is at
θ = 0). Generally, the chirality is absent when the maximum
field is in the direction of any of the ridges in Fig. 2(a), i.e.,
θ = π

6 + nπ
3 , where n is an integer; in such a case there is

a symmetry plane normal to the direction of the ridge. In
contrast, the chirality is maximum when the maximum field
is along the bisector between the ridges, θ = nπ

3 .
Note that in all cases of Fig. 6(c) and Figs. 10(a)–10(d),

the electron distribution consists of “bright” regions of a high
population adjacent to and outside of the separatrix. These
bright regions have peripheral “wings” extending along the
six ridges of the non-Abelian Berry connection [Fig. 2(a)]
Acv(k).

Optical pulses, both linearly and circularly polarized, cre-
ate generally asymmetric carrier distributions in the reciprocal
space. These will manifest themselves as currents (net charge

transfer) in the real space—cf. Refs. [14,38,39]. The corre-
sponding charge transfer per pulse can be measured macro-
scopically. For linearly polarized pulses, the direction of the
net charge transfer is parallel to the maximum electric field.
The net charge transferred (sign and magnitude) is defined by
the carrier-envelope phase of the pulse and provides a direct
access to its measurement [44].

For circularly polarized pulses considered in this paper,
the resulting electron distributions in the reciprocal space are
generally both asymmetric and chiral. Correspondingly, there
are two types of currents: (i) Direct current in a direction
parallel to the maximum field and (ii) Hall current in the nor-
mal direction. The latter depends on the chirality of the pulse
vs the chirality of the Bloch bands at the � point. There is
a circular current present during the pulse that follows the
boundary of the TI’s surface. This current will produce THz
radiation as in Ref. [45], which can also provide an access to
the ultrafast electron dynamics.

We will publish our detailed quantitative results on the
photocurrents induced in TI’s elsewhere. Below in this sec-
tion, we only provide an expression for the intraband current
and its order-of-magnitude estimate. The current induced by
the pulse has two components: interband current j(inter) and
intraband current j(intra), which are time derivatives of the
corresponding components of the dielectric polarization, j =
∂P/∂t . After the pulse, the interband current rapidly decays
due to dephasing (Landau damping) while the intraband
current is ballistic: It persists longer decaying only due to
collisions. Here we only consider the intraband current for the
period just after the end of the excitation when the collisions
have not yet dissipated it. Two-dimensional density of current
is given by an evident expression

j(intra) = e

A

∑
q∈BZ

N
(res)
CB (q)

[
v(g)

c (q) − v(g)
v (q)

]
, (33)

where v(g)
α (q) = ∂Eα (q)/∂q is the electron group velocity in

the corresponding band α = c, v. Note that the dimensionality
of j(intra) is A/m.

Taking into account that v(g)
c ≈ −v(g)

v , the CB and the VB
give approximately equal contributions to the current. Thus an
order-of-magnitude estimate of this current density is

j (intra) ∼ 2
e

A
v(g)

c Nncεc , (34)

where εc is an asymmetry factor of the electron CB dis-
tribution (the symmetric part of this distribution does not
contribute to the current),

εc = 1

ncN

∑
q∈BZ

N
(res)
CB (q)

v(g)
c (q)∣∣v(g)
c (q)

∣∣ . (35)

Fot the sake of estimate, we set nc = 0.04 and εc =
0.1 (these calculated for F0 = 0.1 V/Å), N = 1, and v

(g)
c ∼

106 m/s (as for graphene), and A ∼ (4 Å)2 (assuming typical
dimensions of the unit cell). From this and Eq. (34), we obtain

j (intra) ∼ 0.01
A

μm
. (36)

This predicted current is relatively large and should present
no fundamental problem to measure experimentally. In fact,
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much smaller currents were successfully recorded in relevant
experiments on graphene [14], and comparable currents were
measured in experiments on quartz, sapphire, and calcium
fluoride [38,39].

IV. CONCLUSION DISCUSSION

Electron dynamics on the surface of Bi2Se3 in the field of
an ultrashort and strong optical pulse results in a significant
CB population during the pulse, which also persists after the
pulse. This residual CB population is large and comparable to
the maximum CB population during the pulse, which implies
that the electron dynamics is highly irreversible, which is due
to the gapless spectrum of the surface Bloch bands. For a
linearly polarized pulse, the electron dynamics significantly
depends on the polarization direction of the pulse. There is
a pattern of interference fringes (“hot spots”) in electron CB
distributions (see Fig. 3). These fringes appear as a result
of interference of two events of the electron passage by the
Dirac (�) point during the single optical oscillation. These are
somewhat similar to those predicted earlier for graphene [11]
(the present field is relatively low and only one pair of fringes
appear, see Fig. 4). In the TI’s, in a contrast to graphene,
there are also peripheral fringes caused by the warping term
in the Hamiltonian—see Fig. 3. Note that limited preliminary
results on linear-polarized pulses interacting with TI’s, which
included only Fig. 3 of the present paper, were recently
published in Conference Proceedings [46].

A circularly-polarized (chiral) single-oscillation pulse in-
duces a chiral distribution of the residual CB population in
the reciprocal space. The handedness of the induced chirality
is determined by the handedness (right or left) of the pulse.
Such a chiral response in Bi2Se3 is due to the warping terms
in the low-energy surface Hamiltonian near the Dirac (�)
point. This leads to the non-Abelian Berry connection being
complex with phase winding that causes the aforementioned
chirality. In a sharp contrast, in graphene the non-Abelian
Berry connection is real, and no chirality is induced by a
single-oscillation chiral pulse.

The electron interference patterns predicted in this
work are self-referenced electron holograms that carry rich

information about topological properties (the non-Abelian
Berry phase) of the TI reciprocal space and the Bloch band
dispersion (dynamic phase). Such self-referenced holograms
can be measured using time-resolved angle-resolved photo-
electron spectroscopy (TR-ARPES) [8,15]. In principle, it
may be possible to restore the topology of the Bloch bands
from these holograms. We will consider this problem else-
where.

In this paper, we have considered electron transitions be-
tween and the residual electron population of the surface
Bloch bands of TI’s. In these Bloch bands, the direction of
the spin, in a certain approximation, is locked to the crystal
momentum. As has been established both theoretically and
experimentally, a momentum-spin texture also is present for
the photoelectrons emitted into the free space in the process
of ARPES [7,47–51]. However, this free-space texture is gen-
erally different from that present in the crystal Bloch bands;
it is controlled both by polarization and by energy of the
ultraviolet (UV) or extreme ultraviolet (XUV) radiation that
causes the photoelectron emission [7,47–51]. Interestingly
enough, in our case the UV or XUV pulses should also
be ultrafast and, therefore, their spectral band is wide. It is
not known currently how such a large bandwidth will affect
the spin textures of the emitted electrons. This is a separate
problem that we intend to address elsewhere.
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