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Bilayer Haldane model: From trivial band insulator to fractionalized quantum
anomalous Hall insulator
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Motivated by work on the bulk topological proximity effect and the topological bootstrap, we consider two
coupled layers of quantum anomalous Hall (QAH) insulators with opposite signs of time-reversal breaking,
which leads to a trivial band insulator at half-filling. We study the impact of interactions in this model within slave
rotor theory, which leads to a layer-selective Mott transition, resulting in a fractionalized quantum anomalous
Hall insulator QAH∗ where a Chern band insulator coexists with a chiral spin liquid. We also compute the edge
electron spectral function in the vicinity of the QAH∗ phase.
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I. INTRODUCTION

Recent theoretical work on topological phases of matter
has introduced the concept of a “bulk topological proximity
effect” (BTPE) [1], wherein a topologically trivial layer cou-
pled to topologically nontrivial bands [2] can itself exhibit
nontrivial topological character of the opposite type. This
arises from virtual hopping transitions into the nontrivial
layer. An interesting variant of this idea, which was subse-
quently explored, is the “topological bootstrap” [3], where
isolated spins can be driven into a topologically ordered
chiral spin liquid phase [4–8] via Kondo coupling to non-
trivial Chern bands [9]. Naively we expect that increasing the
strength of the Kondo coupling might lead to a transition into
a trivial insulator, where every spin binds an electron.

In a different research trend studying the effects of electron
correlation on band topology, new correlation-driven phases
of matter have been found with and without spontaneously
broken symmetries [10–12], e.g., antiferromagnetic Chern
insulators [13] and fractionalized topological insulators with
neutral gapless surface excitations [14,15]. Motivated by the
rich physics of such phases and to explore the connection
between BTPE and the topological bootstrap, we study a
toy bilayer Haldane model, where each layer hosts spin-1/2
electrons in topologically nontrivial phases but which are of
the opposite type. At half-filling, the total Chern number of
the occupied “valence” bands is then zero. We assume that
one of the layers could have a bandwidth reduced by a factor
0 < λ < 1. For small λ � 1, we may view one of these layers
as having inherited its nontrivial “opposite” band topology
due to the BTPE. In this setting we study how tuning Hubbard
interactions in one layer eventually leads to a chiral spin
liquid Mott insulator which effectively decouples from the
other layer, so that the net combination acts as a fractionalized
quantum anomalous Hall insulator QAH∗, which has bulk
semions and topological order coexisting with a quantum
Hall effect. Such a system would have chiral charge edge
modes and a counterpropagating neutral edge mode, so that it
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would exhibit a quantized thermal Hall effect and a quantized
electrical Hall effect which violate the Wiedemann-Franz law.
For λ � 1, this QAH∗ phase is identifiable as that obtained
within the topological bootstrap picture.

QAH∗ is analogous to the fractionalized Fermi liquid FL∗
studied in Ref. [16], in which a spin liquid coexists with a
Fermi liquid. It is distinct from a correlated Chern insulator
phase CI∗ [17] obtained within the slave spin theory of a
single-layer Chern insulator. The CI∗ phase also possesses
fractionalized quasiparticles and exhibits a quantized charge
Hall effect, yet it has no electronlike quasiparticles in contrast
to QAH∗. In the language of Ref. [18], the CI∗ may be viewed
as an “orthogonal” QAH insulator.

We have explored the phase diagram of this bilayer model
within a slave rotor mean-field theory calculation [19–23]. In
the presence of inversion symmetry, the valence bands have
Chern numbers ±1, while incorporating inversion breaking
terms renders each valence band to individually have Chern
number zero. As opposed to the Kondo lattice model explored
in the context of the topological bootstrap, this model can
be viewed as a periodic Anderson model in which a layer-
selective Mott transition leads to the QAH∗ phase. However,
simply increasing correlations on one layer does not necessar-
ily directly drive the system into the QAH∗ phase since the
correlated bands tend to drift up in energy with increasing
interaction strength and thus get progressively depopulated;
we thus generically need an additional bias potential in order
to convert the correlated layer into a half-filled Mott insulator.
Finally, in addition to the above discussed trivial band insula-
tor and QAH∗ phases, we find wide regimes of Chern metal
and new Dirac semimetal phases.

We compute the edge electron spectral function in the cor-
related trivial band insulator as we approach the QAH∗ phase.
Deep in the trivial band insulator regime, there are counter-
propagating electronic edge modes which hybridize and gap
out. However, closer to the QAH∗ phase, this hybridization
strongly decreases. Furthermore, we find that while the chiral
edge mode emanating from the noninteracting layer has high
spectral intensity, the counterpropagating edge mode has a
diminished intensity which is progressively weakened upon
approaching the layer Mott transition. Thus, although the
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correlated band insulator is topologically trivial, its spectral
function signature close to the QAH∗ phase may be (incor-
rectly) suggestive of a topologically nontrivial state. In the
QAH∗ phase, the edge modes decouple.

The phase diagram is summarized in Fig. 3 and is the focus
of the rest of this paper. Before we turn to this, it is important
to note that while our results indicate the type of phases
which might arise in the presence of correlations, additional
interactions may be needed to stabilize the QAH∗ phase in
this specific microscopic model [24] once we allow for com-
petition with spontaneous magnetically ordered phases. The
paper is organized as follows. Section II outlines the model
Hamiltonian and its symmetries. Section III discusses its
noninteracting phase diagram. Section IV discusses the results
from a slave rotor theory of the interactions, using a nonlinear
sigma model approach to the rotor fluctuations, and presents
numerical results for the edge electron spectral function.

II. MODEL AND SYMMETRIES

A. Bilayer Hamiltonian

The bilayer Hamiltonian we study consists of three parts:
a Haldane model on each layer, an interlayer hopping term
which hybridizes the Chern bands of the individual layers, and
a Hubbard interaction which drives a Mott transition on one
layer, so that

H = H1 + λH2 + Hhyb + H int
2 . (1)

Here H1 and H2 denote the noninteracting hopping Hamil-
tonian on layers 1 and 2, respectively. The bands of layer 2
are rescaled with respect to layer 1 by a parameter λ < 1. Let
us denote the electron operators on layer 1 and layer 2 as c†

and d†, respectively. The noninteracting layer-1 Hamiltonian
H1 ≡ HHaldane(t1, t2, φ,M ) is the honeycomb lattice Haldane
model Hamiltonian [25]

HHaldane =−
∑
〈ij〉,σ

t1c
†
iσ cjσ −

∑
〈〈ij〉〉,σ

t2e
−iνij φc

†
iσ cjσ +H.c.

+M
∑
iσ

εi c
†
iσ ciσ , (2)

while H2 ≡ HHaldane(t1, t2,−φ,M ) with fermion operators
c† → d†. Here σ =↑,↓ labels spin, and εi = ±1 labels the
respective sublattices A and B so that M controls the breaking
of the two-dimensional (2D) inversion symmetry. The second-
neighbor hopping term breaks time-reversal symmetry (TR).
As shown in Fig. 1, νij = ±1, which results in an alternating
flux profile with a vanishing total flux through each hexagon.
Here and below we will set t1 = 1.

The hybridization Hamiltonian Hhyb encapsulates inter-
layer hopping (which is momentum independent), and a layer
bias potential �:

Hhyb = −t⊥
∑
iσ

(c†iσ diσ + H.c.) − �
∑
iσ

d
†
iσ diσ . (3)

Electron-electron interactions are encoded in H int
2 , which

is the on-site Hubbard repulsion; for simplicity, we have

(a) (b)

FIG. 1. (a) Bilayer honeycomb lattice showing vertical AA
stacking. (b) Bottom layer (layer 2) depicting first- and second-
neighbor hoppings t1 and t2. The second-neighbor hopping is com-
plex, given by t2e

−iνij φ , and arrows in the lowest left plaquette denote
the directions of positive νij = +1, where νji = −νij . The top layer
(layer 1) has reversed sign of νij .

assumed that this interaction is only present on layer 2:

H int
2 = U

∑
i

nd,i,↑nd,i,↓, (4)

where nd,i,σ = d
†
iσ diσ . Such a Hubbard repulsion will drive a

Mott transition in layer 2. When λ < 1, meaning the two lay-
ers are inequivalent, with layer 2 having a smaller bandwidth,
turning on a Hubbard interactions in both layers will drive a
similar layer-selective Mott transition in layer 2.

B. Symmetries

The bilayer Haldane model has the following symmetries:
(1) translational symmetry of the honeycomb lattice; (2) C3

spatial rotation symmetry about the center of each hexago-
nal plaquette; (3) SU(2) spin rotation symmetry; (4) while
time-reversal symmetry T (i.e., complex conjugation which
reverses flux φ → −φ) is broken, T M which combines it
with a mirror operation M is a good symmetry. Here the
mirror line connects opposite vertices of the hexagon. (5)
Finally, when M = 0, there is 2D inversion symmetry, which
is equivalent to π rotation about the hexagon center; it sends
the momentum k �→ −k and exchanges the two sublattices.

III. NONINTERACTING PHASE DIAGRAM

Before studying the effects of interaction, we compute the
noninteracting phase diagram of the bilayer.

When t⊥ = 0, the two layers are decoupled. In this limit,
for t2, φ �= 0 and when |M/t2| < 3

√
3| sin φ|, each band in

each layer carries a nontrivial Chern number, resulting in a
quantum anomalous Hall effect at half-filling, while larger
|M/t2| results in a trivial band insulator [25]. However, the
fact that the phase φ in layer 2 is negative of that in layer
1 renders the whole system topologically trivial even when
M = 0.

Here, and below, we fix the density to be at half-filling, and
set t2 = 0.25, t⊥ = 0.3, and φ = π/2, and explore the phase
diagram as we tune M and � for λ = 0.5. We discover three
phases.

(1) A trivial band insulator such that the total Chern
number of occupied bands is zero. However, bands below the
Fermi level (i.e., valence bands) may carry individually either
nonzero Chern numbers or zero Chern number. We notice that
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FIG. 2. Noninteracting phase diagram for t⊥ = 0.3t1 and λ =
0.5. The band insulator is subdivided into three categories char-
acterized by the Chern numbers of the valence bands. The (0, 0)
phase dominates and is present only with a nonzero M. The Dirac
semimetal has six Dirac cones in the BZ with the Fermi level at
the Dirac points. These Dirac points can be gapped out by further
hopping, e.g., third-nearest-neighbor hopping. The metallic phase
arises from the effect of large M which causes the band to have
extrema in the vicinity of the K and K ′ points. At half-filling, the
band structure has electron pockets around K points and hole pockets
around K ′ points.

individually trivial valence bands with Chern numbers (0, 0)
can only be achieved when M �= 0.

(2) As one increases the strength of �, the band insulator
gives way to a Dirac semimetal with six-band touching points
in the Brillouin zone (BZ). The Dirac cones emerge pairwise
from each M point, and move towards towards the � point.
When M = 0, the Dirac cones are situated perfectly on the
�-M lines but are otherwise rotated away. This can be under-
stood as a mathematical structure of the Bloch Hamiltonian,
see Appendix A. The Dirac cones are, however, not protected
by any symmetry and can be gapped out, for instance, by
introducing a third-nearest-neighbor hopping.

(3) Upon increasing M , the phase diagram shows an am-
bipolar metallic phase with no Dirac band touching points, but
with electron pockets and hole pockets around the K and K ′
points, respectively.

In the rest of the paper we use slave rotor theory to study
the effect of interactions on the phase diagram in Fig. 2. We
will mainly explore the impact of varying U and �, for dif-
ferent values of M , starting from noninteracting phases which
are predominantly topologically trivial. This corresponds to
starting from vertical cuts through the noninteracting phase
diagram and varying U .

IV. SLAVE ROTOR MEAN-FIELD THEORY

A. Slave rotor representation

Slave rotor representation has been used in studying Mott
insulating phases and Mott transitions in strongly correlated
systems [19–23]. Here we make use of this representation
to study a layer-selective Mott transition in the interacting
bilayer model. In this representation the electron operator
in the correlated layer 2 is decomposed as d

†
iσ = f

†
iσ e−iθi ,

into a fermionic spinon operator f
†
iσ and a rotor operator

e−iθi which, respectively, carry the spin and charge degrees
of freedom of the electron. To project this expanded Hilbert

space back to the physical electron Hilbert space, we need to
impose the local constraint

nf i + Li − 1 = 0. (5)

Electron hopping terms in H2 can be recast in the form
f

†
iσ fjσ e−iθi eiθj , while the hybridization term becomes

Hhyb = −
∑
iσ

t⊥f
†
iσ e−iθi ciσ + H.c. − �

∑
iσ

f
†
iσ fiσ . (6)

The Hubbard interaction term is written as

H int
2 = U

2

∑
i

(
L2

i + nf i − 1
)
, (7)

where we have used the relation

ndi↑ndi↓ = ndi (ndi − 1)/2 = (
L2

i + nf i − 1
)
/2, (8)

which is valid when the constraint in Eq. (5) is obeyed.

B. Mean-field theory

To make progress, we consider the following mean-field
decoupling of the spinon-rotor interaction terms:

f
†
iσ fjσ e−iθi eiθj ≈ 〈f †

iσ fjσ 〉e−iθi eiθj + f
†
iσ fjσ 〈e−iθi eiθj 〉

− 〈f †
iσ fjσ 〉〈e−iθi eiθj 〉, (9)

f
†
iσ ciσ e−iθi ≈ 〈f †

iσ ciσ 〉e−iθi + f
†
iσ ciσ 〈e−iθi 〉

− 〈f †
iσ ciσ 〉〈e−iθi 〉, (10)

where the expectation values 〈· · · 〉, dubbed “bond mean
fields,” are to be determined self-consistently. This decoupling
scheme splits the Hamiltonian into two parts: one involving
coupled spinons and c electrons, and the other involving
rotors. Equivalently, the many-body electron wave function is
then of the form

|�MF〉 = |�f c〉 ⊗ |�θ 〉, (11)

where |�f c〉 is the coupled spinon and c-electron wave func-
tion and |�θ 〉 is the rotor wave function, with the constraint in
Eq. (5) being imposed on average.

Here we will focus on mean-field ground states which do
not break any symmetries of the model Hamiltonian, so we
consider a “uniform” ansatz. In this case, the bond mean
fields are parametrized by only a few parameters. For nearest-
neighbor bonds,

〈f †
iσ fjσ 〉 = Fnn, (12)

〈e−iθi eiθj 〉 = Xnn, (13)

where Fnn and Xnn are real valued and identical on all bonds
due to the combination of translation, C3, and T M symme-
tries. (Note that in the slave rotor representation, T sends
fiσ → fiσ , e±iθi → e±iθi , and conjugates complex numbers).
For next-nearest neighbors, there are two distinct bond mean
fields corresponding to the two sublattices:

〈f †
iσ fjσ 〉 = Fnnn,A(B )e

−iνij ϕA(B ) , (14)

〈e−iθi eiθj 〉 = Xnnn,A(B )e
−iνij ηA(B ) . (15)
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The bond mean fields for the interlayer term are

〈f †
iσ ciσ 〉 = F⊥,A(B ), (16)

〈eiθi 〉 = X̄A(B ). (17)

They can be chosen to be real valued. We impose the con-
straint (5) on average by introducing two Lagrange multipliers
λA and λB for the two sublattices. The mean-field theory
now amounts to self-consistently solving separate rotor and
coupled spinon-c Hamiltonians Hθ and Hf c, respectively.

C. Fermionic and rotor Hamiltonians

The fermionic part of the mean-field Hamiltonian, involv-
ing c and f , is given by

Hf c = H1 + λH2,f + Hhyb,f + U

2

∑
i

nf,i

+
∑

i

λinf,i − μ
∑

i

(nf,i + nc,i ), (18)

where the second to last term comes from the constraints (5),
and the last term is the chemical potential, used to impose the
electron density at half-filling. H1 is unaltered, while the rest
is given below:

H2,f = −
∑
〈ij〉,σ

t1Xnnf
†
iσ fjσ + H.c.

−
∑

〈〈ij〉〉σ
t2Xnnn,ie

−iνij ηi e−iνij φf
†
iσ fjσ + H.c.

+M
∑
iσ

εif
†
iσ fiσ , (19)

Hhyb,f = −
∑
iσ

(t⊥X̄if
†
iσ ciσ + H.c.) − �

∑
i

nf,i . (20)

We can now compute the ground state and the expectation
values in (12)–(17) in order to solve the fermionic sector, and
then evaluating averages Fnn and Fnnn.

The rotor Hamiltonian is given by

Hθ = −
∑
〈ij〉

2λt1FnnX
†
i Xj + H.c.

−
∑
〈〈ij〉〉

2λt2Fnnn,ie
−iνij (φ+ϕi )X

†
i Xj + H.c.

−
∑

i

2t⊥F⊥,iX
†
i +H.c.+ U

2

∑
i

L2
i +

∑
i

λiLi, (21)

where the operator Xi ≡ eiθi . The factors of 2 arise from spin
sums in the spinon sector.

To solve for the ground state expectation values in (12)–
(17), we integrate out the angular momentum and resort to a
nonlinear sigma model representation of the rotor Hamilto-
nian which we treat at Gaussian level as an approximation.
This last step involves solving a quadratic action in the sigma
field, which can then be used to compute the bond mean fields
(see Appendix B for more details).

A useful quantity in this approach is the expectation value
〈Xi〉 which distinguishes a Mott insulating phase from a non-

Mott phase. When 〈Xi〉 vanishes, the charge fluctuation is
strongly suppressed, which entails a Mott insulating phase. On
the contrary, nonvanishing 〈Xi〉 leads to charge fluctuations
and describes non-Mott phases, which can still be insulating
depending on whether the fermionic spectrum is gapped.

V. RESULTS

A. Interacting phase diagram

The results of slave rotor theory are summarized in Fig. 3
where we plot phase diagrams of the bilayer Haldane model
as we vary the interaction strength U and the bias potential
�. The six panels in Fig. 3 correspond to different sets of
M and λ. We find the following phases: (1) band insulator,
(2) Dirac semimetal, (3) Chern metal, and (4) fractionalized
quantum anomalous Hall insulator (QAH∗). Their properties
are described below. In our discussion of the band structure,
note that each band is doubly degenerate in spin; below we
will describe one spin species unless otherwise mentioned
explicitly.

1. Band insulator

The noninteracting model is a trivial band insulator, and it
continues to be a stable phase in a regime of the phase diagram
at smaller U . In this phase, 〈X〉 �= 0, so the electrons in layer
2 are still well-defined excitations. The Chern numbers of
the valence bands are shown in the parentheses; they sum up
to zero so the insulator is topologically trivial. The dashed
lines separate three ground states with distinct Chern numbers
(−1,+1), (+1,−1), and (0, 0). This distinction is useful in
understanding the effects the inversion breaking term and the
evolution of the Chern bands across phase transitions. � and
U tend to push the bands up or down in energy relative to
one another, causing band touchings and Chern number ex-
changes among the valence bands. (Note that these gap clos-
ings occur between different valence bands, and not between
valence and conduction bands, so the system always remains
a band insulator.) In the presence of inversion symmetry, as in
Figs. 3(a)–3(c), the gap closings occur at an even number of
Dirac points, which results in a change in Chern number by
�C = ±2 in each band. Without inversion symmetry, as in
Figs. 3(d)–3(f), the gap closings take place at an odd number
of Dirac points so that the Chern number of each valence band
can change by �C = ±1 across the transitions.

2. Dirac semimetal (DSM)

The DSM features six Dirac points in the BZ. Figure 4
illustrates a band structure of the DSM. It describes the spec-
trum of the spinons hybridized with the electrons from layer
1 due to 〈X〉 �= 0 (so that spinons in layer 2 have a nonzero
overlap with electrons.) The Dirac points sit on the �-M lines
in the BZ when M = 0. The inversion symmetry breaking
term can move the Dirac points off the high symmetry lines.
The transition from a band insulator to the DSM proceeds
with the formation of gapless points at the BZ boundary (M
points), each of which then splits into a pair of Dirac cones
moving towards the � point. Similar to Weyl-Kondo semimet-
als [26], the DSM phase arises from strong correlations, yet
it is not as robust and can be gapped out without breaking
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FIG. 3. Phase diagrams of the Haldane bilayer model obtained using slave rotor mean-field theory as a function of the interaction strength
U/λt1 and the bias potential �/t1. (a)–(c) Inversion-symmetric cases, while inversion symmetry is absent in (d)–(f). Here λ < 1 is the
bandwidth scaling factor of the correlated layer and M is the degree of inversion symmetry breaking. There are five phases in total: Band
insulator phases which we distinguish by indicated Chern numbers for the valence bands, a Dirac semimetal (DSM), a Chern metal with
electron and hole pockets, an intermediate metallic phase between the preceding two with the coexistence of Dirac cones and pockets (shown
as the color gradient between the Chern metal and the DSM), and a fractionalized quantum anomalous Hall phase (QAH∗) in which the
correlated layer undergoes a layer-selective Mott transition. The two stars in the upper left panel mark the points in the parameter space where
we compute the electron spectral functions in Sec. V.

any symmetries, e.g., by introducing third-nearest-neighbor
hopping terms.

3. Chern metal

In this phase the band structure acquires electron pockets
around M points and hole pockets around K and K ′ points

C=1

C=1

FIG. 4. Fermionic band structure depicting the hybridized spec-
trum of electrons from layer 1 with spinons from layer 2 in the DSM
phase (having 〈X〉 �= 0). The DSM has six Dirac points lying on the
�-M lines of the BZ as shown in the inset. The data is obtained at
M = 0, λ = 1, � = 0, U = 6t1, and t1 = 1 in the upper left panel of
Fig. 3.

as shown in Fig. 5, so it is a compensated metal. Each
band carries a nontrivial Chern number, which can lead to a
finite Hall conductivity. A band structure calculation of the
fermionic Hamiltonian on a cylinder with zigzag edges reveals
no edge mode at the Fermi level, yet there are edge modes far
below the Fermi level which start from the lower valence band
and merge into the upper valence bands.

C=-1

C=1

C=1

C=-1

FIG. 5. Fermionic band structure depicting the hybridized spec-
trum of electrons from layer 1 with spinons from layer 2 in the
Chern metal phase where 〈X〉 �= 0. The Fermi level passes through a
valence band and a conduction band, giving rise to hole pockets and
electron pockets (see the inset: red for electron pockets and blue for
the hole pockets.) The data is obtained at M = 0, λ = 1, � = 0.5t1,
U = 7t1, and t1 = 1.
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The transition into the Chern metal can proceed in two
ways from either a band insulator or a DSM. Starting from the
band insulator, the band structure acquires electron and hole
pockets and becomes a Chern metal. On the other hand, the
transition from DSM passes through an intermediate metallic
phase with electron and hole pockets coexisting with Dirac
cones. This phase is denoted by a color gradient in the upper
left panel in Fig. 3. The Chern metal phase appears after the
Dirac cones merge and gap out at the BZ boundary.

4. Fractionalized quantum anomalous Hall insulator

This phase corresponds to a Mott phase in layer 2 in
which the spin and charge of the correlated electrons dis-
sociate. This kills the interlayer hybridization, resulting in
an effective decoupling between the two layers. Layer 1 is
characterized by a nontrivial band topology with a bulk gap,
electronlike excitations, and chiral electronic edge modes.
The total Chern number is +2 (counting both spins) which
results in the quantization of electrical and thermal Hall
conductivities [27]. Layer 2 is described by a Mott phase
with a topologically nontrivial spinon band structure. This
corresponds to a topologically ordered chiral spin liquid as
studied in Ref. [28]. The chiral spin liquid has a gapped bulk
spectrum, semion quasiparticles, and a chiral neutral gapless
edge mode [4,5]. To understand the neutral edge mode, one
needs to go beyond the mean-field treatment. The mean-field
spinon Hamiltonian suggests two spinon edge modes, but the
ground state of the slave rotor can still have a finite overlap
with unphysical states [those which violate the constraint (5)].
Thus, one needs to consider a projection onto the physical
Hilbert space. As argued in Ref. [29], the two spinon modes
can be identified with a gapless charged mode and a gapless
neutral mode, the former of which will be gapped out upon
the projection, leaving only one gapless neutral mode at the
boundary. Its neutrality leads to a zero contribution to the
electrical Hall effect while contributing a quantized thermal
Hall conductivity of one unit quantum [27].

The properties of the total system can be summarized
below. In the bilayer, the quasiparticle excitations consist of
electrons and semions. At the boundary, there are gapless
chiral charged modes and a counterpropagating neutral mode.
The total electric Hall conductivity is σxy = 2 e2

h
which solely

arises from layer 1, while the thermal Hall conductivity
κH equals to +1 quantized unit of the Hall conductivity
(+2 and −1 from layer 1 and layer 2, respectively). The
relation between κH and σxy violates the Wiedemann-Franz
law without having a vanishing or a fractional electric Hall
conductivity (like those in spin liquids and fractional quantum
Hall liquids [30]). QAH∗ is similar to fractionalized Fermi
liquids (FL∗), proposed in Ref. [16], in which the spins and the
electrons of a Kondo lattice model are effectively decoupled,
where spins are fractionalized and form a spin liquid phase,
while the electrons form a Fermi liquid.

We have found that the QAH∗ phase occupies a significant
portion of the phase diagram. In the topological bootstrap
limit λ � 1, the QAH∗ phase can arise straightforwardly—
without the bias potential—upon increasing the interaction
strength. When one increases the strength of M , the phase
diagram changes quantitatively in that the QAH∗ phase is

FIG. 6. A phase diagram depicting the effects of hybridization t⊥
on QAH∗. The system becomes a trivial band insulator (BI) at large
hybridizations, which is identifiable with a Kondo insulator in the
strong-coupling limit. The two BI regions are physically the same in
terms of their Chern numbers and the presence of a gap in the band
structure. The intermediate Dirac semimetal phase may be gapped
out upon adding other microscopic terms. Thus it is possible to have a
direct transition from QAH∗ into BI. (The phase diagram is obtained
at U = 8.0λt1, λ = 0.5, M = 0.)

pushed to the right as one requires a larger U to drive the
system into a Mott phase on account of an increased tendency
to a charge imbalance between the two sublattices. As one
departs from the topological bootstrap limit, a Mott phase
requires a bias potential � > 0 to compensate for the energy
cost by the Hubbard interactions in order to hold electrons in
layer 2 to a half-filled density.

Upon increasing the strength of the hybridization t⊥, the
system passes through intermediate phases before eventually
becoming a topologically trivial band insulator (BI). The
phase diagram in Fig. 6 illustrates the hybridization effects
on QAH∗. The intermediate phase—being a DSM—can be
gapped out by adding other microscopic terms to the Hamil-
tonian. Thus it is possible for QAH∗ to have a direct transition
into the BI phase.

A similar hybridization effect has been studied in a periodic
Anderson model as a Kondo lattice model [31], wherein
topological bands are coupled to localized f electrons. As a
function of the hybridization strength, the system undergoes
a quantum phase transition from a Z2 topological insulator to
a trivial Kondo insulator. In the topological insulator phase,
the conduction electrons and the localized electrons are ef-
fectively decoupled, in analogy with the case of QAH∗. After
the hybridization exceeds a threshold, the system becomes a
Kondo insulator. This phase is analogous to the BI phase in
Fig. 6. The existence of the threshold is attributed to the gap in
the spectrum of the conduction electrons in the Kondo lattice
model [a role played in our case by the gap in the spectrum of
H1 from Eq. (1)] with the strength of the critical hybridization
set by this gap.

B. Edge electron spectral function

The ground state wave function in slave rotor mean-
field theory is a direct product of spinon and rotor wave
functions, which allows us to determine the electron Green
function Gd (x, τ ) ≡ 〈Tτ dx (τ )d†

0 (0)〉. In real space, Gd is the
product of spinon and rotor Green functions, Gd (x, τ ) =
Gf (x, τ )GX(x, τ ), so in momentum space it becomes a
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FIG. 7. Spectral functions of electrons in layer 1 and layer 2 (left
and right columns) near a zigzag boundary of a cylinder at U = 2t1
(deep in the band insulator phase) and U = 4.5t1 (close to the tran-
sition to QAH∗), marked by stars in Fig. 3(a) with � = 1.5t1. Away
from the transition, the hybridization is still profound, so the edge
modes from layer 1 and layer 2 are hybridized, leading to a gap at
ω = 0. One can still identify the remnant of a left moving edge mode
in the upper left panel and a right moving edge mode in the upper
right panel. On the contrary, as the system approaches the QAH∗, the
coherent part of the spectral function of the correlated electron fades
away since the hybridization is increasingly suppressed, leaving Ac

almost unaffected.

convolution:

Gd (k, iωn) =
∑
q,i�n

Gf (q, i�n)GX(k − q, iωn − i�n).

(22)

Here GX(p, iνn) = Zδp,0δνn,0 + G̃X(p, iνn), where the first
part is the contribution from zero momentum and fre-
quency Z ∼ |〈Xi〉|2. Then Gd (k, iωn) = ZGf (k, iωn) +
G̃d (k, iωn), where the two terms are the coherent and inco-
herent parts, respectively. The coherent part provides a sharp
contribution to the spectral function Ad ∝ ImGd (k, iωn →
ω + iε), while the incoherent part is smeared out by the
convolution.

As suggested by the phase diagrams, the QAH∗ phase is
only unstable to the band insulator, so it is interesting to see
how the spectral functions change as the system approaches
the QAH∗. We compute the spectral functions at two points
marked by the two stars in Fig. 3(a); one point is deep in
the band insulator, while the other is close to a transition to
QAH∗. Figure 7 shows the spectral functions of the electrons
in layer 1 (layer 2) denoted by Ac(d ), while the subscript
“coherent” denotes the coherent part. They are obtained from
a calculation on a cylinder with zigzag edges using the self-
consistent bulk Hamiltonians. In the calculation, the Green
functions are computed from electron operators located close
to a boundary of the system.

Deep in the band insulator phase, the gap at ω = 0 in
the edge states is the result of a hybridization between the
electronic and the spinon edge modes (upper panels of Fig. 7).

The signature of the left moving and right moving edge
modes are still fairly apparent despite the hybridization effect.
In contrast, near the transition to QAH∗ (lower panels), the
hybridization is strongly suppressed, so the edge mode in the
bottom left panel is almost unaffected, and thus resembles that
of a Chern insulator. Meanwhile, Ad,coherence progressively
fades away in both the in-depth states (the continuum) and the
edge state (in-gap state). We conclude the section by noting
that such a small hybridization near the phase boundary may
lead to an incorrect characterization of the system in exper-
iments. For instance, if electrons can undergo Landau-Zener
tunneling across the hybridization gap, one might incorrectly
conclude that the system exhibits a QAH effect despite the
trivial band topology.

VI. SUMMARY

We have studied a bilayer Haldane model under the ef-
fect of electron correlations as a lattice Anderson version of
the topological bootstrap. Using slave rotor theory, we have
explored the phase diagram of this model, and have found
a fractionalized quantum anomalous Hall insulator arising
from a trivial insulator which undergoes a layer-selective
Mott transition in the strongly correlated regime. This phase
has coexisting electronic and semionic bulk excitations and
is predicted to exhibit a combination of a quantized elec-
trical Hall effect and a quantized thermal Hall effect which
violates the Wiedemann-Franz law due to fractionalization.
The hybridization can drive QAH∗ into a topologically trivial
insulator, which can be viewed as a Kondo insulator in the
strong-coupling limit. However, it is not a direct transition in
the current model; a direct transition between QAH∗ and the
trivial insulator may be achieved by adding other microscopic
terms, which we leave for future studies.
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APPENDIX A: ORIGIN OF THE DIRAC POINTS

The Dirac points arise at the momenta where the fermionic
Bloch Hamiltonian of Hf,c can be written in a special form:
The first diagonal block differs from the second one by a
rescaling and a constant, namely:

Hc,f (k) =
(

α + γH1(k) V

V H1(k)

)

= V τx + α + (γ − 1)H1(k)

2
τz

+ α + (γ + 1)H1(k)

2
τ0, (A1)

where H1 is a two-by-two matrix, V, α, γ are constant, and
τ ’s are Pauli matrices acting on the layer index. To see this,
we first start with the general form of the Bloch Hamiltonian
with nearest- and next-nearest-neighbor hoppings in the basis
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FIG. 8. Schematic band structure along a �-M line illustrating
the presence of a Dirac cone. The ±1 are the eigenvalues of the
matrix U (k).

of (fkAσ , fkBσ , ckAσ , ckBσ )T ,

Hc,f (k) =
(

α + βH1(k) + γH2(k) V

V H1(k) + γ ′H2(k)

)
,

(A2)

where H1 and H2 are 2 × 2 matrices originating from the
nearest- and next-nearest-neighbor hoppings, respectively.
α, β, γ, γ ′ are constant, while V is the hybridization term. We
have switched the order of the layer for simplicity, and the f †

operator can either be electron or spinon in layer 2.
The special form in Eq. (A1) is obtained when H2(k) =

0. In the Haldane model, the block H2(k) = −t2σz

∑
μ

sin(k · bμ) is diagonal and real valued, where σ acts on
the sublattice index. bμ’s are the three vectors connecting a
site with its next-nearest neighbors in the honeycomb lattice.
Hence the special form can occur on a (set of) curve, i.e., a 1D
object, in the BZ as the result of solving an equation with two
unknowns. When the inversion breaking term is absent, the

1D object consists of the �-M lines. We should restrict the
discussion below to this special case for simplicity. Consider
a matrix,

S (k) = V τx + α + (γ − 1)H1(k)

2
τz, (A3)

which is just the first two terms in (A1). Clearly S (k) com-
mutes with Hc,f (k) so the Bloch wave functions on the �-M
lines are also eigenfunctions of S (k). Define another matrix
which take the signs of the eigenvalues of S (k), U (k) =
Sgn(S (k)). Then the formation of the Dirac cones can be
understood as the crossing of the bands with ±1 eigenvalues
of U (k) along the �-M lines as illustrated in Fig. 8. Another
way to understand the Dirac cones is to impose another
constraint on the eigenvalues of Hc,f (k) of the special form
such that the middle two bands have an equal energy. We have
two variables, kx and ky , to tune in order to satisfy the two
equations, hence the Dirac cones can exist at multiple points
on the �-M lines of the BZ.

The form of S (k) can hint a way to gap out the Dirac
points. One example is to introduce third-nearest-neighbor
hoppings, forbidding the special form, thereby gapping out
the Dirac cones.

APPENDIX B: NONLINEAR SIGMA MODEL
REPRESENTATION OF ROTOR MEAN-FIELD

HAMILTONIAN

Here we briefly outline the computation of the rotor bond
mean fields in (12)–(17). They are computed using a Eu-
clidean action constructed from the rotor Hamiltonian Hθ

which is then represented by a nonlinear sigma model. The
nonlinear sigma model representation is quadratic and is
used to compute the bond mean fields. The Euclidean action
constructed from Hθ is given by

SE[L, θ ] =
∫ β

0
dτ

⎡
⎣∑

i

(
−iLi∂τ θi + λiLi + U

2
L2

i

)
+

⎛
⎝∑

〈ij〉
−2t1Fnne

−iθi eiθj −
∑

i

2t⊥F⊥,ie
−iθi + c.c.

⎞
⎠

⎤
⎦

+
∫ β

0
dτ

⎛
⎝∑

〈〈ij〉〉
−2t2Fnnn,ie

−iθi eiθj e−iνij (φ+ϕi ) + c.c.

⎞
⎠, (B1)

where the partition function Z = ∫
DθDL exp(−SE ). Integrating out the angular momentum field, we obtain

SE[L, θ ] =
∫ β

0
dτ

⎡
⎣∑

i

(
(∂τ θi )2

2U
+ λi

i∂τ θ

U

)
+

⎛
⎝∑

〈ij〉
−2t1Fnne

−iθi eiθj −
∑

i

2t⊥F⊥,ie
−iθi + c.c.

⎞
⎠

⎤
⎦

+
∫ β

0
dτ

⎡
⎣∑

〈〈ij〉〉
−2t2Fnnn,ie

−iθi eiθj e−iνij (φ+ϕi ) + c.c.

⎤
⎦. (B2)

Replacing the phase factor by a sigma field X = eiθ whose constraint |Xi |2 = 1 is imposed using two Lagrange multipliers
ρA(B ). One arrives at a nonlinear sigma model of the rotor Hamiltonian:

SE[X∗, X] =
∫ β

0
dτ

⎡
⎣∑

i

( |∂τXi |2
2U

+ λi

2U
(X∗

i ∂τXi − ∂τX
∗
i Xi )

)
+

⎛
⎝∑

〈ij〉
−2t1FnnX

∗
i Xj −

∑
i

2t⊥F⊥,iX
∗
i + c.c.

⎞
⎠

⎤
⎦

+
∫ β

0
dτ

⎡
⎣∑

〈〈ij〉〉

(−2t2Fnnn,iX
∗
i Xj e

−iνij (φ+ϕi ) + c.c.
) +

∑
i

ρiX
∗
i Xi

⎤
⎦. (B3)
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This is a quadratic action which can be used to compute the bond mean fields. In the Fourier space (k, iωn), the action is
given by

SE =
∑

k,n,s,s ′
X∗

k,n,sSs,s ′ (k, ωn)Xk,n,s ′ −
∑

s

2t⊥F⊥,s

√
βNc(X0,0,s + c.c.), (B4)

Ss,s ′ (k, ωn) =
(

ω2
n

2U
+ λA

U
iωn + ρA

ω2
n

2U
+ λB

U
iωn + ρB

)
+ HX

s,s ′ (k), (B5)

where Nc is the number of unit cell in layer 2; s, s ′ are sublattice indices and HX
s,s ′ (k) originates from the in-plane hopping terms

in Fourier space which does not depend on the frequency. We have added the inversion symmetry breaking term (only present
explicitly in the fermionic sector), which leads to two sigma fields to account for the charge imbalance in a generic case. Two
λ’s and two ρ’s are needed as a consequence.

The following propagator is essential for solving the self-consistent conditions:

〈Xk,ωn,sX
†
k,ωn,s ′ 〉 = S−1

s,s ′ (k, ωn) + δk,0δωn,0〈X0,0,s〉〈X∗
0,0,s ′ 〉, (B6)

where 〈X0,0,s〉 = ∑
s ′ 2t⊥

√
βNc S−1(0, 0)s,s ′F⊥,s ′ . To satisfy the sigma field constraints, we impose the following conditions:

1 = 1

Nc

∑
i

〈X†
is (τ = ε)Xis (0)〉 = 1

βNc

∑
k,n

〈X†
kωns

Xkωns〉e−iωnε, (B7)

where ε → 0+ is to keep the correct ordering of the operators. To compute the frequency sum, we use the residue theorem to

convert the sum over the poles of the Bose function nB (z) = 1
eβz−1 into a pole sum of a function f (k, z)

iωn→z= 〈X†
kωns

Xkωns〉.
We compute the poles of f (k, z) numerically and obtain the frequency sum. The Hilbert space constraints can be expressed
similarly in terms of the propagator in Eq. (B6). They involve the expectation values of the angular momentum obtained from a
Heisenberg equation of the rotor operator ∂τXis = [Hθ,Xis (τ )] and the commutator [L, eiθ ] = eiθ :

Lis = −λs

U
− 1

2
+ 1

U
X

†
is

∂Xis

∂τ
. (B8)

Likewise, the bond mean fields in (12)–(17) can also be computed using the pole summation procedure described above.
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