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Heat transfer statistics in extreme-near-field radiation
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We investigate the full counting statistics of extreme-near-field radiative heat transfer using nonequilibrium
Green’s function formalism. In the extreme near field, the electron-electron interactions between two metallic
bodies dominate the heat transfer process. We start from a general tight-binding electron Hamiltonian and obtain
a Levitov-Lesovik-like scaled cumulant-generating function (SCGF) using random-phase approximation to deal
with electron-electron interaction. The expressions of heat current and its fluctuation (second cumulant) are
obtained from the SCGF. The fluctuation symmetry relation of the SCGF is verified. In the linear response
limit (small-temperature gradient), we express the heat current cumulant by a linear combination of lower-
order cumulants. The heat current fluctuation is 2kBT 2 times the thermal conductance with T being the average
temperature in the linear response limit, and this provides an evaluation of heat current fluctuation by measuring
the thermal conductance in extreme-near-field radiative heat transfer.
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I. INTRODUCTION

Heat transfer between two bodies in the far-field regime
can be well described by Planck’s theory of black-body radia-
tion [1]. During the 1970s, experiments in the near field have
shown that heat transfer becomes much larger than that being
predicted by the Stefan-Boltzmann law with gap sizes smaller
than Wien’s wavelength [2,3]. Polder and van Hove (PvH)
[4] pioneered to give a theoretical description of near-field
radiation using Rytov’s formulation of fluctuating electrody-
namics [5–7]. In the PvH theory, the contributions of heat
transfer are mainly from evanescent modes which vanish in
the far field. Experimentalists have reduced the gap sizes from
orders of 1 μm [8–10] to several tens of nanometers, resulting
in heat transfer enhancement from several folds to thou-
sands of folds compared to the corresponding far-field results
[11–17]. And these experimental results can be well predicted
by fluctuating electrodynamics. Researchers now can reduce
gap sizes to within a few nanometers [18–24] or even down
to a few Ångströms [23,24] and study the extreme-near-field
radiative heat transfer (eNFRHT). In this extreme near field,
the propagating field represented by the vector potential is
not important and heat transfer is dominated by the scalar
potential, i.e., the instantaneous Coulomb interaction. There
have been several works on this [25–31], including using the
formalism of the nonequilibrium Green’s function (NEGF) to
deal with heat radiation mediated by electron-electron interac-
tion [27–31] or dipole-dipole interaction [23,32]. Analytical
results for near-field heat radiation beyond the dipolar effects
have also been presented [33,34].

Electronic current fluctuations in mesoscopic conductors
have received intensive investigations and are very important
in characterizing the correlations in quantum transport [35]. In
order to fully characterize a quantum transport process, people
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usually employ the formalism of full counting statistics (FCS),
which yields not only average current and current fluctuation
(the second cumulant) but also the higher-order cumulants
[36–58]. FCS for heat and electronic transport in mesoscopic
conductors has many applications. For example, entanglement
entropy can be accessed by series of the charge cumulants
[59,60]. Gallavotti-Cohen symmetry of the generating func-
tion in FCS can reveal the symmetry of a nonequilibrium
system and can gives the fluctuation theorem of a physical
quantity [61–65]. Analogously, due to both thermal and quan-
tum fluctuations, radiative heat transfer between two bodies is
stochastic in nature and subject to fluctuations as well. The
fluctuation of the heat flux of black-body radiation in the
far-field regime was studied by Einstein in 1909 [66], and
the fluctuation theorem of black-body radiation has also been
recently reported [67]. In the near-field regime, fluctuations
of radiative heat transfer have been investigated using the
fluctuating electrodynamics [68]. A FCS investigation of near-
field heat transfer has yet to be undertaken, and when it is, then
the lacuna shall be filled.

In this work, we investigate the heat transfer statistics in
the extreme near field dominated by the electron-electron
interaction between two metallic bodies. Since obtaining the
generating function using the NEGF for heat conduction has
been extensively reported [46–49,57,58], we adopt the NEGF
formalism which has been used to study the heat current in
near-field heat radiation [27–30] to study FCS. The formalism
of the NEGF can also give an atomistic description of a sys-
tem. We start from a general tight-binding Hamiltonian in the
presence of Coulomb interaction and obtain the partition func-
tion using a path integral in the time domain. Random-phase
approximation (RPA) is employed in order to deal with the
Coulomb interaction. By introducing a counting parameter,
we obtain the modified Hamiltonian together with the mod-
ified evolution operator. The generating function is obtained
by involving the partition function with the counting field
and then the normalization condition. The scaled cumulant-
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FIG. 1. Model for extreme-near-field radiative heat transfer
between two vacuum-gapped semi-infinite sides meditated by
Coulomb interaction.

generating function (SCGF) is expressed in the energy domain
and is reminiscent of Levitov-Lesovik’s formula [36–38].
From the SCGF, one can get the average heat current, the
fluctuations, and even higher-order cumulants. The fluctuation
symmetry in the heat radiation system is verified, and one
can also relate the heat current fluctuation with the thermal
conductance in the linear response limit. In the Sec. III, using
a simple two-dot model, we show the relative difference of the
current fluctuation evaluated in the linear response limit and
its corresponding value at finite temperature differences and
gap distances.

II. THEORETICAL FORMALISM

A. Model and Hamiltonian

For the extreme-near-field radiative heat transfer system,
we consider two parallel aligned cubic lattices described by
a tight-binding Hamiltonian (see Fig. 1). The two sides are
maintained local thermal equilibria with different tempera-
tures, and they exchange heat through the vacuum gap with
distance d via electron-electron interaction. The roughness of
the surfaces can also be taken take care of here, since the
formalism presented below is atomistic.

One can partition the system Hamiltonian as

H = H0L + H0R + VL + VR + VLR, (1)

where

H0α =
∑

m∈α,n∈α

c†mhmncn, (2)

Vα = e2
0

2

∑
m∈α,n∈α

c†mcmvmnc
†
ncn, (3)

VLR = e2
0

∑
m∈L,n∈R

c†mcmvmnc
†
ncn, (4)

with α = L(R) representing the left (right) side and e0 the
elementary charge. H0α is the noninteracting Hamiltonian and
Vα is the Coulomb interaction in side α. VLR is the Coulomb
interaction between the electrons on the left side and the right
side. The front coefficient 1/2 in Vα is to avoid the double
counting. c

(†)
m are the annihilation (creation) operators on the

left side or the right side. hmn is the on-site energy for m = n

and the hopping constant for m �= n. The Hamiltonian can

also be written in a compact form,

H =
∑
mn

c†mhmncn + e2
0

2

∑
mn

c†mcmvmnc
†
ncn. (5)

Throughout this work, the left side is set warmer than the right
side so that TL > TR with �T = TL − TR .

B. Partition function

We assume that the Coulomb interaction between the
left side and the right side is absent at time t = 0, so that
the initial density matrix of the whole system at t = 0 is
the direct product of each subsystem and is expressed as
ρ(0) = ρL ⊗ ρR . After time t = 0, the interaction between
the left side and the right side is turned on and the system
evolves to time t under the evolution operator U (t, 0) =
T exp [ − i

∫ t

0 H (t ′)dt ′/h̄], where T is the time ordering op-
erator on the Keldsyh contour. Since we let t go into infinity
and consider the steady state of heat transfer between two
bodies, the initial system state does not influence any steady-
state physical quantities. The partition function of the whole
system without any source field or counting field is written
as Z(t ) = Tr[ρ(0)U †(t, 0)U (t, 0)]/Trρ(0) and is exactly 1.
In the next subsection, the generating function is obtained by
considering the counting field in the partition function. Using
a path integral on the Keldysh contour, the partition function
can be expressed as [69]

Z(t ) = 1

Trρ(0)

∫
D[φ̄φ] exp[iS0 + iSint], (6)

with S0 representing the action of the free electron lattice,

S0 =
∫

C

dτ
∑
mn

φ̄mG−1
mnφn, (7)

and Sint representing the Coulomb interaction,

Sint = −e2
0

2

∫
C

dτ
∑
mn

φ̄mφmvmnφ̄nφn. (8)

In the above expressions, φ̄m and φm are the fermionic Grass-
mann variables, and G−1 is the inverse electronic Green’s
function [69]. We have set h̄ to 1. The integration is over the
Keldysh contour C. From now on, the time on the Keldysh
contour is denoted as Greek letters, and real time is denoted
using Latin letters.

Performing the Hubbard-Stratonovich transformation
[69,70] by introducing the real scalar field �m, one can
reduce the four-particle interaction exactly in terms of an
effective electron-photon interaction that is expressed as

exp(iSint ) =
∫

D[�] exp

{
i

∫
C

dτ

[
1

2

∑
mn

�m

(
v−1

e2
0

)
mn

�n

−
∑
m

�mφ̄mφm

]}
, (9)

where v−1 is the inverse Coulomb interaction matrix.
The integration measure

∫
D[�] is normalized such that∫

D[�] exp {i ∫
C

dτ 1
2�(v−1/e2

0 )�} = 1. The partition func-
tion Z(t ) could be further simplified by integrating out the
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fermionic Grassmann variables with the following relation,∫
D

[
φ̄φ

]
exp

[
i

∫
C

dτ
∑
mn

φ̄mG−1
mnφn − i

∑
m

�mφ̄mφm

]
= det(−iG−1 + i�), (10)

where � = diag[�+,−�−] is diagonal in the Keldysh, time
and the lattice space. Using det M = exp[Tr ln M], the parti-
tion function Z has the form

Z �
∫

D[�] exp

{
i

∫
C

dτTr

[
1

2
�

(
v−1

e2
0

)
�

− i ln(1 − G�)

]}
, (11)

where some front coefficients are ignored at this moment
and are taken into consideration by using the normalization
condition of the generating function when discussing FCS
in the next subsection. Using the relations Tr ln(1 − M ) =
−∑

j=1 Mj/j and Tr(G�) = 0 from the fact G++
mn (t1, t1) =

G−−
mn (t1, t1) [69], one can perform RPA, i.e., expanding the

partition function to the second order of the scalar field, and
obtain

Z �
∫

D[�] exp

{
i

2

∫
C

dτ Tr

[
�

(
v−1

e2
0

)
�+i(G�G�)

]}
.

(12)

Owing to the fact that � is diagonal, we have

Tr(G�G�) = Tr

[
�

(
G++G++ G+−G−+
G−+G+− G−−G−−

)
�

]
. (13)

Then we can rewrite the partition function in the form

Z �
∫

D[�] exp

{
i

2

∫
C

dτ Tr

[
�

(
v−1

e2
0

)
� − ���

]}
,

(14)

by introducing the photon self-energy �. Keldysh compo-
nents of the photon self-energy have the expressions

�ab
mn(t1, t2) = −ie2

0G
ab
mn(t1 − t2)Gba

nm(t2 − t1), (15)

with a = − and +, b = − and +, and m and n belonging to
the same side. We also adopt the commonly used notations
�< and �> to denote the lesser and greater photon self-
energies with the identities �< ≡ �+− and �> ≡ �−+.

Finally, by integrating out the real scalar field, we get the
partition function in the form of a Fredholm determinant in
the time domain:

Z(t ) � 1√
det(v−1 − �)

=
{

det

[(
vL vLR

vRL vR

)−1

−
(

�L 0
0 �R

)]}−1/2

,

(16)

where the determinant is over both the contour time and
the lattice space. In the above formula, vα is the Coulomb
interaction on the same side, and vLR = vRL is the Coulomb
interaction between the left side and the right side. The

Dyson equation of the photon Green’s function is expressed
as D−1 = v−1 − � or(

DLL DLR

DRL DRR

)−1

=
(

vL vLR

vRL vR

)−1

−
(

�L 0
0 �R

)
. (17)

The Dyson equation in this form holds in both time and energy
space.

C. Full counting statistics

The statistical behaviors of the heat transfer on a specific
side are all encoded in the probability distribution P (�ε, t ) of
the transferred energy �ε = εt − ε0 between an initial time
t = 0 and time t . The generating function Z (λ, t ) with the
counting field λ is defined as

Z (λ, t ) ≡ 〈eiλ�ε〉 =
∫

P (�ε, t )eiλ�εd�ε. (18)

To investigate statistical behaviors of the transferred energy
from the left side, we could focus on the energy operator
which is actually the free Hamiltonian H0L. Under the two-
time measurement scheme [43,71], the generating function of
transferred energy can be expressed over the Keldysh contour
as [43,48,49,51]

Z (λ, t ) = Tr

{
ρ(0)TC exp

[
− i

h̄

∫
C

Hγ (t ′)dt ′
]}/

Trρ(0)

= Tr{ρ(0)U †
λ/2(t, 0)U−λ/2(t, 0)}/Trρ(0), (19)

with the modified evolution operator

Uγ (t, 0) = T exp

[
− i

h̄

∫ t

0
Hγ (t ′)dt ′

]
, (20)

where γ = −λ/2 on the forward contour branch and γ = λ/2
on the backward contour branch. Here the modified evolution
operator is expressed by the modified Hamiltonian

Hγ = eiγH0LHe−iγH0L = H̃0L + H0R + ṼL + VR + ṼLR.

(21)

The tilde over the Hamiltonians means that the annihila-
tion (creation) operators c

(†)
m on the left side in Eqs. (2)–(4)

are replaced with c
(†)
m (tγ ), with tγ = h̄γ , and cm(tγ ) =

eiγH0Lcme−iγH0L for m ∈ L. This replacement only affects
the electronic Green’s function on the left side with a time
shift for lesser and greater components in the partition
function, which means Gab

mn(t1 − t2) → Gab
mn(t1 − t2 − (a −

b)λ/2), with m, n ∈ L.
Considering the counting field and the normalization con-

dition, we arrive at the generating function being expressed
as

Z (t ) =
√

det(v−1 − �)√
det(v−1 − �̃)

, (22)

with the transformed photon self-energy on the left side being
expressed as

�̃ab
mn(t1, t2) = − ie2

0G
ab
mn

(
t1 − t2 − (a − b)

λ

2

)
× Gba

nm

(
t2 − t1 − (b − a)

λ

2

)
, (23)
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for m, n ∈ L. The photon self-energy on the right side remains
unchanged. By using the Dyson equation, Eq. (17), and defin-
ing �̄ = (�̃ − �), we have

Z (t ) = 1√
det[1 − DLL�̄L]

. (24)

By letting λ = 0, we get a vanishing �̄ and can verify the
normalization condition of the generating function. In the long
time limit, we can Fourier transform Eq. (24) into the energy
domain with the form

lim
t→∞ lnZ (t ) = − t

2

∫
dω

2π
Tr ln[1 − DLL�̄L]. (25)

The Keldysh space dimension can be eliminated by writing
the term Tr ln(1 − M ) as ln det(1 − M ) and then using the
identity (assume A is invertible)

det

(
A B

C D

)
= det A det(D − CA−1B ). (26)

The SCGF F (λ) = limt→∞ lnZ (t )/t is expressed as

F (λ) = − 1

2

∫
dω

2π
Tr ln

[
1 − Dr

LR�<
RDa

RL�̄>
L

− Dr
LR�>

RDa
RL�̄<

L

]
, (27)

with �̄
</>

L = �̃
</>

L − �
</>

L .
The Fourier transformation of Eq. (23) enables us to ob-

tain the expression of transformed self-energy in the energy
domain as

�̃ab
mn(ω) = −ie2

0

∫
dE

2π
Gab

mn(E)Gba
nm(E − h̄ω)ei(a−b)λh̄ω/2,

(28)

where E is the unit of energy and ω is the angular fre-
quency. In the local equilibrium approximation, the electrons
are maintained in an equilibrium state, so that G<

mn(E) =
iAmn(E)fα (E) and G>

mn(E) = iAmn(E)[fα (E) − 1], with
the electronic spectral function Amn(E) = −2Im[Gr

mn(E)]
and m, n ∈ α. Using the relation fα (E)[fα (E − h̄ω) − 1] =
Nα (ω)[fα (E) − fα (E − h̄ω)] with the Bose-Einstein dis-
tribution Nα (ω) = 1/[eβα h̄ω − 1] at the temperature Tα =
1/(kBβα ), one has

�<
mn(ω) = −iNα (ω)A�mn(ω), (29)

with

A�mn(ω) = e2
0

∫
dE

2π
[fα (E)

− fα (E − h̄ω)]Amn(E)Anm(E − h̄ω). (30)

Then the lesser and greater photon self-energies can be written
as

�<
α (ω) = Nα (ω)

[
�r

α (ω) − �a
α (ω)

] = 2iNα (ω)Im
[
�r

α (ω)
]
,

(31)

�>
α (ω) = [Nα (ω) + 1]

[
�r

α (ω) − �a
α (ω)

]
. (32)

From Eqs. (29)–(31), the retarded photon self-energy is ob-
tained with the form

�r
mn(ω) = − ie2

0

∫
dE

2π

[
Gr

mn(E)G<
nm(E − h̄ω)

+ G<
mn(E)Ga

nm(E − h̄ω)
]
. (33)

We finally arrive at the expression of the SCGF as

F (λ) = −
∫ ∞

0

dω

2π
ln(1 − T (ω){(eiλh̄ω − 1)NL(ω)

× [1 + NR (ω)]+(e−iλh̄ω−1)NR (ω)[1+NL(ω)]}),

(34)

where the transmission coefficient is

T (ω) = 4Tr
{
Dr

LR (ω)Im
[
�r

R (ω)
]
Da

RL(ω)Im
[
�r

L(ω)
]}

. (35)

The SCGF is reminiscent of Levitov-Lesovik’s formula for
electronic transport [36–38]. The front coefficient 1/2 in
Eq. (27) is missing in Eq. (34), because the contributions from
the positive and negative angular frequencies are the same for
the heat current.

The kth cumulant of the heat current 〈〈I k
h 〉〉 could be

calculated by taking the kth derivative of the SCGF, which
is F (λ) with respect to iλ,〈〈

I k
h

〉〉 = ∂kF (λ)

∂ (iλ)k

∣∣∣∣
λ=0

. (36)

The heat current (the first cumulant) bears a Caroli form
[27–31],

Ih =
∫ ∞

0

dω

2π
h̄ωT (ω)[NL(ω) − NR (ω)]. (37)

The heat current fluctuation (the second cumulant) has the
following expression,〈〈

I 2
h

〉〉 =
∫ ∞

0

dω

2π
(h̄ω)2{T [NL(1 + NR ) + NR (1 + NL)]

+ T 2[NL − NR]2}. (38)

Applying the relation NR (1 + NL) = exp(�βh̄ω)NL(1 +
NR ), with �β = βL − βR , in Eq. (34), we can verify the
following fluctuation symmetry relation,

F (λ) = F (−λ − i�β ). (39)

This symmetry relation has already been derived for heat
transfer through conductors [57,58,62,63], and it is now
verified for eNFRHT where heat transfer through a gap is
mediated by Coulomb interaction in the RPA level. This sym-
metry implies that the backward probability of the transferred
energy −�ε from the cold right side to the hot left side is
exponentially suppressed with respect to the forward one with
the detailed balance relation (also called Gallavotti-Cohen
symmetry [72,73])

P (−�ε)

P (�ε)
= exp [(βL − βR )�ε], (40)

which also implies that∫
d�εP (�ε) =

∫
d�εP (−�ε)e−�β�ε ≡ 〈e−�β�ε〉 = 1.

(41)
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The above equality, Eq. (40), also holds in black-body radia-
tion in the far field [67].

Now we consider the universal relations for heat current
cumulants under a small temperature gradient which is in
analogy with the universal relation for particle current cu-
mulants [40,41]. In the linear response regime �β → 0, the
total derivative of F (−λ − i�β ) with respect to �β has the
following expansion,

dkF (−λ − i�β,�β )

d�βk

∣∣∣∣
λ=0

=
k∑

j=0

(
k

j

)
∂kF (iλ,�β )

∂�βk−j ∂ (iλ)j

∣∣∣∣
λ=0

,

(42)

where we have written the dependence of �β of the SCGF
explicitly out on both sides. Since F (λ = 0,�β ) = 0, the
left-hand side of Eq. (42) vanishes due to Eq. (39). The last
term in the summation of Eq. (42) is the kth derivative of
the SCGF with respect to the counting field iλ, which is
actually 〈〈I k

h 〉〉 in the linear response limit. Then we have the
relation 〈〈

I k
h

〉〉
l
= −

k−1∑
j=1

(
k

j

)
∂k−j

〈〈
I

j

h

〉〉
l

∂�βk−j
, (43)

in which the heat current cumulant is expressed by a linear
combination of lower-order heat current cumulants. Here, we
have added the subscript “l” in 〈〈I k

h 〉〉 to distinguish it from
the one calculated from Eq. (36). By specifying k = 2, we can
relate the heat current fluctuation with the heat current through
〈〈I 2

h 〉〉l = −2∂Ih/∂�β, which leads to〈〈
I 2
h

〉〉
l
= 2kBT 2Gh, (44)

where the average temperature T = (TL + TR )/2 and the
thermal conductance Gh ≡ ∂Ih/∂�T , with �T = TL − TR .

III. NUMERICAL CALCULATION

Current fluctuation in an electron transport system is more
difficult to experimentally measure compared to the mean cur-
rent. It is expected that the heat current fluctuation is difficult
to measure as well. The linear response relation, Eq. (44),
provides us an evaluation of heat current fluctuations using
heat conductance. Since the relation of Eq. (44) is obtained
in the linear response limit, the actual heat current fluctuation
should deviate from the one evaluated in Eq. (38) beyond the
linear response limit. To quantify the deviation, we introduce
the relative difference for the heat current fluctuation:

dr = ∣∣〈〈I 2
h

〉〉 − 〈〈
I 2
h

〉〉
l

∣∣/〈〈
I 2
h

〉〉
. (45)

For a general problem of near-field radiation between metal
objects at a distance of order nanometers, one can use the
recursive Green’s function method to get the retarded Green’s
function in the absence of Coulomb interaction [74,75].
For the situation of an infinitely large surface, the periodic
boundary condition can be used so that one can work in the
momentum space. Having obtained the Green’s functions,
the photon self-energies can be obtained through convolution
from Eqs. (31)–(33). The photon Green’s function can be
found through matrix inversion indicated by Eq. (17). To get
the electron density of states in one of the surfaces more

accurately, the Fock self-energies are incorporated in the non-
interacting retarded Green’s function [29]. Since the Thomas-
Fermi screening length in metals is usually a few lattice
spacings, three to five layers are enough for convergency [30].
More calculation details can be found in Refs. [29,30].

For simplicity, we consider a nano-sized capacitor consist-
ing of two quantum dots [27], and each plate can host a charge
of 0 or −Q. The retarded photon self-energy is calculated as

�r
α (ω) = − iQ2

∫
dE

2π

[
Gr

α (E)G<
α (E − h̄ω)

+ G<
α (E)Ga

α (E − h̄ω)
]
, (46)

where

Gr
α (E) = [

Ga
α (E)

]∗ = 1/
[
E − εα − �r

α (E)
]
,

(47)
G<

α (E) = −fα (E)
[
Gr

α (E) − Ga
α (E)

]
,

with the Fermi distribution function fα (E) = 1/{exp[(E −
μα )/(kBTα )] + 1} at temperature Tα and chemical potential
μα . The self-energies due to electron reservoirs are cho-
sen to follow the Lorentz-Drude model [76] with �r

α (E) =
1
2�α/(i + E/Eα ), where �α and Eα are electron reservoir

FIG. 2. (a) Heat current, (b) thermal conductance, (c) heat cur-
rent fluctuation, and (d) the relative difference for heat current
fluctuation versus the gap distance for different temperature gradients
�T with TR = 300 K. In panel (c), the exact heat current fluctuations
and the ones in the linear response limit are plotted using solid
and dashed lines, respectively. We set the chemical potentials of
the electron reservoirs on both sides as μL = μR = 0, and we set
the quantum dot levels as εL = εR = 0. Other electron reservoir
constants are �L = 1 eV, �R = 0.5 eV, EL = 2 eV, and ER = 1 eV.
The areas of both plates are chosen as A = 389.4 nm2 to be close to
the experimental value [23], and Q = 1.5e0.
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FIG. 3. (a) Heat current, (b) thermal conductance, (c) heat cur-
rent fluctuation, and (d) the relative difference for heat current
fluctuation versus the gap distance by varying TR with �T = 100 K.
Heat current fluctuations in the linear response limit are plotted in
dashed lines in panel (c). Other parameters are the same as those in
Fig. 2.

constants. The Coulomb interaction matrix for the capacitor
is [30]

v−1 =
(

C −C

−C C

)
, (48)

where the capacitance of the parallel plate is C = ε0A/d, with
A being the plate area and ε0 being the vacuum dielectric
constant. The photon retarded Green’s function Dr

LR is then
obtained from the Dyson equation, Eq. (17), with the form
[27]

Dr
LR = (

Da
RL

)∗ = [
�r

L�r
R/C − (

�r
L + �r

R

)]−1
. (49)

Heat current and fluctuation is calculated from Eqs. (37)
and (38), respectively. Thermal conductance is obtained by
numerically differentiating the heat current.

We plot the heat current, the thermal conductance, the heat
current fluctuation, and the relative difference for the heat
current fluctuation versus the vacuum gap distance by varying
temperature gradient �T in Fig. 2 and by varying TR in Fig. 3.
In Figs. 2(c) and 3(c), the exact heat current fluctuations
and the ones in the linear response limit are plotted using
solid and dashed lines, respectively. A nondivergent heat
current is found with d → 0. The 1/d2 divergence at short
distance is the result of using a local dielectric function in
the framework of fluctuating electrodynamics [19,77]. Since
in our approach, we do not use such an approximation, the
heat current is found to be convergent at zero distances.
Figures 2(b) and 3(b) demonstrate the behaviors of thermal
conductance with respect to temperatures, i.e., that thermal
conductance increases with increasing temperature gradient
or average temperature. One can clearly see that the relative
differences dr increase with increasing temperature gradients.
The linear response approximation, Eq. (44), becomes less
accurate with decreasing average temperature, as shown in
Fig. 3(d). One can see from Figs. 2(d) and 3(d) that the relative
difference is not sensitive to the vacuum gap distance.

IV. CONCLUSION

In this work, using the nonequilibrium Green’s function
formalism, we have obtained the scaled cumulant-generating
function (SCGF) of the heat transfer in the extreme-near-
field radiation. Random-phase approximation has been used in
dealing with the electron-electron interaction which meditates
the heat exchange between two bodies. We have verified the
fluctuation symmetry of the SCGF and demonstrated that the
probability for energy flown from the cold side to the hot
side is exponentially suppressed. Both heat current and its
fluctuations are obtained from the SCGF, and the heat current
is in a Caroli form. The heat current cumulant is shown to be
expressed by a linear combination of lower-order cumulants
in the linear response limit. A specific case of this is that heat
current fluctuation is proportional to thermal conductance in
the linear response limit. We numerically show the deviations
of fluctuations evaluated in the linear response limit from its
value. The evaluation of fluctuation from thermal conductance
becomes poorer with larger temperature gradients and lower
average temperatures, and the relative difference is not sensi-
tive to the gap distance.
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