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We present a theoretical description of energy transfer processes between two noncontact quasi-two-
dimensional crystals separated by distance a, oscillating with frequency ω0 and amplitude ρ0, and compare it
with the case of two quasi-two-dimensional crystals in uniform parallel motion. We apply the theory to calculate
van der Waals energy and dissipated energy in two oscillating slabs where each slab consists of a graphene
monolayer deposited on SiO2 substrate. The graphene dielectric response is determined from first principles,
and SiO2 surface response is described using empirical local dielectric function. We studied the modification of
vdW attraction as a function of the driving frequency and graphene doping. We propose the idea of controlling
the binding energy between two slabs by tuning the graphene dopings EFi and driving frequency ω0. We found
simple ρ2

0 dependence of vdW and dissipated energy. As the Dirac plasmons of frequency ωp are the dominant
channels through which the energy between slabs can be transferred, the dissipated power in equally doped
EF1 = EF2 �= 0 graphenes shows strong ω0 = 2ωp peak. This peak is substantially reduced when graphenes
are deposited on the SiO2 substrate. If only one graphene is pristine (EFi = 0) the 2ωp peak disappears. For
larger separations a the phononic losses also become important and the doping causes shifts, appearance,
and disappearance of many peaks originating from resonant coupling between hybridized electronic/phononic
excitations in graphene/substrate slabs.
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I. INTRODUCTION

Detailed understanding of noncontact friction and energy
transfer processes in nanostructures is of great importance,
both from the conceptual and practical viewpoints. Existing
theoretical studies, starting with the seminal paper by Pendry
[1], mostly consist of calculations of friction coefficients,
i.e., friction force between two parallel dielectric plates (e.g.,
supported graphenes) in uniform relative motion which is
experimentally not easily measured (e.g., current drag in one
graphene caused by current flow in another one) [2–8].

While the experiments with two slabs in parallel relative
motion with constant velocity are difficult to perform, we
suggest here that for the same systems experiments with
slabs in relative oscillatory motion with fixed or variable
frequency might be easier to perform and could lead to new
and interesting observations. Recently a similar approach has
been realized experimentally [9–12]. In these experiments the
system (usually an AFM tip above the surface) oscillates at
some characteristic frequency. These oscillations are then,
because of various dissipation mechanisms (which includes
quantum friction), damped. Our model is based on a slightly
different concept; one of the slabs, e.g., the AFM tip, is driven
with variable frequency. This means that the friction can be
deduced from the energy dissipated in one oscillating cycle.
In this paper we provide a general theoretical description of
such processes, expecting that this method might become a
useful tool to study dynamical properties of low-dimensional
systems [13].

The main objective of this paper is therefore a theoretical
description of these phenomena in systems consisting of
two nontouching polarizable media, specifically conservative
(van der Waals or Casimir) and dissipative forces (quantum
friction) between two quasi-two-dimensional (q2D crystals)
in relative parallel and oscillatory motion. While the case
of slabs in parallel uniform motion has been extensively
studied [1,5,14–18], here we develop an analogous theory
describing interaction of atomically thick slabs (q2D crystals)
in oscillatory motion.

It should be emphasized that here we study the vdW energy
for smaller slab separations (a < 100 nm) where the retarda-
tion effects are not so important and the whole formulation
is performed in the electrostatic limit. Therefore the vdW en-
ergies are more robust and not comparable with fine Casimir
effects. In order to study the Casimir forces the formulation
should be performed in the retardation limit. Moreover, the
Casimir effects are very sensitive to the characteristics of
low frequency (ω) and low wave vector (Q) plasmon/phonon
modes where intensity depends on the damping constant used
in the calculation [8,19–23]. Damping constant depends on
various relaxation mechanisms, such as electron-phonon or
electron-impurity scattering processes which are also very
sensitive on temperature [24,25]. Therefore the study of
Casimir effects is outside the scope of this study and should
be done as a separated study which carefully includes all these
effects.

In Sec. II the expressions for van der Waals and dissipative
energies and forces are derived for such a q2D system in a very
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general case, for variable slab temperatures and dynamical
properties characterized by their surface response functions
D1 and D2, and for variable oscillating frequencies and am-
plitudes. We assume 2D translational invariance and neglect
retardation for the slab distances in consideration. For the sake
of clarity and comparison, in Appendix we derive analogous
results for the case of parallel uniform motion, recovering but
also generalizing some earlier results [26,27].

In Sec. III we derive general expressions for surface re-
sponse functions Di for multilayer slabs, later to be speci-
fied for monolayers of a substance like graphene or silicene
adsorbed on dielectric substrates. Surface response functions
D1 and D2 will be the key ingredients in the expressions
describing dissipative and reactive processes in Sec. II and
Sec. III. In Sec. III we also show how to calculate surface
response functions Di for a specific case of q2D crystals on
a dielectric substrate The expression for the surface excitation
propagator of a system of two coupled slabs is also derived.

In Sec. IV we present the models used to describe the
q2D crystal and substrate dynamical response. We study the
specific case of a graphene monolayer on a dielectric sub-
strate, which is chosen to be ionic crystal SiO2. The substrate
is considered as a homogenous semi-infinite ionic crystal
SiO2 with the appropriate dielectric function in the long-
wavelength limit. Graphene monolayer dynamical response
is determined from first principles. Also some computational
details are specified.

In Sec. V general expressions of previous sections are
applied to the system of two slabs, where each slab represents
a graphene (EFi)/SiO2 system and where graphene doping is
characterized by Fermi energy EF relative to the Dirac point.
In Sec. V A we demonstrate how the spectra of electronic
excitations in one slab and in two coupled slabs depend on
graphene doping EF .

The form of these coupled excitations is responsible for
the behavior of the attractive forces and dissipation. We
first discuss in Sec. V B the modification of van der Waals
force for oscillating in comparison with the static slabs. Van
der Waals energies depend on two factors. They increase
with the increased graphene doping but are reduced for the
asymmetric doping when excitations in two slabs are off
resonance. Dynamical vdW energy shows unusual behavior:
It starts as plateau and then decreases. This is because the fast
Dirac plasmon of frequency ωp in one slab, for low driving
frequencies ω0 < ωp, still perfectly follows Doppler shifted
charge density fluctuations in another slab. For larger driving
frequencies this is not the case and vdW energies decrease.
Finally, for small or zero doping the π → π∗ and π → σ

excitations cause linear weakening of the dynamical vdW
energy.

In Sec. V C we explore how the details of realistic graphene
band structure influence the dissipated power, i.e., what are
the limitations of Dirac-cone approximation which treats the
π electron bands as entirely conical. In Sec. V D we calculate
and discuss how dissipated power depends on various param-
eters: driving amplitude ρ0 and frequency ω0, on the separa-
tions between slabs a and on the substrate. We find simple
ρ2

0 dependence, while the ω0 dependence is determined by
the intensity of resonant coupling between hybridized Dirac
plasmons and substrate transverse optical (TO) phonons. We
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FIG. 1. Geometry of the system.

also explain why the substrate substantially reduces dissipated
power peak. For larger separations a additional peaks appear
in dissipated power originating from the excitations of hy-
bridized substrate phonons.

In Sec. V E we explore how the dissipated power depends
on graphene dopings. We show that if one graphene is pristine
(EF = 0) it causes the disappearance of strong 2ωp peak
in the dissipated power. Moreover, for larger separations the
doping causes shifts, appearance and disappearance of many
peaks originating from resonant coupling between hybridized
substrate phonons and Dirac plasmons. In Sec. VI we present
the conclusions.

II. GENERAL THEORY: OSCILLATING SLABS

A. Van der Waals energy and force

In Appendix A 1 we have derived van der Waals energy
and force between two slabs in uniform relative motion in
some detail because it will help us to treat a similar problem of
two oscillating slabs. Similar formulas have been derived by
considering the electromagnetic field fluctuations in two slabs
in relative motion in the retarded limit [5,28]. These formulas
in the nonretarded limit reduce to our formulas (A16) or
(A21).

We shall later assume that the slabs consist of graphene
monolayers with variable doping, deposited on dielectric slabs
of thickness � described by local dielectric functions ε(ω),
as shown in Fig. 1. The left slab mechanically oscillates with
frequency ω0 and amplitude ρ0 relative to the right slab. Again
we calculate the diagram in Fig. 11 as in Sec. A 1, but now the
slab parallel coordinates change in time as

ρ − ρ1 → ρ − ρ1 − ρ0(sin ω0t − sin ω0t1) (1)

so that instead of (A3) we have

Ec =
∫ ∞

−∞
dt1

∫
dQ

(2π )2
e−iQρ0(sin ω0t−sin ω0t1 )

×
∫ ∞

−∞
dzdz1dz2dz3S1(Q, z, z1, t − t1)V (Q, z, z3)

×D2(Q, z3, z2, t − t1)V (Q, z2, z1),
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where ρ = (x, y) is the position vector and Q = (Qx,Qy ) is
the wave vector in the plane parallel to crystal slab.

If we use

eiz sin φ =
∞∑

m=−∞
Jm(z)eimφ

where Jm are Bessel functions, after Fourier transformation in
ω space, using expressions (A5)–(A7), (A9), and integration
over z coordinates we obtain

Ec = h̄

∫
dQ

(2π )2
e−2Qa

∞∑
m,m′=−∞

Jm(Qρ0)Jm′ (Qρ0)

×
∫ ∞

−∞

dω

2π
[2n1(ω) + 1]ei(m−m′ )ω0t

× ImD1(Q, ω)ReD2(Q, ω + mω0).

Here we have also used the fact that ImD2(Q, ω) is an an-
tisymmetric function of ω and does not contribute to integra-
tion. We see that the energy oscillates in time with frequencies
(m − m′)ω0. If we assume to measure energies on a time scale
�t > T , where T = 2π

ω0
is the maximal duration of one cycle,

then we can average over T

1

T

∫ T

0
dtei(m−m′ )ω0t = δmm′ , (2)

and find the result independent of time:

Ec = h̄

2

∫
dQ

(2π )2
e−2Qa

∞∑
m=0

(2 − δm0)J 2
m(Qρ0)

×
∫ ∞

−∞

dω

2π
{[2n1(ω) + 1]

× ImD1(Q, ω)ReD2(Q, ω + mω0)

+ [2n2(ω) + 1]ImD2(Q, ω)ReD1(Q, ω + mω0)},
where the expression in curly brackets is fully analogous to
the one in (A11), but now ω′ → ωm = ω + mω0. In the next
higher order process the field which is scattered is scattered
once again which, after applying the convolution theorem,
collects the phase factor ei(m+n−m′−n′ )ω0t . The approximation
which we use here in order to eliminate this oscillatory term
is that we put m = m′ and n = n′, and similarly in all higher
order terms. In this kind of approximation mixed JnJm terms
which oscillate faster than J 2

n disappear. Also, in the inclusion
of higher order processes we can follow the same procedure
as for the parallel motion in Sec. A 1. After applying this
approximation and integration over the coupling constant, we
obtain the result analogous to (A16)

Ec = h̄

2

∫
dQ

(2π )2

∞∑
m=0

(2 − δm0)J 2
m(Qρ0)

×
∫ ∞

−∞

dω

2π
A(Q, ω, ωm), (3)

where A is given by (A17) and (A18), with ωm = ω + mω0.
Again, the limiting cases can be obtained from Sec. A 1.

For ω0 = 0 (ω′ = ω) and ρ0 = 0 we find the well known
result for van der Waals interaction when the slabs are at rest

[29,30]:

Ec(a) = h̄

2

∫
dQ

(2π )2

∫ ∞

0

dω

2π
sgnω

× Im ln[1 − e−2QaD1(Q, ω)D2(Q, ω)].

For finite frequency ω0 and D1 = D2 = D we find:

Ec(a) = h̄

2

∫
dQ

(2π )2

∞∑
m=0

(2 − δm0)J 2
m(Qρ0)

∫ ∞

−∞

dω

2π
sgnω

× Im ln[1 − e−2QaD(Q, ω)D(Q, ωm)].

We notice that the frequency integrals are the same as in
(A16)–(A20). Also, the attractive van der Waals force between
two oscillating slabs is given by

F⊥(a) = −dEc(a)

da

= h̄

∫
dQ

(2π )2
Qe−2Qa

∞∑
n=0

(2 − δm0)J 2
m(Qρ0)

×
∫ ∞

−∞

dω

2π
B(Q, ω, ωm), (4)

where the function B is given by (A22) and (A23). The
same holds for the ω0 → 0 or D1 = D2 = D limits when the
expressions for B become (A24) or (A25), respectively.

B. Dissipated power

We can perform the calculation of the dissipated power for
two slabs oscillating parallel to each other with amplitude ρ0
and frequency ω0 in analogy with the previous treatment of
two slabs in uniform relative motion in Sec. A 2. Again, we
have to transform the parallel coordinates in the left slabs as
in (1). Then (A29), after integration over t1 becomes

P12(t ) = −ih̄

∫
dQ

(2π )2

∫
dω

2π

∞∑
m,m′=−∞

(−1)m+m′

× ei(m′−m)ω0t (m′ω0 − ω) Jm(Qρ0)J ′
m(Qρ0)

× S1(Q, |ω|, z, z1) ⊗ V (Q, z, z3)

⊗ D2(Q,m′ω0 − ω, z3, z2) ⊗ V (Q, z2, z1). (5)

We see that the energy absorption rate in the left slab is time
dependent and oscillates with frequency (m′ − m)ω0. Again,
from (2) we see that for time intervals large with respect to the
oscillation period T the terms m �= m′ do not contribute and
the energy absorption rate is

P12 = −ih̄

∫
dQ

(2π )2

∫
dω

2π

∞∑
m=−∞

(mω0 − ω) J 2
m(Qρ0)

× S1(Q, |ω|, z, z1) ⊗ V (Q, z, z3)

⊗ D2(Q,mω0 − ω, z3, z2) ⊗ V (Q, z2, z1). (6)

If we now use (A5), the definitions (A6) and (A7) of the
surface excitation propagator and surface correlation function,
respectively, and the connection (A9) between the surface cor-
relation function and the imaginary part of surface excitation
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propagator, equation (6) can be written as

P12 = − h̄

π

∞∑
m=−∞

∫
dQ

(2π )2
e−2QaJ 2

m(Qρ0)
∫

dω

2π
ωm

× [2n1(ω) + 1] ImD1(Q, ω)ImD2(Q, ωm). (7)

Evaluating (7) we have used the fact that the real part of
the function under summation and integration is odd and the
imaginary part is an even function of n and ω. P12 is the energy
absorption rate in the left slab in the reference frame of the
right slab or in the laboratory reference of the frame. Now we
have to repeat the discussion in Sec. A 2 and subtract the same
energy absorption rate but calculated in the reference frame
of the left (oscillating) slab. The same arguments, leading to
(A37), will give this energy to be

P ′
12 = h̄

∞∑
n=−∞

∫
dQ

(2π )2
e−2QaJ 2

n (Qρ0)
∫

dω

2π
ω

× [2n1(ω) + 1] ImD1(Q, ω)ImD2(Q, ωn). (8)

Expression (8) represents the energy which fluctuates between
left and right slabs but is not spent to heating. The dissipated
(heating) power can be calculated by extracting from P12 this
fluctuating component, i.e.,

P1 = P12 − P ′
12 = 2h̄

∞∑
m=1

mω0

∫
dQ

(2π )2
e−2QaJ 2

m(Qρ0)

×
∫

dω

2π
[2n1(ω) + 1]ImD1(Q, ω)ImD2(Q, ωm). (9)

Analogous calculation would give the energy dissipated in the
process where the charge fluctuation in the right slab induces
fluctuations in the left slab. We have to exchange 1 and 2 in (9)
and replace m → −m. Repeating the steps in (A40) the final
result becomes:

P = P1 + P2

= 4h̄

∞∑
m=1

mω0

∫
dQ

(2π )2
e−2QaJ 2

m(Qρ0)
∫ ∞

−∞

dω

2π

× [n1(ω) − n2(ωm)]ImD1(Q, ω)ImD2(Q, ωm). (10)

This expression is analogous to (A40). For T = 0 2n(ω) +
1 → sgnω and (10) can be written as

P = 4h̄

∞∑
m=1

mω0

∫
dQ

(2π )2
e−2QaJ 2

m(Qρ0)
∫ mω0

0

dω

2π

× ImD1(Q, ω)ImD2(Q,mω0 − ω). (11)

Adding higher order terms [(A12),(A13)] we obtain the en-
ergy dissipated per unit time:

P = 2h̄

∞∑
m=1

mω0

∫
dQ

(2π )2
e−2QaJ 2

m(Qρ0)

×
∫ ∞

−∞

dω

2π
C(Q, ω, ωm), (12)

ρ

h
Δ

ε  (ω)
z

D(Q,ω)

S

R(Q,ω)

FIG. 2. Simplified model where the SiO2 substrate is shown
as a homogenous dielectric slab described by the local dielectric
function εS (ω) and graphene is described by 2D response function
R(Q, ω). D(Q, ω) is the surface excitation propagator of the sub-
strate/graphene composite.

where C is given by (A42). Limiting cases are also obtained
from (12). For ω0 = 0 and/or for ρ0 = 0 obviously P = 0.

III. DERIVATION OF THE SLAB SURFACE EXCITATION
PROPAGATORS D1,2(Q, ω)

The main quantities which appear in the formula for van
der Waals interaction Ec or dissipated power P are the surface
excitation propagators D1(Q, ω) and D2(Q, ω) of the left
(first) and right (second) slab, respectively. The derivation of
D1 and D2 is analogous for both slabs, so here we shall derive
just one surface excitation propagator D. The structure of the
monolayer-substrate composite (e.g., graphene on SiO2) is
shown in Fig. 2. The slab consists of the graphene monolayer
adsorbed at distance h (e.g., h = 0.4 nm) above the substrate
of macroscopic thickness �. Although we chose this value
for h, the results are insensitive to small variation about this
value, so we could freely put h = 0. The dielectric, e.g., the
SiO2 slab is placed in the region −� − h � z � −h and
the graphene layer occupies z = 0 plane. The same model
system is used in Refs. [31,32] where the authors explore
plasmon-phonon hybridization, stopping power, and wake ef-
fect produced by the proton moving parallel to the composite.
The unit cell for such huge nanostructure would consist of
hundreds of atoms, so it is impossible to perform full ab initio
ground state and structure optimization calculation. Moreover,
an ab initio calculation of the response function would be
even more demanding so we need an approximation for the
response function calculation. The easiest (and probably the
best) approximation is to treat the SiO2 slab as a homogeneous
dielectric described by some local dielectric function εS (ω)
and to consider graphene as a purely 2D system described by
the response function R(Q, ω), as sketched in Fig. 2.
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In order to derive the surface excitation propagator
D(Q, ω) we start from its definition:

D(Q, ω) = vQ

∫ 0

−∞
dzdz′e−Q(z+z′ )R(Q, ω, z, z′)

= 1

vQ

{W (Q, ω, z = 0, z′ = 0) − vQ}; i = 1, 2,

(13)

where vQ = 2π/Q, Q =
√

Q2
x + Q2

y and R(Q, ω, z, z′) rep-
resents the nonlocal dielectric function of graphene/dielectric
composite which we assume occupies the region z, z′ � 0.
It can be noticed that surface excitation propagator (13)
is actually proportional to the induced Coulomb interaction
Wind = W − vQ at the z = z′ = 0 surface.

It is well known [24,25,33,34] that physical properties of a
graphene monolayer in the low (Q,ω) region can be described
to a very good approximation assuming the monolayer to be
strictly two dimensional, so that the nonlocal independent
electron response function can be written as

R0(Q, ω, z, z′) = R0(Q, ω)δ(z)δ(z′), (14)

where we assume that the graphene lies in the z = 0 plane
and the response function R0(Q, ω) can be derived from first
principles, as described in Sec. IV. Dynamically screened
response function R(Q, ω) in RPA is given as a series of terms

R(Q, ω) = R0 + R0vQR0 + . . . = R0(Q, ω)

1 − vQR0(Q, ω)
. (15)

If we assume for the moment that there is no dielectric
in the system [e.g., εS (ω) = 1] then the screened Coulomb
interaction is simply given by

W (Q, ω, z = 0, z′ = 0) = vQ + vQR(Q, ω)vQ. (16)

Using the definition (13) the surface excitation propagator
becomes

D(Q, ω) = vQR(Q, ω). (17)

When the dielectric slab is introduced, the external charges
and charge density fluctuations in the graphene layer do not
interact via the bare Coulomb interaction vQ but via the
Coulomb interaction modified by the presence of the dielectric
slab [35]

vQ → ṽQ(ω) = vQ[1 + DS (Q, ω)], (18)

where the substrate surface excitation propagator is

DS (Q, ω) = DS (ω)
1 − e−2Q�

1 − D2
S (ω)e−2Q�

e−2Qh (19)

and

DS (ω) = 1 − εS (ω)

1 + εS (ω)
(20)

represents the surface excitation propagator of a semi-infinite
(� → ∞, h = 0) dielectric. This causes that the screened
Coulomb interaction (16) becomes the function of ṽQ(ω)

W → W̃ = ṽQ(ω) + ṽQ(ω)R̃(Q, ω)ṽQ(ω), (21)

where, because charge density fluctuations inside graphene
also interact via ṽQ(ω), the screened response function is
modified as

R̃(Q, ω) = R0(Q, ω)

1 − ṽQ(ω)R0(Q, ω)
. (22)

Finally, after inserting (21) into (13) we obtain the surface
excitation propagator in the presence of the dielectric

D(Q, ω) = 1

vQ

{ṽQ(ω)R̃i (Q, ω)ṽQ(ω) + ṽQ(ω) − vQ},

(23)

which can be rewritten in a more transparent form as

D(Q, ω)

= DS (Q, ω) + vQR(Q, ω) + 2vQR(Q, ω)DS (Q, ω)

1 − vQR(Q, ω)DS (Q, ω)
,

(24)

which corresponds exactly to Eq. (10) of Ref. [3]. The spec-
trum of coupled excitations in a single slab can be calculated
from

S(Q, ω) = − 1

π
ImD(Q, ω). (25)

For the coupled slabs described by their surface excitations
propagators D1 and D2, separated by the distance a, in a
similar way we can derive the propagator D̃ for the coupled
system

D̃(Q, ω) = D1(Q, ω) + D2(Q, ω) + 2D1(Q, ω)D2(Q, ω)

1 − e−2QaD1(Q, ω)D2(Q, ω)

(26)

and the excitation spectrum of this system is

S̃(Q, ω) = − 1

π
ImD̃(Q, ω). (27)

IV. DESCRIPTION OF SUBSTRATE AND GRAPHENE
DYNAMICAL RESPONSE

The results in Sec. III are quite general and can be applied
to a monolayer of any material on any dielectric substrate.
Now we shall specify the dielectric substrate to be the ho-
mogenous layer of ionic crystal SiO2.

Dielectric properties (or dynamical response) of bulk ionic
crystals in the long-wavelength limit can be described in
terms of their optical phonons at the � point. More complex
polar crystals such as SiO2 possess a multitude of different
optical phonons of different symmetries and polarizations.
However, here we suppose that SiO2 possesses two well-
defined, nondispersing TO phonon modes at the frequencies
ωT O1 and ωT O2 with the corresponding damping rates γT O1

and γT O2, giving rise to a dielectric function of the form
[31,32]

εS (ω) = ε∞ + (εi − ε∞)
ω2

T O2

ω2
T O2 − ω2 − iωγT O2

+ (ε0 − εi )
ω2

T O1

ω2
T O1 − ω2 − iωγT O1

, (28)
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FIG. 3. Pristine graphene band structure. The arrows indicate
high energy interband transitions between valence π and conducting
π∗ and σ bands, which could be an important contribution to vdW
dissipation energy for larger driving frequencies ω0. (Taken from
Ref. [38].)

where ε0, εi , and ε∞ represent the dielectric constant for
SiO2 at the zero, intermediate, and very large frequencies.
This dielectric function will be inserted in the expression
(19) for the substrate surface excitation propagator DS (Q, ω).
In continuation we shall describe the ab initio approach we
use to determine graphene response function response and
conductivity tensor, but it should first be mentioned how it
relates to various analytical approaches.

There are many analytical results for graphene conductivity
or response function in the Dirac cone approximation [36] or
even in the extended two band TBA model where π and π∗
bands spread throughout the whole Brillouin zone [24,25,37],
as shown by blue and red lines in Fig. 3. Such more elegant
analytical or semianalitical approaches are more appropriate
to study vdW energy or dissipation especially in the low
oscillating frequency ω0 < 10THz limit when low energy
hybridised Dirac plasmon/phonon modes and intraband π∗ →
π∗ transitions become the most important contributions. On
the other hand, ab initio methodology, which nowadays for
2D crystals such as graphene has become computationally
relatively easy, allows very accurate calculations of response
function and conductivity tensor which excellently agree with
the Dirac cone or two band model analytical approaches.
However, at the same time they give more accurate results
for larger frequencies ω and wave vectors Q, as demonstrated
in Ref. [33]. This is especially important in pristine graphene
and for larger oscillation frequencies ω0 when the dominant
contribution to vdW energy or dissipation comes from high
energy π → π∗ and π → σ electron-hole excitations (and
corresponding π and π + σ plasmons) beyond the Dirac cone

approach, as sketched in Fig. 3. Therefore in order to be
consistent with analytical approaches but at the same time
more accurate in the high excitation energy limit we decided
to use a more sophisticated ab initio approach.

The graphene response function R(Q, ω) is given by (22)
in terms of the noninteracting response function

R0(Q, ω) = L R0
G=0G′=0(Q, ω), (29)

where the 3D Fourier transform of independent electron re-
sponse function is given by [39]

R0
GG′ (Q, ω)

= 2

�

∑
K∈S.B.Z.

∑
n,m

fn(K) − fm(K + Q)

h̄ω + iη + En(K) − Em(K + Q)

× ρnK,mK+Q(G) ρ∗
nK,mK+Q(G′), (30)

where fnK = [e(EnK−EF )/kT + 1]−1 is the Fermi-Dirac distri-
bution at temperature T . The charge vertices in (30) have the
form

ρnK,mK+Q(G) =
∫

�

dre−i(Q+G)r φ∗
nK(r)φnK+Q(r), (31)

where Q is the momentum transfer vector parallel to the
x − y plane, G = (G‖,Gz) are 3D reciprocal lattice vectors,
and r = (ρ, z) is a 3D position vector. Integration in (31) is
performed over the normalization volume � = S × L, where
S is the normalization surface and L is the superlattice con-
stant in the z direction (separation between graphene layers is
superlattice arrangement). Plane wave expansion of the wave
function has the form

φnK(ρ, z) = 1√
�

eiKρ
∑

G

CnK(G)eiGr,

where the coefficients CnK are obtained by solving the lo-
cal density approximation-Kohn Sham (LDA-KS) equations
self consistently as will be discussed below. However, this
straightforward calculation of graphene response functions
R(Q, ω) is not sufficient if we want to investigate the hy-
bridization between the Dirac plasmon and Fuchs-Kliewer
(FK) phonons at dielectric surfaces. Namely, due to the very
low energy of FK phonons (∼50 meV) the crossing of their
dispersion relations with Dirac plasmon occurs for very small
wave vectors (Q < 0.001 a.u.). On the other hand even for
very dense K-point mesh sampling, as for example 601 ×
601 × 1 used in this calculation, the minimum transfer wave
vector Q which can be reached (e.g., Q = 0.0026 a.u.−1 in
this calculation) is still bigger than the FK phonon-Dirac
plasmon crossing wave vector. Therefore we have to find the
way how to calculate R(Q, ω) for a denser Q-point mesh
in the optical Q ≈ 0 limit. One possible way is that instead
of calculating response function R0(Q, ω) we calculate the
optical (Q = 0) conductivity σ (ω). The optical conductivity
in graphene can be written as [24]

σ (ω) = σ intra (ω) + σ inter (ω), (32)

where

σ intra (ω) = iρ0

ω + iηintra
(33)
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is intraband or Drude conductivity and where

ρ0 = − 2

�

∑
K,n

∂f i
n (K)

∂En(K)

∣∣jx
nK,nK(G = 0)

∣∣2
(34)

represents the effective number of charge carriers. The inter-
band conductivity is

σ inter (ω) = −2i

ω�

∑
K,n�=m

h̄ω

En(K) − Em(K)

× f i
n (K) − f i

m(K)

h̄ω + iηinter + En(K) − Em(K)

× jx
nK,mK(G = 0)

[
jx
nK,mK(G′ = 0)

]∗
,

(35)

where the current vertices are given by

j
μ

nK,mK+Q(G) =
∫

�

dre−i(Q+G)r j
μ

nK,mK+Q(r), (36)

and

j
μ

nK,mK+Q(r) = h̄e

2im
{φ∗

nK(r)∂μφmK+Q(r) (37)

− [∂μφ∗
nK(r)]φmK+Q(r)}.

In the optical Q ≈ 0 limit the independent electron response
function can be written in terms of optical conductivities (32)
as [40]

R0(Q ≈ 0, ω) = L
Q2

iω
σ (ω). (38)

Finally, the RPA or screened response function R(Q, ω) can
be obtained from (38) using (15).

In the calculation of Sec. V we shall assume the graphene
response to be isotropic in the small (Q, ω) limit. This means
that the graphene response functions and the correspond-
ing surface excitation functions are functions of Q and not
of Q.

In order to explore what are the limitations of simple
analytical approaches the results obtained using ab initio
conductivity [(32),(33),(35)] will be compared with the results
obtained using the conductivity obtained in the Dirac-cone
approximation, i.e., by treating the π electron bands as en-
tirely conical. In the limit of zero temperature the Drude
conductivity in Dirac-cone approximation can be written as
[41]

σ intra (ω) = i
EF

(πω + iηintra )
, (39)

while the interband contribution is given by [41]

σ inter (ω) = 1

4

[
�(ω − 2EF ) − i

π
ln

∣∣∣∣2EF + ω + ηinter

2EF − ω − ηinter

∣∣∣∣
]
,

(40)

where �(ω) is a Heaviside step function.

A. Computational details

The first part of the calculation consists of determining
the KS ground state of the single layer graphene and the

corresponding wave functions φnK(ρ, z) and energies En(K).
For graphene unit cell constant we use the experimental value
of a = 4.651 a.u. [42], and superlattice unit cell constant
(separation of graphene layers) is L = 5a. For calculating
KS wave functions and energies we use a plane-wave self-
consistent field DFT code (PWSCF) within the QUANTUM

ESPRESSO (QE) package [43]. The core-electron interaction
was approximated by the norm-conserving pseudopotentials
[44] and the exchange correlation (XC) potential by the
Perdew-Zunger local density approximation (LDA) [45]. To
calculate the ground state electronic density we use 21 × 21 ×
1 Monkhorst-Pack K-point mesh [46] of the first Brillouin
zone (BZ) and for the plane-wave cutoff energy we choose
50 Ry. The second part of calculation consists of determining
the independent electron response function (30) and conduc-
tivity [(32)–(35)]. In order to achieve better resolution in the
long wavelength (Q ≈ 0) and low energy (ω ≈ 0) limit the
response function [(30),(31)] and conductivity [(32)–(37)] are
evaluated from the wave functions φnK(r) and energies En(K)
calculated for the 601 × 601 × 1 Monkhorst-Pack K-point
mesh which corresponds to 361801 K points in the first Bril-
louin zone (1 BZ). Band summations (n,m) in (30), (34), and
(35) are performed over 30 bands. In the calculation we use
two kinds of damping parameters: ηintra = 10 meV for transi-
tions within the same bands (n ↔ n) and ηinter = 50 meV for
transitions between different bands (n ↔ m). For bulk SiO2

dielectric function given by (28) we use the following pa-
rameters: ε0 = 3.9, εi = 3.05, ε∞ = 2.5, ωT O1 = 55.6 meV,
ωT O2 = 138.1 meV, γT O1 = 5.368 meV, and γT O2 = 8.947
meV taken from Ref. [47]. For the gap between graphene and
the SiO2 surface, we take h = 4 Å [7.55 a.u.] [48].

V. RESULTS FOR GRAPHENE MONOLAYERS
ON SiO2 SUBSTRATES

Theoretical expressions derived in Sec. II (and in
Appendix) are quite general, i.e., are valid for any pair of
crystal slabs described by their response functions, while
the corresponding surface excitation functions derived in
Sec. III are valid for any 2D adsorbed monolayer on any
dielectric substrate. In this section we shall apply these re-
sults to calculate reactive and dissipative response of various
combinations of slabs consisting of graphene monolayers
with variable doping on semi-infinite (� → ∞) SiO2 sub-
strate, using the dynamical surface response functions of
these materials given in Sec. III. Extension to the case of
dielectric slabs of finite thickness does not change the main
features in the results, however it causes the appearance of
many different surface phononic modes which could disturb
the interpretation of results, so we rather use semi-infinite
dielectrics.

Before proceeding with the detailed calculations a few
general comments are in order. For very large separa-
tions a > 10 000 Å the long-wavelength (Q < 10−4 a.u.) and
the low energy [ωp ≈ 10 meV (T ≈ 100 K)] Dirac plas-
mon polaritons and soft π∗ → π∗ electron-hole transitions
[ωπ∗→π∗ ≈ 1 meV (T ≈ 10 K)] become dominant contribu-
tions to Casimir energy or dissipated power. Then the edge
of the intraband π∗ → π∗ electron-hole transitions and hence
frequency and broadening of plasmon polariton become
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FIG. 4. Function fm(x ) for m = 0 (blue solid line), m = 1 (black
solid line), m = 2 (black dashed line), and m = 3 (black dashed-
dotted line). Vertical dashed line denotes the maximum argument xcut

defined by parameters (a and ρ0) used in the calculation.

temperature dependent, so that Casimir energy at such large
separations generally strongly depends on temperature, as
already explored in Ref. [23]. However, for smaller separa-
tions studied here (a < 1000 Å) the relevant Dirac plasmon
and intraband or interband electron-hole excitation energy
scale is ωπ, ωp > 100 meV (T > 1000 K) such that the vdW
force becomes less sensitive to temperature. Therefore, even
though the derived expressions for van der Waals and dissi-
pated power (3) and (12), respectively, include temperature
dependence, in the systems studied here, inclusion of finite
temperature leads to practically no effects, therefore all re-
sults will be reported for T = 0. The dependence of these
two physical properties on the two parameters, the distance
between the slabs a and the oscillation amplitude ρ0, can
be analyzed if we recognize in the expressions (3) and (12)
the function

fm(x) =
∫ 2π

0

dφ

2π
J 2

m(x cos φ), (41)

which is possible because of the assumed isotropy of graphene
response. The function fm(x) is shown in Fig. 4 for the first
four m’s, where x = Qρ0. Another important factor in (3)
and (12) is e−2Qa which defines the cutoff wave vector Qc,
depending on the slab separation a. The separations we shall
consider in this calculation are a = 10–50 nm which defines
the cutoff wave vector Qc ≈ 0.05 a.u.. On the other hand, the
amplitudes which will be considered are ρ0 ≈ 0.1–1 nm. This
finally provides the maximum argument Q of the functions
(41) which is xcut ≈ 1. From Fig. 4 is obvious that up to xcut

only the m = 0 and m = 1 terms will contribute. Moreover,
for x < xcut the Bessels functions can be approximated as
J0 ≈ 1 − x2

4 and Jm(x) ≈ xm

2mm! ; m > 1 and therefore

f0 ≈ 1 − x2

4
; f1(x) ≈ x2

8
. (42)

In Fig. 4 we see that approximation (42) is valid almost up to
xcut .

A. Spectra of coupled modes

In this section we shall first discuss the spectra of coupled
plasmon/phonon excitations in one and two graphene/SiO2

slabs separated by distance a in order to understand the domi-
nant dissipation mechanisms. Figure 5(a) shows the spectrum
of surface excitations S(Q,ω) = −ImD(Q,ω) in graphene
(200 meV)/SiO2 slab (as shown in Fig. 2) and Fig. 5(b) in
the system which consists of two graphene/SiO2 slabs (as
shown in Fig. 1) separated by distance a = 5 nm. In the
long-wavelength limit the SiO2 surface supports two surface
polar (FK) TO phonons with flat dispersions and the doped
graphene contains a Dirac plasmon with square root disper-
sion. Coupling between these modes results in three branches,
as shown in Fig. 5(a). For larger Q the first and second
flat branches are phononlike, i.e., their induced electrical
fields mostly come from polarization modes on the dielectric
surface. On the other hand, the third square root branch is
plasmonlike, i.e., its induced electrical field mostly comes
from charge density oscillations localized in the graphene
layer. However, in the Q → 0 limit the strong hybridization
(avoided crossings) between these modes occur and they
possess mixed plasmon-phonon character. When another slab
is brought in the vicinity the three modes in each slab interact
which results in the mode splitting and formation of six
coupled modes as shown in Fig. 5(b). Figure 5(c) shows the
spectrum of surface excitations in the graphene(0 meV)/SiO2

slab. Because the pristine graphene does not support Dirac
plasmon the spectrum consist just of two weak phonon
branches ωT O1 and ωT O2 damped by π → π∗ excitations.
The spectrum of surface excitations in two equal graphene
(0 meV)/SiO2 slabs separated by 5 nm (not shown here) is
very similar to the one shown in Fig. 5(c) which indicates
weak interaction between phonons in the two slabs. This could
be the consequence of strong screening of FK phonons by
graphene adlayers which reduces the range of their induced
electrical field. Figure 5(d) shows the spectrum in the system
which consists of two different slabs, graphene(0 meV)/SiO2

and graphene(200 meV)/SiO2, separated by 5 nm. One can
notice interesting hybridization between the Dirac plasmon
and two phonons in one slab and two phonons in another slab
giving five branches. In the next section we shall explore how
particular plasmon-phonon modes contribute to the dissipated
power in two oscillating slabs.

B. Modification of van der Waals force

Van der Waals energy and attractive force are usually calcu-
lated and measured for static objects. Here we show how their
relative oscillating motion can reduce this attraction, which
can be relevant not only from the theoretical standpoint but
also in some experimental situations and applications. This
phenomenon is present also in the case of parallel motion, as
shown in Appendix, but this situation would be more difficult
to realize in practice.

Making use of the approximation (42) for the lowest order
terms of the functions f0 and f1 given by (41) we can rewrite
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FIG. 5. The spectra of surface excitations in (a) graphene (200 meV)/SiO2 single slab (as shown in Fig. 2), (b) in the system consisting of
two equal graphene (200 meV)/SiO2 slabs, (as shown in Fig. 1) separated by distance 5 nm, (c) single graphene (0 meV)/SiO2 slab, and (d) in
the system consisting of two unequal slabs, graphene (200 meV)/SiO2 and graphene (0 meV)/SiO2, separated by distance 5 nm.

the expression (3) for the van der Waals energy as

Ec(a) = h̄

2

∫
QdQ

2π

∫ ∞

−∞

dω

2π

×
{[

1 − Q2ρ2
0

4

]
A(Q,ω,ω)

+ 1

4
Q2ρ2

0 A(Q,ω,ω − ω0)

}
, (43)

where A is given by (A17) and (A18). In the T → 0 limit and
neglecting higher order terms A reduces to

A(Q,ω,ω′)

= e−2Qasgnω{ImD1(Q,ω)ReD2(Q,ω′) + (1 ↔ 2)}.

We see that for ρ0 → 0 the van der Waals energy reduces to
the standard result for the static case, and for ρ0 �= 0 and ω0 �=
0 the lowest order corrections scale with ρ2

0 . From (43), and
also from (44), we see that the slab separation a (because of
exponential factor e−2Qa) reduces the wave vector range to
Q < 1/2a.

Figure 6 shows van der Waals energies Ec of two variously
doped, unsupported full conductivity (32)–(35) graphenes as
functions of the driving frequency ω0. The driving amplitude
is ρ0 = 20 nm and separation between slabs is a = 10 nm.
For the case of two heavily and equally doped graphenes
1–1 eV (thick black solid line) the ‘static’ (ω0 = 0) van der
Waals energy is the largest in comparison with other doping
combinations. This is reasonable considering that then except
of π and π + σ plasmons (and corresponding electron-hole
excitations) the graphenes support strong Dirac plasmons
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FIG. 6. Van der Waals energies Ec of two variously doped,
unsupported full conductivity (32)–(35) graphenes as functions of
driving frequency ω0. The left-right graphene dopings are 1–1 eV
(thick black solid), 1–0.2 eV (black solid), 1–1 eV (thin black solid),
0.2–0.2 eV (red dashed), 0.2–0 eV (thin red dashed), 0–0 eV (blue
dashed-dotted), as also denoted in the figure. Separation between
graphenes is a = 10 nm and oscillating amplitude is ρ0 = 20 nm.

which are all in resonance. Therefore, the charge density
fluctuation in one slab ImD1(ω) resonantly induces electrical
field in another slab ReD2(ω) to which it couples, and vice
versa. As the driving frequency ω0 increases the fluctuation
and the induced field do not match any more, i.e., ImD1(ω)
and ReD2(ω + nω0) become Doppler shifted and vdW en-
ergy is expected to decrease. However, the vdW energy first
exhibits a wide plateau until ω0 < 50 THz. We performed a
separate vdW energy calculation for two unsupported Drude
[(32),(33)] graphenes (not shown here) and noticed that it
shows the same features as presented in Fig. 6. This suggests
that Dirac plasmons are responsible for all characteristic
features in vdW energy (for larger dopings). Therefore, the
plateau arises probably because the Dirac plasmon fluctuation
in one slab, e.g., at ωp, can be efficiently screened by induced
plasmon field in another slab which is not necessarily at the
same frequency ωp. Moreover, graphene, regardless of dop-
ing, exhibits perfect screening ReD(Q ≈ 0, ω ≈ 0) ≈ −1
[38] causing that the static point charge feels image potential.
This causes that Ec shows almost identical plateau for the case
of differently doped graphenes 1–0.2 eV (black solid line) and
1–0 eV (thin black solid line). As the doping difference in-
creases plateau energy decreases which is reasonable because
of plasmon resonance breakdown. For larger ω0 > 50 THz the
Dirac plasmon in one slab does not match any more the perfect
screening regime in another one, resulting in a rapid decrease
or weakening of vdW energy. In the case of weakly doped
graphenes, such as the combinations 0.2–0.2 eV (red dashed
line) and 0.2–0 eV (thin red dashed lines), the ‘static’ ω0 ≈ 0
van der Waals energy reduces in comparison with the heavy
doping (combinations with 1 eV) cases. This is reasonable
considering that Dirac plasmon spectral weight decreases with
doping. Additionally, it can be noted that for lower doping
the vdW plateau shifts to ω0 < 25 THz. This is because the
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FIG. 7. Static ω0 = 0 van der Waals energy Ec of two unsup-
ported full conductivity [(32)–(35)] graphenes as a function of sep-
aration a. The left-right graphene dopings are 0–0 eV (black solid),
0.2–0.2 eV (red dashed), 1–1 eV (blue dotted), as also denoted in the
figure. The dopings EF = 0.2 eV and 1 eV correspond to π∗ electron
densities 2.9 × 1012 cm−2 and 7.3 × 1013 cm−2, respectively.

perfect screening frequency region can be roughly estimated
as ReD(ω < ωp ) ≈ −1, so, as the plasmon energy decreases
the frequency interval within which fluctuations are perfectly
screened becomes narrower. It is interesting to notice that
for some frequencies (e.g., ω0 > 100 THz) the resonant but
low doping vdW energy (e.g., 0.2–0.2 eV case) overcomes
the heavily doped but off resonance vdW energy (such as the
cases 1–0.2 eV and 1–0 eV). The static ω0 = 0 vdW energy
of pristine graphenes 0–0 eV (blue dashed dotted line) is the
weakest and shows smooth decreasing, almost linear behavior.
In this case there are no Dirac plasmons in the graphenes
spectra. Therefore, only resonant coupling between π → π∗
electron-hole excitations, π and π + σ plasmons contribute to
the vdW energy. As the frequency ω0 increases the overlap be-
tween these electronic excitations decreases causing smooth
and linear vdW energy weakening. The same linear behavior
(for ω0 > 50 THz) can be noticed for doping combinations
0.2–0.2 eV and 0.2–0 eV which proves that for lower dopings
the dominant vdW energy weakening mechanism becomes
off-resonant coupling between π → π∗ electron-hole excita-
tions, π and π + σ plasmons.

It should be noted here that such designed (graphene based)
slabs might enable modification of attraction between slabs,
e.g., controlled the binding energy between two slabs. For
example, two heavily doped graphenes (1–1 eV case in Fig. 6)
are strongly bound, however binding energy between pristine
graphenes (0–0 eV case achieved, e.g., simply by electrostatic
gating) is reduced more than twice. Moreover, for larger ω0

(and fixed doping) the dynamical binding energy is substan-
tially reduced, leading to decoupling of two slabs, and vice
versa, their recoupling by reducing the driving frequency.

Figure 7 shows static (ω0 = 0) van der Waals energy of two
unsupported graphenes as a function of separation a for vari-
ous symmetrical dopings 0–0 eV (black solid), 200–200 meV
(red dashed), and 1–1 eV (blue dotted). As expected, the pris-
tine graphenes show the lowest vdW energy, while in doped
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FIG. 8. Dissipated power in two oscillating unsupported graphenes obtained using ab initio conductivity [(32),(33),(35)] (black solid line),
Dirac-cone approximation conductivity [(39),(40)] (red-dashed line), and using Dirac-Drude approximation conductivity (39) (blue-dotted
line). The separations between slabs and oscillation amplitudes are (a) a = 10 nm, ρ0 = 1 nm, (b) a = 50 nm, ρ0 = 1 nm. Both graphenes are
doped such that EF1 = EF2 = 200 meV.

graphenes, which support additional plasmon, vdW energy is
larger. However, the vdW energies in doped graphenes show
counterintuitive crossover behavior at about a = 50 Å, such
that, for a < 50 Å, graphenes with smaller doping show larger
vdW binding energy than graphenes with larger doping. This
is probably because large doping increases forbidden electron-
hole excitation areas, i.e., reduces electron-hole contributions
to vdW energy especially important for smaller separations.
For larger separations Dirac plasmons represent the dominant
contribution to vdW energy, so that graphenes with larger
doping (and stronger Dirac plasmon) show stronger vdW
binding energy. Finally, this can be clearly seen for very large
separations (e.g., at a ≈ 103 Å), where vdW binding between
doped graphenes is an order of magnitude stronger than vdW
binding between pristine graphenes, which do not support
Dirac plasmon. Similar qualitative trend (increase of vdW
energy with doping) and the same quantitative estimation
of the vdW binding energies is documented in many papers
[8,20], though there are also some qualitative disagreements.
For example, in Fig. 2 of Ref. [20] the vdW energy vs
separation a is more linear and also without crossover. The
disagreement is probably because the Dirac-cone approach
does not provide screening accurately enough (real part of
dynamical response) which is especially important for accu-
rate estimation of reactive vdW force. On the other hand, the
dissipative, friction force is more sensitive to the imaginary
part of dynamical response or to the real part of dynamical
conductivity where the Dirac-cone approach is more success-
ful and hence provides better agreement with ab initio friction,
especially for smaller frequencies ω0 (which corresponds to
large separations a), as will be discussed in the next section.

C. Dissipated power—Comparison with
Dirac-cone analytical model

In order to explore how the details of realistic graphene
band structure influence the dissipated power, i.e., what are

the limitations of simple Dirac-cone approximation, here we
compare the results of these two models. Figure 8 shows the
dissipated power in two oscillating unsupported graphenes ob-
tained using ab initio conductivity [(32),(33),(35)] (black solid
line) and Dirac-cone approximation conductivity [(39),(40)]
(red-dashed line). The separations between slabs and oscilla-
tion amplitudes are denoted on the graphs. Both graphenes are
doped such that EF1 = EF2 = 200 meV.

As can be noticed in Fig. 8(a) the dissipated power consists
of peak at 2ωp which comes from the excitation of Dirac
plasmons, and of linear behavior starting at about 200 THz
(800 meV) (emphasized by brown lines) which is the fin-
gerprint of interband π → π∗ excitations. As expected, for
smaller frequencies (ω0 < 100 THz [400 meV]), when low
energy, mostly intraband π∗ → π∗ excitations contribute,
the two models agree perfectly. For frequencies ω0 ≈ 2ωp

(500 meV) the ab initio dissipation is smaller than in the Dirac
cone approach. This is because the ab initio model includes π

and π + σ plasmons, which screen and reduce Dirac plasmon
intensity [33], while conical π band (without band banding
in the K-M direction, as shown in Fig. 3) and absence of σ

bands result that there is no π nor σ plasmons. For larger fre-
quencies ω0 > 2ωp the main dissipation contribution comes
from resonant coupling between Dirac plasmons and π → π∗
excitations. The ab initio dissipation is smoother and mostly
smaller which is probably due to the fact that ab initio Dirac
plasmon is earlier Landau damped (broader) and weaker (due
to mentioned screening mechanisms) than in the Dirac-cone
approximation.

The dissipated power for larger separations a = 50 nm
is shown in Fig. 8(b). Considering that now the modes
with smaller wave vectors Q and thus the Dirac plasmon
with smaller energies contribute the agreement between ab
initio and Dirac-cone approach is better. Moreover, dissi-
pated power calculated using simple Dirac-Drude approxi-
mation (blue dotted line), i.e., using conductivity (39), for
ω0 < 50 THz, shows excellent agreement with the other two
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FIG. 9. Dissipated power in two oscillating unsupported ab initio conductivity [(32),(33),(35)] graphenes (red dashed line) and ab initio
conductivity graphenes deposited on semi-infinite (� → ∞) SiO2 substrates (black solid line). The separations between slabs and oscillation
amplitudes are (a) a = 10 nm, ρ0 = 0.1 nm, (b) a = 50 nm, ρ0 = 0.1 nm, (c) a = 10 nm, ρ0 = 1 nm, and (d) a = 50 nm, ρ0 = 1 nm. Both
graphenes are doped such that EF1 = EF2 = 200 meV.

methods. Drude dissipation shows a stronger peak which
comes from the excitation of undamped Dirac plasmons,
however, after inclusion of interband term (red dashed line)
the plasmon peak is weakened and slightly redshifted. This
is reasonable considering that π → π∗ transitions screen the
Dirac plasmon, i.e., push its dispersion toward lower energies
and reduce its plasmon pole weight.

D. Dissipated power—Substrate dependence

In this section we shall explore how the dissipated power
in two oscillating slabs depends on the conductivity model
we use to describe graphene and how substrate influences
the dissipated power. In order to facilitate the analysis of
the results we shall again use the approximation (42). The
lowest order term which contributes in (12) is f1, and from
Fig. 4 it is obvious that, for x < xcut , the higher order terms
(m = 2, 3, . . .) do not contribute and f1 can be freely approx-
imated by (42) (red dotted line). Furthermore, because the
higher order processes (see Fig. 12) included in (12) weakly

influence the power P it can be calculated using equation (11)
which includes only the lowest order process. Therefore the
formula for the dissipated power can be rewritten as

P = h̄ω0ρ
2
0

4π

∫
Q3dQe−2Qa

×
∫ ω0

0

dω

2π
ImD1(Q,ω)ImD2(Q,ω0 − ω). (44)

This suggests that the dissipated power, within the parameter
space used in this investigation (for x < xcut ), behaves as
P ∼ ρ2

0 . Also Eq. (44) suggests that the resonant condition
(maximum in P ) will occur when the driving frequencies
satisfy the condition

ω0 = n1ωi + n2ωj ; n1, n2 = 1, 2, 3, . . . , (45)

where ωi = ωp, ωT O1, and ωT O2 are the frequencies of hy-
bridized Dirac plasmons and TO phonons, respectively.

Figure 9 shows the dissipated power P (ω0) for two os-
cillating unsupported graphene (no substrate) monolayers
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obtained using ab initio conductivity (32,33,35) (red dashed
line), and also for ab initio graphenes on semi-infinite (� →
∞) SiO2 substrates (black solid line). Both graphene mono-
layers are doped so that EF1 = EF2 = 200 meV. In Fig. 9(a)
the separation between slabs and oscillation amplitude are
a = 10 nm and ρ0 = 0.1 nm, respectively. As already dis-
cussed, P for unsupported graphenes shows a peak at 2ωp

which comes from the resonant coupling between Dirac plas-
mons in two slabs, and for higher frequencies ω0 > 200 THz
it shows linear behavior [emphasized in Fig. 9(a) by cyan
dashed lines] due to the resonant coupling between Dirac
plasmon and interband π → π∗ excitations.

In the presence of the substrate dissipation is additionally
reduced by almost a factor of three. This is because for smaller
separations (a = 10 nm) the modes with higher wave vectors
(e.g., Q ≈ 0.01 a.u.), which is in this case only the Dirac
plasmon, dominantly contribute to P . In this wave-vector
region the Dirac plasmon already has high enough frequency
(ω ≈ 60 THz) that the dynamical part of the substrate screen-
ing is not active and the substrate dielectric function can be
approximated by εS (ω) ≈ ε∞. This causes the reduction of
substrate screened Coulomb interaction ṽQ(ω) = 2

1+εS (ω)vQ

[see Eq. (18)] and then [considering Eq. (23)] reduction of
the plasmon intensity, which finally causes the reduction of
P . Reduction of the screened Coulomb interaction (18) also
causes the reduction of the plasmon frequency which can also
be noted.

Figure 9(b) shows the dissipated power P (ω0) for the same
set of parameters as in Fig. 9(a) except that the separation
between slabs is increased to a = 50 nm. As expected, from
the discussion in Sec. V B, P is reduced by about four orders
of magnitude and plasmon peaks are shifted toward lower
frequencies. The latter is also expected considering that for
larger separations the modes with smaller Q contribute, and
here the Dirac plasmon has lower energy. We can notice
qualitative difference between P in Figs. 9(a) and 9(b) for
the case when substrate is present (black lines). In Fig. 9(b)
P possesses additional structures (two additional peaks at
ωT O1 + ωT O2 and 2ωT O2) which are not present in Fig. 9(a).
This is because for larger a the modes with smaller wave
vectors (e.g., Q ≈ 0.002 a.u.) start contributing to P , and
this is exactly the region where plasmon/phonon hybridization
occurs [as illustrated in Fig. 5(a)], so the additional peaks at
ωT O1 + ωT O2 and 2ωT O2 represent the resonant dissipation to
two phonon modes.

Figures 9(c) and 9(d) show the dissipated power P for the
same parameters as in Figs. 9(a) and 9(b), respectively, except
that the oscillation amplitude is increased to ρ0 = 1 nm. P

in Figs. 9(c) and 9(d) are qualitatively the same and exactly
one hundred times larger than P in Figs. 9(a) and 9(b).
This confirms P ∼ ρ2

0 behavior of the dissipated power with
amplitude as predicted by Eq. (44).

E. Dissipated power—Graphene doping and
distance dependence

In this section we shall explore the dissipated power
for two oscillating slabs for different graphene dopings.
Figure 10(a) shows the dissipated power in two oscillat-
ing graphenes deposited on semi-infinite (� → ∞) SiO2

substrates where the graphene dopings EF1 − EF2 are
0–0 meV (blue thin line), 0–200 meV (red dashed line), and
200–200 meV (black solid line). The separations between
slabs and oscillation amplitude are a = 10 nm and ρ0 =
0.1 nm, respectively.

If both graphenes are doped P shows the plasmon peak
at about 2ωp = 100 THz, and starting at about 200 THz it
increases linearly, which is the consequence of interband π →
π∗ excitations, as already observed in Fig. 9. However, if
one doped graphene is replaced by pristine graphene (EF =
0), which does not support the Dirac plasmon [as shown in
Fig. 5(c)], the Dirac plasmon in doped graphene can no longer
resonantly transfer energy to the Dirac plasmon in another
graphene and P loses the plasmon peak at 2ωp. However,
the visible step remains (at about 75 THz) which is the
consequence of energy transfer between Dirac plasmon in the
doped graphene and π → π∗ excitations in the undoped one.
In this case (small a and larger Q) phonons are still very weak
and do not represent an important dissipation channel. When
both graphenes are pristine the only dissipation comes from
the resonant energy transfer between π → π∗ excitations
in different graphenes, resulting in the strictly linear behavior
of P .

Figure 10(b) shows the dissipated power P for the same
parameters as in Fig. 10(a) except that the separation between
slabs is increased to a = 50 nm. As we have already discussed
in Fig. 9(a), in this case the modes with smaller wave vectors
Q contribute and the dissipated power P gets additional
structures coming from resonant phonon excitations. For the
case EF1 − EF2 = 200–200 meV (black solid line) [coupling
between modes in Fig. 5(a)] the dissipated power shows
three peaks at ωT O1 + ωT O2 ≈ 40 THz, 2ωT O2 ≈ 60 THz,
and 2ωp ≈ 75 THz. For the case EF1 − EF2 = 0–200 meV
(red dashed line) there is a possibility for resonant coupling
between two phonons in the slab with pristine graphene and
three hybridized plasmon/phonon modes in the slab with
doped graphene [coupling between modes in Fig. 5(a) and
modes in Fig. 5(c)]. The three peaks correspond to resonant
couplings at ωT O1 + ωT O2, 2ωT O2, and ωT O2 + ωp, as de-
noted in Fig. 10(b). When both graphenes are pristine, i.e.,
EF1 − EF2 = 0–0 meV (thin solid blue line) the dominant
dissipation channels become the resonant coupling between
phonons in both slabs [coupling between modes in Fig. 5(c)].
The three peaks correspond to resonant couplings at 2ωT O1,
ωT O1 + ωT O2, and 2ωT O2, as denoted in Fig. 10(b). Of course,
in all three cases P shows linear behavior for larger ω0

coming from the resonant π → π∗ excitations in both slabs.
Figures 10(c) and 10(d) show the same as Figs. 10(a) and
10(b), except that the oscillation amplitude is increased to
ρ0 = 1 nm. As in Figs. 9, P is qualitatively similar and
exactly one hundred times larger than P in Figs. 10(a) and
10(b). This again confirms the P ∼ ρ2

0 behavior. This strong
dependence of dissipated power on graphene doping suggests
many opportunities for applications.

There is no simple quantitative agreement between the
dissipated power P for uniform and oscillatory motion. Some
average uniform moving velocity in the oscillatory case can
be estimated as

v = ω0|ρ0|/2π. (46)
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FIG. 10. Dissipated power for two oscillating graphenes deposited on semi-infinite (� → ∞) SiO2 substrates where the graphene dopings
EF1 − EF2 are 0–0 meV (blue thin line), 0–200 meV (red dashed line), and 200–200 meV (black solid line). The separations between slabs
and oscillation amplitudes are (a) a = 10 nm, ρ0 = 0.1 nm, (b) a = 50 nm, ρ0 = 0.1 nm, (c) a = 10 nm, ρ0 = 1 nm, and (d) a = 50 nm,
ρ0 = 1 nm. The graphene response is calculated using full conductivity expression [(32)–(38)].

The mechanisms of electronic mode overlaps in oscillatory
and uniform motion cases are different. For example, for
the oscillatory motion case the mode overlap contribution in
Eq. (11) for the m = 1 case is∫ ω0

0
ImD1(Q, ω)ImD2(Q, ω0 − ω)dω, (47)

and for the uniform motion case, from Eq. (A40) it is∫ Qv

0
ImD1(Q, ω)ImD2(Q, vQ − ω)dω. (48)

Therefore, because of the vQ − ω term in (48) the acoustic
modes [ω(Q) = αQ] will perfectly match for v = 2α provid-
ing a well defined peak in the friction force, such as in the case
of acoustic plasmon in Fig. 10 of Ref. [49]. On the other hand,
because of the ω0 − ω term in (47) the acoustic modes would
match just in one (Q,ω) point, providing a dispersive peak in
friction force. Exactly the opposite is valid for dispersionless
modes, such as TO phonons [ω(Q) = ωT O] where ω0 − ω in
(47) ensures the perfect matching for ω0 = 2ωT O , as seen

in Figs. 9 and 10. Therefore, there exists only qualitative
agreement which says that dissipation will be enhanced if
there is some matching between particular modes, so that, e.g.,
2D plasmon will generate a peak in oscillatory or in linear
friction. However, the peak positions cannot be related simply
by using (46).

VI. CONCLUSIONS

In this paper we have provided a complete theoretical
description of van der Waals and friction forces for two slabs
in relative oscillatory motion which includes variable temper-
atures in two slabs, their dynamical properties, and depen-
dence on characteristic oscillation amplitude and frequency.
In the Appendix we also provide, for comparison, analogous
expressions for the slabs in parallel uniform motion.

We applied this formulation to explore van der Waals and
friction forces between two oscillating slabs, each consisting
of atomically thick crystal (e.g., graphene) adsorbed on a
dielectric substrate (SiO2). We explore dependence of these
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forces on oscillator characteristics such as driving amplitude
ρ0 and frequency ω0, but also on slab separation a, on
graphene doping EF , and on substrate properties. We show
how the spectra of coupled electronic/phononic excitations in
slabs determine the energy transfer processes in this system.

We show that, in general, as the driving frequency ω0

increases the vdW energy first shows an unusual plateau and
then decreases. We propose the idea of controlling the binding
energy between two slabs by tuning the graphene dopings
EFi and the driving frequency ω0. We also found a simple
ρ2

0 dependence of both the vdW force and dissipated power.
It is shown that for smaller frequencies [ω0 < 100 THz

(400 meV)] dissipated power calculated using Dirac-cone
conductivity shows good agreement with the ab initio re-
sults, while for larger frequencies Dirac-cone approximation
overestimates ab initio dissipation. However, in a realistic
graphene (whose dielectric properties are calculated from first
principles) this peak is strongly reduced and redshifted. We
also explain why the substrate substantially reduces dissipated
power peak 2ωp. For larger separations a additional peaks
appear in dissipated power originating from the excitations of
hybridized substrate phonons.

We showed that if one graphene is pristine (EF = 0) it
causes the disappearance of the strong 2ωp peak in the dis-
sipated power. Moreover, for larger separations a the doping
causes shifts, appearance, and disappearance of many peaks
originating from resonant coupling between hybridized elec-
tronic/phononic excitations in graphene/substrate slabs.

Obviously, when present, the Dirac plasmons are the dom-
inant channels through which the energy between slabs can
be transferred, so the studied model system strongly supports
the possibility to control the energy or heat transfer between
the slabs by tuning the graphene doping, e.g., by electrostatic
gating. More radically, for zero doping EF = 0 the energy
transfer can be locked and vice versa. In conclusion, it is
expected that studies of energy transfer processes in the
case of oscillating slabs, based on our complete theoretical
description, will provide a supplementary and more practical
approach as compared to those in parallel uniform motion.
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APPENDIX: GENERAL THEORY—UNIFORMLY
MOVING SLABS

1. Van der Waals energy and force

We shall first derive the van der Waals potential and force
between two inequivalent slabs, described by their response

V

V

S R21

charge fluctuation induced charge

r ,t
1 1 r ,t

2 1

r ,t
3
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z

ρ

FIG. 11. Process in which charge density fluctuation is created in
the left slab and induces a potential in the right slab.

functions R1 and R2, moving with relative parallel velocity
v and separated by a, as can be seen in Fig. 11. In the
following we shall briefly summarize the derivation presented
in Ref. [26], modified to describe the most general case,
i.e., for the slabs with different response functions R1 �= R2

and different temperatures T1 �= T2, including the case of
graphene monolayers deposited on dielectric substrates. In the
diagram in Fig. 11 the density fluctuation S1 in the slab 1
couples to the induced charge described by R2 inside the slab
2, which results in the ground state energy shift:

Ec =
∫ ∞

−∞
dt1

∫
dr

∫
dr1

∫
dr2

∫
dr3S1(r, r1, t, t1)

×V (r, r3)R2(r3, r2, t, t1)V (r2, r1). (A1)

Here V is the Coulomb potential, S1 is the correlation function
of the left slab, and R2 is the response function of the right
slab. We assume that the slab 1 is moving with velocity v so
that the parallel coordinates in S1 are transformed as

ρ − ρ1 → ρ − ρ1 − v(t − t1). (A2)

If we use translational invariance in time and in the parallel
direction and perform the Fourier transform in parallel coor-
dinates we find

Ec =
∫ ∞

−∞
dt1

∫
dQ

(2π )2
e−iQv(t−t1 )

×
∫ ∞

−∞
dzdz1dz2dz3S1(Q, z, z1, t − t1)V (Q, z, z3)

×R2(Q, z3, z2, t − t1)V (Q, z2, z1). (A3)

The Fourier transform in time gives:

Ec =
∫ ∞

−∞

dω

2π

∫
dQ

(2π )2

∫ ∞

−∞
dzdz1dz2dz3S1(Q, z, z1, |ω|)

×V (Q, z, z3)R2(Q, z3, z2, ω
′)V (Q, z2, z1), (A4)

where we have introduced ω′ = ω + Qv. Because the charge
densities in slabs 1 and 2 do not overlap, z integrals in (A4)
contribute only for z3 > z and z2 > z1, so that we can write

V (Q, z, z3) = vQe−Q(z3−z),

V (Q, z2, z1) = vQe−Q(z2−z1 ), (A5)

where vQ = 2πe2

Q
. Also, because the polarizable crystal slabs

are described by nonlocal response functions Ri (Q, ω, z1, z2),
which spread through −� < z1, z2 < 0 and i = 1 or 2, the
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induced dynamically screened Coulomb potential at the point
z > 0 caused by the point charge at point z′ > 0 is

Wind
i (Q, ω, z, z′)

= v2
Qe−Q(z+z′ )

∫ ∞

−∞
eQ(z1+z2 )Ri (Q, ω, z1, z2)dz1dz2.

Surface excitations propagators are defined as [50,51]

Di (Q,ω) = Wind
i (z = 0, z′ = 0)/vQ

= vQ

∫ ∞

−∞
eQ(z1+z2 )Ri (Q,ω, z1, z2)dz1dz2, (A6)

i.e., they are proportional to the Coulomb potential at crystal
surfaces (z = 0) driven by point charge placed at crystal
surface (z′ = 0). Imaginary part of the surface excitation
propagator (A6) contains information about intensities of all
electronic excitations in the crystal, however, due to geomet-
rical reasons the surface excitations are favorized. Therefore,
after using (A6) and the definition of the surface correlation
function

S1(Q, |ω|) = vQ

∫ ∞

−∞
dzdz1e

QzS1(Q, |ω|, z, z1)eQz1 , (A7)

expression (A4) can be written as

Ec =
∫ ∞

−∞

dω

2π

∫
dQ

(2π )2
e−2QaS1(Q, |ω|)ReD2(Q, ω′),

(A8)

where we have used the fact that ImD2(Q, ω) is an odd
function of ω so that this term does not contribute. Moreover,
after using the fluctuation-dissipation theorem which connects
thermal/quantum mechanical charge density fluctuations and
the dissipation, the surface correlation function S (A7) can be
connected with the imaginary part of the surface excitations
propagator D (A6) as

S1(Q, |ω|) = − h̄

π
[2n1(ω) + 1]ImD1(Q, ω), (A9)

where n1(ω) = 1/(eβ1 h̄ω − 1) represents the Bose-Einstein
distribution, β = kBT1, and T1 is the temperature of slab 1.
After using (A9) the expression (A8) becomes

Ec = − h̄

π

∫ ∞

−∞

dω

2π
[2n1(ω) + 1]

∫
dQ

(2π )2
e−2Qa

× ImD1(Q, ω)ReD2(Q, ω′). (A10)

To this we have to add the contribution from the process in
which the charge density fluctuation is created in the slab 2.
Because then slab 2 moves with parallel velocity v relative
to slab 1 this contribution can be obtained from (A10) by
exchanging v → −v and 1 ↔ 2, and the result for the van
der Waals energy is:

Ec = − h̄

π

∫
dQ

(2π )2
e−2Qa

∫ ∞

−∞

dω

2π

×{[2n1(ω) + 1]ImD1(Q, ω)ReD2(Q, ω′)

+ [2n2(ω) + 1]ImD2(Q, ω)ReD1(Q, ω′)}. (A11)

In the lowest approximation we suppose that both layers are
connected to heat baths of constant temperatures T1 and T2,

v

+

+

R  1

R  2

Q

vQ

vQ

vQ

vQ

FIG. 12. Higher order processes.

so that in the thermodynamic equilibrium the physical values
in both slabs narrowly fluctuate about their ‘own’ thermody-
namic averages. These fluctuations couple and if T1 �= T2 it
results in the heat stationary flow or diffusion. Our model does
not include this stationary heat flow. Relative velocity causes
unbalanced electrical field thermal and quantum mechanical
fluctuations in separate slabs which causes ‘work done’ on the
system and departure from the thermodynamic equilibrium.
However, the system adiabatically adapts to those changes and
thermalizes, so that it is never actually out of equilibrium. This
‘work done’ is equal to dissipated energy as will be discussed
in Sec. A 2. Ec given by (A11) includes only the lowest order
processes shown in Fig. 11. If we want to include higher order
processes shown in Fig. 12, we have to replace the interaction
vQ which appears in D1:

vQ → vQ(1 + D2D1e
−2Qa + . . .) = vQ

1 − D2D1e−2Qa

(A12)

and the one which appears in D2:

vQ → vQ(1 + D∗
1D

∗
2e

−2Qa + . . .) = vQ

1 − D∗
1D

∗
2e

−2Qa
.

(A13)

Considering that van der Waals energy represents the ground
state energy shift relative to the ground state energies of two
independent crystal slabs, in the final expression we have to
integrate over the coupling constant λ (the strength of interslab
Coulomb interaction), as described in detail in Ref. [30],
to find

Ec = h̄

∫ 1

0

dλ

λ

∫
dQ

(2π )2
e−2Qa

∫ ∞

−∞

dω

2π
[2n1(ω) + 1]

×
[

λ2ImD1(Q, ω)ReD2(Q, ω′)
|1 − λ2e−2QaD1(Q, ω)D2(Q, ω′)|2 + (1 ↔ 2)

]
.

(A14)
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Notice that (A14) does not change for v → −v. In order to do the λ integration we transform this expression into:

Ec = h̄

∫ 1

0

dλ

λ

∫
dQ

(2π )2

∫ ∞

−∞

dω

2π
[2n1(ω) + 1]

{
ImD1(Q, ω)ReD2(Q, ω′)
Im[D1(Q, ω)D2(Q, ω′)]

Im
λ2e−2QaD1(Q, ω)D2(Q, ω′)

1 − λ2e−2QaD1(Q, ω)D2(Q, ω′)
+ (1 ↔ 2)

}

(A15)

which finally gives the van der Waals energy in the case of
unequal slabs and finite velocity:

Ec(a) = h̄

2

∫
dQ

(2π )2

∫ ∞

−∞

dω

2π
A(Q, ω, ω′), (A16)

where

A(Q, ω, ω′) = [2n1(ω) + 1]A12(Q, ω, ω′) + (1 ↔ 2)
(A17)

and

Aij (Q, ω, ω′) = ImDi (Q, ω)ReDj (Q, ω′)
Im[Di (Q, ω)Dj (Q, ω′)]

× Im ln[1 − e−2QaDi (Q, ω)Dj (Q, ω′)].

(A18)

One can easily derive the limiting cases. For T1 = T2 =
0 2n1(ω) + 1 → sgnω. For v = 0 and ω′ = ω the expression
(A17) becomes (for T = 0):

A(Q, ω = ω′) = Im ln[1 − e−2QaD1(Q, ω)D2(Q, ω)].
(A19)

For v �= 0 but D1 = D2 = D it becomes:

A(Q, ω, ω′) = 2
ImD(Q, ω)ReD(Q, ω′)
Im[D(Q, ω)D(Q, ω′)]

× Im ln[1 − e−2QaD(Q, ω)D(Q, ω′)]. (A20)

From the van der Waals potential Ec(a) we can derive the
perpendicular attractive force F⊥(a) between two moving
slabs:

F⊥(a) = −dEc(a)

da

= h̄

∫
dQ

(2π )2
Qe−2Qa

∫ ∞

−∞

dω

2π
B(Q, ω, ω′), (A21)

where

B(Q, ω, ω′) = [2n1(ω) + 1]B12(Q, ω, ω′) + (1 → 2)

(A22)

and

Bij (Q, ω, ω′) = ImDi (Q, ω)ReDj (Q, ω′)
|1 − e−2QaDi (Q, ω)Dj (Q, ω′)|2 . (A23)

Again for v = 0 and T1 = T2 = 0 the expression (A22)
becomes

B(Q, ω = ω′) = Im[D1(Q, ω)D2(Q, ω)]

|1 − e−2QaD1(Q, ω)D2(Q, ω)|2 , (A24)

and for v �= 0 but D1 = D2 = D it becomes

B(Q, ω, ω′) = 2
ImD(Q, ω)ReD(Q, ω′)

|1 − e−2QaD(Q, ω)D(Q, ω′)|2 . (A25)

We note that for v = 0 our results agree with the previous
ones, but for v �= 0 they differ from those in Refs. [1,14]. The
functions A and B will also appear in the same form in the
expressions for van der Waals potential and force between the
oscillating slabs, but with the different choice for ω′.

We can verify, using spectral representations for ReD’s,
that our results correspond exactly to the well known result
for the van der Waals attraction between two moving or
oscillating objects in the lowest order [29], e.g., for T = 0:

E(2)
c = h̄

2

∫
dQ

(2π )2
e−2Qa

∫ ∞

−∞

dω

2π
sgnω

× [ImD1(Q, ω)ReD2(Q, ω′)

+ ImD2(Q, ω)ReD1(Q, ω′)], (A26)

where ω′ = ω + �ω and �ω = Qv for uniform motion or
�ω = nω0 for an oscillator. The frequency integral can be
rewritten as:∫ ∞

−∞

dω

2π
sgnω[ImD1(Q, ω)ReD2(Q, ω′)

+ ImD2(Q, ω)ReD1(Q, ω′)]

= 4
∫ ∞

0
dωdν

ImD1(Q, ω)ImD2(Q, ν)

ω + ν + �ω
, (A27)

which is exactly the lowest order term in (A16).

2. Dissipated power and friction force

Now we shall calculate the energy dissipated by the two
slabs in parallel uniform motion following the derivation in
Ref. [26]. Suppose that the left slab is moving parallel to the
right one with relative velocity v and that a charge density
fluctuation is spontaneously created in the left slab at the
moment t1 (Fig. 1). Propagating in time between t1 and t

it induces charge density fluctuations in the right slab with
which it can subsequently interact. In such a process the left
slab can be considered as a field source which heats itself, and
in analogy with Eqs. (3) and (4) of Ref. [26], the energy loss
rate operator in this process can be written as

P̂12 =
∫

dr
∫

dr1

∫ ∞

−∞
dt1 ρ̂(r, t )V (r, r3)

⊗ d

dt
D2(r3, r2, t, t1) ⊗ V (r2, r1)ρ̂(r1, t1), (A28)

where D2 is the retarded response function of the right slab
and ρ̂(r, t ) and ρ̂(r, t ) are density operators which represent
quantum mechanical charge density fluctuations created and
annihilated at points (r1, t1) and (r, t ), respectively. Energy
absorption rate in the left slab (driven by the field fluctuations
produced in the same slab but reflected from the right slab)
can be obtained by taking the ground state matrix element of
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S  (ω) D (ω+Qv)1 2

FLUCTUATION EXCITATION

v

(a)

-v

S  (ω) D (ω+Qv)1 2

FLUCTUATION EXCITATION

(b)

ω+Qv
ω

= DISSIPATION!

ω

FIG. 13. Process in which the energy ω + vQ is absorbed in the
left slab (a), and the process in which the energy ω fluctuates between
left and right slabs (b).

Eq. (A28)

P12 = 〈P̂12(t )〉 =
∫

dr
∫

dr1

∫ ∞

−∞
dt1S1(r, r1, t, t1)V (r, r3)

⊗ d

dt
D2(r3, r2, t, t1) ⊗ V (r2, r1), (A29)

where

S1(r, r1, t, t1) = 〈ρ̂(r, t )ρ̂(r1, t1)〉 + 〈ρ̂(r1, t1)ρ̂(r, t )〉
(A30)

is the correlation function of the left slab which represents real
charge density fluctuation. Equation (A29) can be illustrated
by the the Feynman diagram in Fig. 13. We note that in
the inertial system of the right slab the charge density in
the left slab, apart from the fluctuations, has an additional
parallel component of motion, so all parallel coordinates in
the left slab have to be transformed as in (A2). Explicitly, the
correlation function (A30) becomes

S1(r, r1, t, t1) = S1(z, z1, ρ − vt, ρ1 − vt1, t, t1). (A31)

After inserting (A31) into (A29) and the Fourier transforma-
tion in parallel coordinates and in time we get the formula for
energy absorption rate in the left slab per unit surface area

P12 = −ih̄

∫ ∞

−∞
dz

∫ ∞

−∞
dz1

∫
dQ

(2π )2

∫ ∞

−∞

dω

2π

×ω′S1(Q, |ω|, z, z1)V (Q, z, z3)

⊗ D2(Q, ω′, z3, z2) ⊗ V (Q, z2, z1). (A32)

After using the definitions (A5), (A6), and (A7) equation
(A32) can be written as

P12 = −ih̄

∫
dQ

(2π )2

∫ ∞

−∞

dω

2π
e−2QaS1(Q, |ω|)ω′D2(Q, ω′).

(A33)

Using the connection (A9) between the surface correlation
function S and the imaginary part of the surface excitation
propagator D, equation (A33) can be written as

P12 = −ih̄

∫
dQ

(2π )2

∫ ∞

−∞

dω

2π
e−2Qa ω′[2n1(ω) + 1]

× ImD1(Q, ω)D2(Q, ω′). (A34)

Finally, as the imaginary part of surface excitation propagator
(A9) is an odd function of frequency, P12 given by Eq. (A34)

is a real quantity

P12 = h̄

∫
dQ

(2π )2
e−2Qa

∫ ∞

−∞

dω

2π
ω′[2n1(ω) + 1]

× ImD1(Q, ω)ImD2(Q, ω′). (A35)

The Feynman diagram which illustrates equation (A35) is
shown in Fig. 13(a).

We see that if the charge fluctuation is created with the
energy ω it can create excitations in the right slab with
the energy ω′ = ω + vQ. This is expected, namely, ω is the
energy in the inertial system of the left slab, but in the inertial
system of the right slab it is Doppler shifted by vQ.

In (A35) we have calculated the energy absorbed in the
left slab. However, the part of this energy represents the
quantum mechanical fluctuations, i.e., the energy which just
fluctuates between two slabs. We can calculate this part of
the energy which fluctuates between the slabs by going to
the inertial system of the left slab and forgetting for the
moment the right one. Sitting in the inertial system of the
left slab we know that it is in the quantum-mechanical (and
thermodynamical) equilibrium with the environment (in this
case with the right slab). So, the energy just fluctuates between
the left slab and the environment, i.e., the energy which is
given to the environment is exactly equal to the energy which
is received from the environment. This energy which comes
from the environment and is ‘absorbed’ in the left slab can
be calculated using exactly the same ideas as before, except
that now the right slab is moving with the velocity −v and the
left one is at rest. Therefore, following the same procedure
(A28)–(A35) with the response functions of the right slab
transformed as

D2(r, r1, t, t1) = D2(z, z1, ρ + vt, ρ1 + vt1, t, t1), (A36)

we obtain the energy that fluctuates between two slabs

P ′
12 = h̄

∫
dQ

(2π )2
e−2Qa

∫ ∞

−∞

dω

2π
ω [2n1(ω) + 1]

× ImD1(Q, ω)ImD2(Q, ω′). (A37)

The dissipated (heating) power can be calculated by extracting
from P12 this fluctuating component P ′

12

P1 = P12 − P ′
12 = h̄v

∫
dQ

(2π )2
Q e−2Qa

×
∫ ∞

−∞

dω

2π
[2n1(ω) + 1] ImD1(Q, ω)ImD2(Q, ω′).

(A38)

Expression (A38) represents the dissipated power if the charge
fluctuation is spontaneously created in the left slab. However,
the charge fluctuation can also be spontaneously created in
the right slab, then the corresponding dissipated power can be
obtained from (A38) with 1 ↔ 2 and v ↔ −v. Therefore the
total dissipated power can be written as

P = P1 + P2 = h̄v
∫

dQ
(2π )2

Qe−2Qa

∫ ∞

−∞

dω

2π
sgn(ω)

×{[2n1(ω) + 1]ImD1(Q, ω)ImD2(Q, ω′)

+ [2n2(ω) + 1]ImD1(Q, ω′)ImD2(Q, ω)}. (A39)
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This result can be transformed by changing the arguments ω +
vQ → ω and Q → −Q in the second term of (A39) and the
frequency integration becomes

2h̄vQ
∫ ∞

−∞

dω

2π
[n1(ω) − n2(ω + vQ)]

× ImD1(Q, ω)ImD2(Q, ω + vQ).

For T = 0 this reduces to the well known result [26]

2h̄vQ
∫ Qv

0

dω

2π
ImD1(Q, ω)ImD2(Q, vQ − ω). (A40)

As in the case of van der Waals energy in Sec. A 1 the
higher order terms can be included by replacing vQ’s in Di’s
in (A40) by an infinite series [(A12),(A13)], as also shown in
Fig. 12, so that we get

P = 2h̄

∫
dQ

(2π )2
e−2QavQ

∫ ∞

−∞

dω

2π
C(Q, ω, ω′), (A41)

where

C(Q, ω, ω′) = [n1(ω) − n2(ω′)]

× ImD1(Q, ω)ImD2(Q, ω′)
|1 − e−2QaD1(Q, ω)D2(Q, ω′)|2

(A42)

and ω′ = vQ − ω. Dissipated power can be simply related to
the friction force F by P = −Fv, so that

F = −h̄

∫
dQ

(2π )2
e−2QaQ

∫ ∞

−∞

dω

2π
C(Q, ω, ω′). (A43)

Obviously, for v → 0 both P and F vanish. This result agrees
with Pendry’s alternative derivation [1,17].

The above derivation repeats and generalizes some pre-
viously well known results [1,14–18,26]. We should note
that this derivation takes into account not the local but the
full microscopically calculated nonlocal response functions
Ri (Q, ω, z, z′); i = 1, 2. However, its main purpose is to fa-
cilitate the derivation of analogous results for the oscillating
slabs in Sec. II.
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