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Quantum transport through pairs of edge states of opposite chirality
at electric and magnetic boundaries
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We theoretically investigate electrical transport in a two-dimensional electron system hosting bulk and edge
current carrying states. Spatially varying magnetic and electric confinement creates pairs of current carrying
lines that drift in the same or opposite directions depending on whether confinement is applied by a magnetic
split gate or a magnetic strip gate. We study the electronic structure through calculations of the local density of
states and conductivity of the channel as a function of the chirality and wave-function overlap of these states. We
demonstrate a shift of the conductivity peaks to high or low magnetic field depending on the chirality of pairs of
edge states and the effect of chirality on backscattering amplitude associated with collisional processes.
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I. INTRODUCTION

In a spatially modulated transverse magnetic field, elec-
trons acquire guiding center drift velocity due to the mag-
netic field gradient even in the absence of an electric field
[1–6]. This strongly modifies the quantum transport of two-
dimensional electron gas (2DEG) due to the formation of
chiral current carrying states in the otherwise insulating bulk
of a quantum Hall system [7]. However, compared to the
prototype quantum Hall system in a uniform magnetic field
[8,9], the magnetically modulated quantum Hall system has
received much less attention. There have been interesting
experimental developments through the observation of an
asymmetric magnetoconductance peak in a quantum wire
[10], a resistance resonance effect due to magnetic edge
states [11,12], magnetoresistance oscillations as a result of
the commensurability effect [13–16], giant magnetoresistance
[17–21], and transport assisted by snake orbits [22–24]. The
properties of graphene in a nonuniform magnetic field have
also attracted attention [25–36]. In a recent work, a magne-
toresistance anomaly has been observed in a quantum Hall
system due to the controlled interference between magnetic
edge states and conventional electrostatic edge states [37].

In this paper, we theoretically investigate two representa-
tive hybrid ferromagnetic-semiconductor structures in which
magnetic and electrostatic edge states propagate parallel or
antiparallel to one another. These edge states propagate in
the same direction under a magnetic split gate whereas they
propagate in opposite directions under a bar magnet. We
emphasize on the differences of the electronic band structure
of the two devices through local density of states (LDOS)
and density of states (DOS) calculations. Our calculations are
based on energy levels and wave functions calculated in re-
alistic magnetic potentials. Further, we calculate the bulk and
edge transport properties understanding the different contri-
butions of co-propagating and counterpropagating states. Our
findings demonstrate hybrid structures as a unique laboratory
for studying the interactions of low-dimensional phases in the
bulk and the edges of quantum-Hall-like systems.

Using an electrostatic gate to gradually deplete the sample
edges, we are able to control the overlap between the wave
functions of electrostatic and magnetic edge states. We find
that when edge states are far apart the quantum transport is
quasiadiabatic (full suppression of interedge channel scatter-
ing [38]). The amplitude of magnetoresistance oscillations
is independent of the magnetic potential. As edge state overlap
increases, the edge states that drift in opposite directions
give magnetoresistance oscillations that rapidly increase in
amplitude. In contrast, no change is observed when edge
states drift in the same direction. This leads us to conclude
that backscattering between counterpropagating edge states
enhances the collisional conductivity of the strip gate de-
vice whereas elastic scattering between edge states drifting
forward shows little change in conductivity in the magnetic
split gate. Hence we predict that transport measurements
can evidence the chiral/nonchiral nature of one-dimensional
localized edge states.

Accordingly, the rest of the paper is arranged as follows.
In Sec. II, we model the electronic structure of the magnetic
split and strip gate and the methodology to solve the Hamil-
tonian. The local density of states and density of states was
calculated to compare the electronic structure of both devices.
We discuss the effects of lateral confinement on the LDOS and
DOS. In Sec. III, we compute the conductivity tensor within
the quantum Boltzmann equation and model the effect of
edge state chirality on the disorder conductivity. We describe
the resistivity in both magnetic split and strip gate for the
decreasing values of lateral confinement.

II. ELECTRONIC STRUCTURE OF THE SPLIT
AND STRIP GATES

A. Model Hamiltonian

We consider a 2DEG modulated by a perpendicular mag-
netic field in two different ways as depicted in Fig. 1. By using
a magnetic split gate or a magnetic strip gate, two magnetic
modulations can be produced which have inverted profiles.
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FIG. 1. Schematic diagram of the quantum Hall devices: (a)
magnetic split gate and (b) magnetic strip gate. The stray magnetic
field originating from the magnetic gate modulates the 2DEG. Green
and yellow slabs represent the ferromagnetic and normal metal gate.
The approximate position and drift direction of edge states is shown
by the arrows (red color). The electrical width of the 2D channel We

is controlled by the gate voltage Vg . The depletion region underneath
the gate is shown by the light brown line. Bpeak

m is the peak value of
the modulated magnetic field.

A bias voltage is applied to the split magnetic gate in Fig. 1(a)
and to the normal metal gate sandwiching the ferromagnetic
gate in Fig. 1(b) to deplete the 2DEG underneath. Through
the combination of electrostatic and magnetic potentials, both
systems confine electrostatic and magnetic edge states (red
arrows). In the magnetic split gate (a), electrostatic and mag-
netic edge states always drift in the same direction. In the
magnetic strip gate (b), the inverted magnetic field gradient
causes the magnetic edge states to drift in the opposite direc-
tion to the electrostatic edge states. Therefore in this system
it is important to study both edge versus bulk conduction and
conduction via chiral versus nonchiral pairs of edge states. We
write the total magnetic field as

B(y) = B��/��
m (y) + Ba, (1)

where B
��/��
m and Ba are the modulated and uniform magnetic

field. �� / �� refers to the co-propagating (split gate) or coun-
terpropagating edge states (strip gate) as plotted in Fig. 2:

B��
m (y) = −μ0Ms

2π
[f +

0 (y) − f −
0 (y) − f +

h (y) + f −
h (y)],

B��
m (y) = μ0Ms

2π
[f +

0 (y) − f −
0 (y) − f +

h (y) + f −
h (y)],

(2)

FIG. 2. Semiclassical picture of edge states in the magnetic split
(a) and strip (b) gate for μ0Ms = 2.90 T and Ba = 2 T. mes and
ees are the classical orbits of magnetic and electrostatic edge states.
Modulation magnetic field is shown by the black curve. mes and ees
are drifting in the same direction (co-propagating edge states) in the
magnetic split gate while they drift in opposite direction (counter-
propagating edge states) in the strip gate.
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FIG. 3. LDOS of the lowest energy energy level at Ba = 3T for (a) zero magnetic modulation, (b) magnetic split, and (c) magnetic strip
gate. LDOS replicates the magnetic field profile for nonzero modulation, whereas it does not show any variation for zero modulation. The
arrow indicates the drifting direction of edge states.

where f ±
z={0,h}(y) = atan( y±d/2

z0+z ). We define h as the thickness

of the magnet, d is the distance between the two magnets
(split gate) or the width of the magnet (strip gate), z0 is the
depth of the 2DEG, and μ0Ms is the saturation magnetization.
As a representative case, we choose some experimentally
realizable values as d = 200 nm, h = 80 nm, z0 = 30 nm, and
μ0Ms = 2.90 T (Dy) [37]. The peak value of the modulated
magnetic field [green curve in Figs. 1(a) and 1(b)] is estimated
from Eq. (2) and found to be B

peak
m = 0.65 T for both devices

as can be obtained from dysprosium magnets.
The distance between lines of zero magnetic field where

the magnetic modulation changes sign is defined as Wm. From
the modulated magnetic field profile (Fig. 2), Wm can be
calculated as 274 nm. This system has a finite magnetic field
gradient centered at y ≈ ±Wm/2. The gate voltage induces an
electrostatic potential to the system resulting in the depletion
of 2DEG. We model the electrostatic potential as a square well
potential of width We:

V (y) =
{
V0 = 700 meV, for |y| ≥ We

0, for|y| ≤ We
. (3)

We choose few representative values of We from the recent
experiment as 600, 400, and 250 nm [37].

The Hamiltonian of a two-dimensional electron gas
(2DEG) in such magnetic modulation and electrostatic con-
finement is

H = 1

2m∗
[
p2

y + (px + eAx (y))2 + V (y)
]
, (4)

where Ax (y) is the vector potential corresponding to the
magnetic field given in Eq. (1) and m∗ is the effective mass
of electron. We consider a Landau gauge [A = (Ax (y), 0, 0)]
and we numerically solve Eq. (4) (by relaxation method
[39]) to obtain the energy levels and the wave function.
The wave-vector dependent effective potential is of the form
Veff (ȳ, k̄x ) = [k̄x + Ā(ȳ)]2, which has a reflection symmetry
when changing the sign of kx/y giving an energy spectrum
that is symmetric about the center of the Brillouin zone. We
define k̄x = kxlb, ȳ = y/lb, where lb = √

h̄/eB0 = 25.66 nm
for a uniform magnetic field of strength B0 = 1 T. The length

and momentum are expressed in units of lb and l−1
b . The unit

of energy is E0 = h̄2

2m∗l2
b

= 0.8622 meV.

The interesting physics in the two devices (magnetic split
and strip gate) resides in the existence of edge states (magnetic
edge states) at the center of the wire drifting in the magnetic
gradient with a guiding center following the y = Wm/2 line.
These states propagate in the forward or backward direction
depending on the sign of the magnetic field gradient. Thus,
depending on their velocity direction, magnetic edge states
either co-propagate or counter-propagate with the electrostatic
edge states. For that, we calculate the drift velocity of semi-
classical orbits at the Fermi level in the magnetic field gradient
as [40]

vd = ω0r
2
g

2

∇ Bm × Bm

(Bm)2
,

where Bm is the modulated magnetic field generated by the
magnetic gate, ω0 and rg are the gyration angular frequency
and radius. The magnetic field gradient (∇Bm) at y = Wm/2
is positive for the magnetic split gate [Fig. 2(a)], which makes
the magnetic edge states drift in the positive x direction caus-
ing a parallel motion of the magnetic edge states with respect
to the electrostatic edge states, whereas in the magnetic strip
gate a negative magnetic field gradient at y = Wm/2 results in
an antiparallel motion of the magnetic edge states with respect
to the electrostatic edge states [Fig. 2(b)].

B. Electronic band structure

The formation of edge states at the center of the quantum
Hall system is demonstrated through the calculated local
density of states (LDOS) [41,42]. LDOS is obtained from the
energy and the eigenfunction of the 2DEG and is defined as

ρ(E, y) =
∑

α

δ(E − Eα )|ψα (y)|2, (5)

where α = {n, kx} is a quantum state.
The LDOS of n = 0 level is shown in Fig. 3 for Ba = 3T.

LDOS does not show variation when the magnetic modulation
is absent [Fig. 3(a)]. The energy levels are degenerate with
respect to kx (or the location of the center of oscillator) for
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FIG. 4. LDOS for a fixed channel width We = 600 nm at different values of Ba = 1, 2, and 2.5 T for the split (a) and strip (b) gates. At
Ba = 2.5 T, the magnetic minibands are separated from each other in the strip gate while they overlap in the split gate.

zero magnetic modulation. The modulated magnetic field lifts
the Landau level degeneracy near the center of the channel.
This leads to the formation of states of lower energy at the
center in the split gate [Fig. 3(b)] and of higher energy in the
strip gate [Fig. 3(c)].

At high magnetic field (ωa >> ω��/��), the quantized en-
ergy levels of the magnetic edge states (about the center
of the channel) can be described using an approximate en-
ergy relation Ēn(k̄x ) = (n + 1/2)h̄(ω��/��

m (k̄x ) + ωa ), where

ω
��/��
m (k̄x ) = eB

��/��
m (k̄x )

m∗ and ωa = eBa

m∗ . The group velocity
(dEn,k̄x

/dk̄x) at y = Wm/2 is positive for magnetic split gate
while it is negative for magnetic strip gate. The chirality
of magnetic edge states reverses in the magnetic strip gate.
As a result, the LDOS is a convenient tool to visualize the
modification of energy levels by the combined effects of the
inhomogeneous magnetic field and the electrostatic poten-
tial, which is experimentally accessible to scanning tunneling
microscopy [43].

Figure 4 shows the LDOS computed at different values of
the applied magnetic field Ba = 1, 2, and 2.5 T in the split
and strip gate channels of constant width We = 600 nm. In
this figure, the formation of a subset of interference pattern
in the magnetic minibands in the central region appears due
to the interference between magnetic edge states in different
Landau levels. At finite magnetic field gradient, multiple
branches are visible at each energy level which overlaps with
the consecutive energy level branches at lower magnetic field
(Ba = 1 T in Fig. 4). The number of branches at each energy
level becomes clearly visible as Ba increases (Ba = 2 and 2.5
T in Fig. 4). Since the LDOS is directly proportional to the
probability density of the electrons [Eq. (5)], the number of
branches in the dispersion curves demonstrates the number
of nodes in the wave function of the edge states. The finite

gradient of the energy spectrum therefore gets split into n + 1
branches for the nth Landau level where the magnetic field
has finite gradient. However, the splitting vanishes where the
magnetic field gradient is approximately zero and the disper-
sion is flat at y = 0 and 200 nm for the profiles considered in
this paper. Also, the energy separation between the adjacent
Landau bands varies over the region and becomes large when
the magnetic field gradient is steeper.

Magnetic minibands overlap in energy at low magnetic
field. However, above a critical magnetic field, energy gaps
open between magnetic minibands. It appears from the band
calculations that minigaps occur at different Ba in the split
gate and strip gate. As for example at Ba = 2.5 T, a gap
occurs between the magnetic minibands at the Fermi energy
(EF = 16.9 meV) in the strip gate [Fig. 4(b)], while magnetic
minibands still overlap with each other at Fermi energy at
Ba = 2.5 T in the split gate [Fig. 4(a)]. Such a gap opens in
the magnetic minibands when the energy gap between con-
secutive energy levels at the center of the Hall channel (y = 0)
becomes larger than the magnetic bandwidth (demonstrated in
Fig. 5). In the presence of a homogeneous magnetic field only,
the energy gap between consecutive energy levels is constant
and of the form h̄ωa = h̄e

m∗ Ba . However, in the presence of
magnetic modulation, the energy gap between consecutive
energy levels (Eg) at the center of the modulation (as shown
in Fig. 5) in the split gate becomes

E��
g = (En+1 − En)y=0 = h̄e

m∗
(
Ba − Bpeak

m

)
, (6)

while in the strip gate

E��
g = (En+1 − En)y=0 = h̄e

m∗
(
Ba + Bpeak

m

)
. (7)
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FIG. 5. Schematic of gap opening phenomenon in the magnetic minibands in the split and strip gate. Since the modulated magnetic field
increases the energy gap between consecutive energy levels in the strip gate, the minimum magnetic field required to open a gap in the magnetic
minibands is smaller than the split gate.

The reason of which is that the negative magnetic modulation
at the center in the split gate decreases the energy gap between
consecutive energy levels by h̄e

m∗ B
peak
m , whereas positive mag-

netic modulation in the strip gate increases the energy gap by
h̄e
m∗ B

peak
m . The magnetic bandwidth (�n) is of the form

�n = |max(En) − min(En)|

= (n + 1/2)
h̄eB

peak
m

m∗ . (8)

Thus, when Eg > �n, the magnetic minibands are separated
from each other and a gap opens in the magnetic minibands.
The minimum magnetic field required to open a gap in the
magnetic minibands in the split gate is given as

E��
g ≈ �n,

B��
a = (n + 3/2)Bpeak

m . (9)

So, the magnetic field at which a gap opens is n dependent.
The subband n that contributes to electrical conductivity is
the one crossing the Fermi level hence satisfying the condition
(nF + 1/2) = EF

h̄ωa
. By replacing (nF + 1/2) = EF

h̄ωa
in Eq. (9),

one gets

B2
a − Bpeak

m Ba − BF Bpeak
m = 0, (10)

where BF = h̄k2
F /2e and kF is the Fermi wave vector. The

applied magnetic field at which minigaps open in the split gate
is of the form

B��
a =

B
peak
m +

√(
B

peak
m

)2 + 4BF B
peak
m

2
. (11)

We obtain the corresponding magnetic field for the strip gate
by replacing B

peak
m with −B

peak
m in Eq. (11). We evaluate

B
��
a = 2.8 T for a split gate and B

��
a = 2.2 T for the strip

gate [Fig. 4(b)] using B
peak
m = 0.65 T. The gap opening in the

magnetic minibands leads to large amplitude oscillation in the
density of states (DOS) and also in the conductivity.

Figure 6 plots the LDOS at a fixed value of Ba = 3T for
decreasing values of channel width We = 600 nm, 400 nm,
and 250 nm. For wider channel width (We = 600 nm), the
magnetic and electrostatic edge states are separated by ∼ 8�b

resulting in a small overlap of their wave function. But as elec-
trostatic confinement increases, the overlap of the electronic

wave function increases. When We < Wm, the magnetic edge
states are depleted leaving behind only the electrostatic edge
states. Thus, as one decreases We, the electrostatic edge states
cross over the magnetic edge states.

We have plotted the DOS of both devices as a function of
applied magnetic field in Fig. 7. The DOS is given as

D(E) = D0h̄ω
∑

n

∫
dkxPimp

(
E − En,kx

)
, (12)

where Pimp(E − En,kx
) = 1

�
√

π
exp ( − (E−En,kx )2

�2 ) is the Gaus-

sian broadening induced by the impurity with � being full
width at half maximum. The Gaussian tails of the density of
states assume screened random impurities with a Gaussian
potential [44,45]. The screening is assumed to be constant.
The realization of a narrow channel by a split magnetic
gate [37] allows otherwise localized states in Gaussian tails
to bridge opposite edges. For this reason and because we
consider intermediate magnetic fields where the longitudinal
resistance does not vanish in the Landau gaps, the assumption
of Gaussian broadening holds. Equation (12) accounts for
both modulation and impurity broadening of the energy levels.
The small amplitude oscillations at lower Ba correspond to
the overlap of magnetic minibands. At high Ba , the small
amplitude oscillations also occur besides the high amplitude
oscillation for the wider channel of width We = 600 nm
(∗ symbols in Fig. 7). These oscillations appear due to the
existence of magnetic minibands. But as We decreases, the
depletion of magnetic minibands (as shown in Fig. 6 for We =
400 and 250 nm) causes the small amplitude oscillation to die
out. Also, the peaks shift to a higher magnetic field [split gate
in Fig. 7(a)] or lower magnetic field [strip gate in Fig. 7(b)] as
We decreases from 600 nm to 400 nm. The shift of the peak
position as a function of We can be understood from the LDOS
plot for various values of We, which is shown in Fig. 6. The
magnetic minibands are successively depleted as we increase
the electrostatic confinement. When We decreases from 600
nm to 400 nm, the peak in the DOS shifts from the edge to the
band center which is lower in energy [Fig. 6(a)]. Therefore
decreasing We causes the maxima of DOS to shift lower in
energy. To keep the highest occupied band aligned with the
Fermi level, a higher magnetic field is required resulting in a
shift of the peak position to a higher magnetic field [Fig. 7(a)].
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FIG. 6. LDOS for a fixed Ba = 3 T at channel widths We = 600, 400, and 250 nm in the split (a) and strip (b) gate. As channel width
decreases, the overlap of magnetic and electrostatic edge states increases resulting in increasing back scattering in the strip gate (b).

As We further decreases, peaks shift to a lower magnetic field
due to the decreasing value of the Fermi energy.

In contrast, the DOS peaks in the strip gate shift to a lower
magnetic field when We decreases from 600 to 400 nm. In this
case, positive modulation at the center lowers the energy of the
magnetic minibands [Fig. 6(b)]. This results in DOS maxima
shifting higher in energy. Thus the applied magnetic field has
to decrease to keep the central Landau levels aligned with the
Fermi level causing LDOS peaks to shift to lower magnetic
fields. From We = 400 to 250 nm, peaks shift to the lower
magnetic fields because of the decrease in electron density (or
Fermi energy).

III. CONDUCTIVITY TENSOR AND
MAGNETORESISTANCE

We calculate the magnetoresistance of the strip and split
gate systems to quantify the effects of different electronic
structures and the chiral/nonchiral nature of edge state trans-
port. We use linear response theory to determine the current
density J as a response to a weak applied electric field E
[46]. The linear response theory and the Landauer-Büttiker
approach present advantages and drawbacks for the treatment
of this problem. The linear response regime was preferred
because transport properties could be modelled smoothly
through the transition from the diffusive regime (ωaτ < 1) to
the quantum regime (ωaτ > 1) up and until localized states
form and zero resistance minima are observed. The latter
regime appears well after the onset of resistance oscillations—
and Hall plateaux—in the narrow channels we consider. The
linear response theory is also useful to account for bulk-edge
interactions.

In the presence of a weak field and disorder, the conduc-
tivity tensor contains both diagonal and nondiagonal parts,

which come from the diagonal/nondiagonal part of the current
density operator, which has been calculated in Ref. [47]. The
conductivity tensor is

σμ,ν (ω) = σd
μ,ν (ω) + σnd

μ,ν (ω) with μ, ν = x, y, z, (13)

where d and nd are the diagonal and nondiagonal parts of
the conductivity tensor. We calculate various contributions
to the conductivity tensor in the static limit (ω → 0). The
diagonal components of the conductivity tensor consist of the
band conductivity and the scattering/collisional conductivity:

σd
μ,ν (ω) = σ band

μ,ν (ω) + σ coll
μ,ν (ω). (14)

The band contribution of the conductivity is of the form

σ band
μν = βe2

A

∑
n,kx

∫
dE Pimp

× (
E − En,kx

)
fE (1 − fE )τ (E)υn,kx

μ υn,kx

ν , (15)

where β = 1/kBT , A is the area of the sample, fE is the
Fermi-Dirac distribution function, τ (E) is the relaxation time,
and υn,kx

μ is the velocity operator given as 1
h̄

∂En,kx

∂kμ
. Electrons

are free particles along the x direction, while localized along
the y direction, i.e, υy = 0. Therefore the band conductivity
along the y direction is zero, i.e., σ band

yy = 0, and also σ band
xy =

σ band
yx = 0. The band conductivity along the x direction is

σ band
xx = e2

h

τ

Ly h̄
√

π�

∑
n

∫
dE

(
− ∂f

∂E

) ∫
dkx

× exp

(
−

(
E − En,kx

)2

�2

)∣∣∣∣∂En,kx

∂kx

∣∣∣∣
2

. (16)
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FIG. 7. Density of states at the Fermi energy vs applied magnetic
field in the split gate (a). Peaks shift to a higher magnetic field when
the electrostatic confinement width decreases from 600 to 400 nm,
while peaks shift to a lower magnetic field in the split gate (b).
∗ symbols denote the small amplitude oscillations due to magnetic
minibands.

The band conductivity weakly depends on the temperature
and its dependence is similar in split and strip gates (depicted
in Fig. 3 in Ref. [48]).

Collision conductivity considers the transport through lo-
calized states in the presence of impurities. We consider
σ coll

xx = σ coll
yy due to isotropic impurity scattering. The colli-

sional contribution to the conductivity (σ coll
xx ) with broadening

is given by [49]

σ coll
xx = βe2

A

∑
ξξ

′

∫
dE

∫
dE

′
P (E − Eξ )P (E

′ − Eξ
′ )

× f (E)[1 − f (E
′
)]Wξξ

′ (E,E
′
)
(
αξ

x − αξ
′

x

)2
, (17)

where Wξξ
′ is the transition rate between |ξ 〉 and |ξ ′ 〉 and

α
ξ
x = 〈nkx |x|nkx〉 is the expectation value of position operator

and |ξ 〉 = |n, kx〉. We consider elastic scattering for which

f (E) = f (E
′
). The transition rate is given as

Wξξ
′ (E,E

′
) = 2πNI

Ah̄

∑
q

|Uq |2|〈ξ |eiq.r |ξ ′ 〉|2δ(E − E
′
).

(18)

Uq is the Fourier transform of the impurity potential U (r −
R) = e2

4πεε0|r−R|e
−ks |r−R|; r and R are the position of the

electron and impurity, respectively, ks is the screening wave
vector, and NI is the impurity density. We consider only
the dominant term n = n

′
(intralevel scattering) and next-

nearest interlevel scattering term, i.e., n − n
′ = ±1, which is

sufficient because the scattering rate decreases exponentially
with the distance between the centers of oscillator: ks = qskF ,
qs = 23/2me2

εh̄2√4πns
→ ks 
 kF , U0 = e2

2εε0
and lb = √

h̄/eB.
In a relatively dirty 2DEG like the shallow 2DEGs, which

we have considered, disorder is greater than the case con-
sidered by Fogler et al. [50]. If a tail of localized states
exists between Landau levels then there would be no edge to
edge scattering and the longitudinal resistance would be zero.
Experiments show that zero longitudinal resistance minima
occur at a magnetic field above the onset of the Landau
quantization. This is why the linear response theory is the
appropriate theory. At a higher magnetic field (or larger τ ),
the formation of localized bands, the percolation threshold,
and extended states are in a grey theoretical regime between
Boltzmann and Landauer-Büttiker. It can be noted that in
the magnetic/electric cross-over experiment [37], the wire
is in a very narrow channel ( 100 to 200 nm), making
it easier for the localized states in the tail to bridge the
two edges, hence, be delocalized—more delocalized than in
the typical Hall bar used to investigate the quantum Hall
system.

In order to compare the effects of co-propagating states
at the edges of the split gate and counterpropagating edge
states at the edges of the strip gate, we have plotted the
contributions of intraband scattering [Fig. 8(a)] and interband
scattering [Fig. 8(b)]. Because disorder induces elastic tran-
sitions, conduction takes place through intraband transitions
between broadened Landau levels in the bulk and interband
transitions between dispersive subbands at the edges. In
the bulk, intra-Landau level impurity assisted scattering is
phenomenologically accounted for by Gaussian broadening,
which corresponds to a finite energy level lifetime. Intraband
scattering can not occur at the edges as same n corresponds to
different energies, which is not possible for elastic scattering.
Similarly, interenergy level transitions cannot occur in the
bulk because impurity scattering conserves energy and the
only way an n → n + 1 transition may conserve energy is at
the edge of the sample. Therefore, inter-Landau level transi-
tions are forbidden in the bulk by energy conservation as long
as ωaτ > 1. The collisional conductivity is isotropic and in the
2D quantum regime measures the amount of backscattering in
the longitudinal direction.

The calculation shows that intraedge scattering is largest
at low magnetic field where elastic transitions involves small
changes in momentum. Interedge scattering decreases as
the magnetic field increases and vanishes at high magnetic
field [Fig. 8(b)]. In contrast, the amplitude of intraband
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FIG. 8. (a) Intra- and (b) interenergy level collision conductivity as a function of applied magnetic field in the split and strip gate. The
intraband scattering measures the transitions in bulk Landau levels where the scattering between magnetic and electrostatic edge is not possible.
Whereas the interenergy level scattering occurs between magnetic and electrostatic edge states (n → n + 1), only elastic transition conserving
the Landau level index can occur within degenerate Landau levels. We consider T = 4 K and � = 0.6 meV.

oscillations continues to increase as Ba increases [Fig. 8(a)].
This is consistent with the corresponding increase in ampli-
tude of Shubnikov de Haas (SdH) oscillations in unmodulated
systems at high magnetic field. Figure 8(b) demonstrates
that edge backscattering in the quantum regime (ωaτ > 1)
is greater when edge states propagate in opposite directions
(dashed-dotted lines) than in the same direction (solid curves).
The criterion for the onset of Landau quantization (ωaτ > 1)
is actually the energy-time uncertainty principle in which the
quantum lifetime is replaced with phenomenological mobility
lifetime. Our calculation shows dips in the DOS and the
diagonal resistivity ρxx in between the Landau levels. This
shows that the quantum Boltzmann approach provides an
appropriate description of the diffusive and quasiadiabatic

quantum transport regimes prior to the onset of pure edge
conduction [50,51].

The backscattering increases as the overlap of electric
and magnetic edges increases from We = 600 to 400 nm.
Thereafter the magnetic edges are depleted and naturally
backscattering also decreases (250 nm: dashed dotted blue
curve). In contrast, one notes that backscattering is much
smaller when edge states are co-propagating in the split gate
device [Fig. 8(b), solid curves]. The quantum Boltzmann
equation has the advantage of describing both dissipation in
the bulk, to model quantum transport experiments, and at the
edges through the consideration on intraedge backscattering.
The results of Fig. 8, therefore underline the chirality of the
pairs of edge states in the split and strip gate systems by

FIG. 9. Magnetoresistance for decreasing channel width in the split (a) and strip (b) gate. Arrow indicates the drifting direction of edge
states.
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FIG. 10. Collision conductivity as a function of applied magnetic field in the split (a) and strip (b) gates. The amplitude of the oscillations
becomes weaker as temperature increases, as expected. Curves are offset vertically for clarity.

showing greater backscattering in the latter, when edge states
are counterpropagating.

We have calculated the resistivity including contribution
from the band conductivity [Eq. (15)], collision conductivity
[Eq. (17)], and the nondiagonal conductivity (Eq. II.2 in
Ref. [48]), which we combined in the plot of the longitudinal
resistivity shown in Fig. 9. The effect of reducing the channel
width is to shift the resistance peaks to a lower magnetic field
in the split gate system where the magnetic field at the centre
of the Hall channel is lower. In contrast, the resistance peaks
move to a higher magnetic field in the strip gate according
to the same mechanism as in Fig. 7. The amplitude of the
peaks increases when We decreases from 600 to 400 nm in
the magnetic strip gate because of the increasing overlap of
edge states [as n = 5 in Fig. 8(b)].

We show the effect of increasing temperature on the
conductivity in Fig. 10. The amplitude of oscillations in
collisional conductivity decreases as temperature increases.
The oscillations are observable when h̄ωa > kBT . The tem-
perature dependence of Shubnikov de Haas oscillations
is χ/ sinh(χ ), χ = 2π2kBT /h̄ωa . The chirality effect on
the collisional conductivity becomes less significant as the
temperature increases.

IV. CONCLUSIONS

In conclusion, we have studied the properties of a 2DEG
exposed to two types of modulated magnetic field profile.
We have calculated the LDOS, which shows the difference

in the electronic structure of the split and strip gate devices.
LDOS demonstrates the formation of magnetic edge states
near the center of the gate and electrostatic edge states at the
boundary. Also, LDOS shows an interference originating from
the magnetic miniband subset at the center of the gate. In the
split gate, magnetic and electrostatic edge states drift parallel.
In contrast, the opposite magnetic field gradient in the strip
gate changes the drifting direction of magnetic edge states
resulting in antiparallel motion of magnetic and electrostatic
edge states.

The calculated collisional conductivity depends on the
relative drift directions of magnetic and electrostatic edge
states. This dependence is borne by the shape of the wave
function in the scattering matrix element. The diffusion and
nondiagonal conductivities are independent of drift direction
and only contribute to the diffusive conduction regime at low
magnetic fields. The resistance peaks at high magnetic fields
are dominated by the collisional conductivity and are larger in
the case of a strip gate than a split gate device as the channel
width decreases. This indicates stronger backscattering in the
case of edge states, which propagate in opposite directions
(strip gate) in contrast to edge states which propagate in
the same direction (split gate). This suggests that the chi-
ral/nonchiral nature of the bulk and edge conducting states
might be probed through quantum transport measurements.
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