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We examine the Chern Kondo insulator proposed in a square optical lattice with staggered flux induced by
s-p orbital hybridization by revisiting its realization and taking into account the magnetic effects for the Kondo
phases. The Ruderman-Kittel-Kasuya-Yoshida interaction is analyzed at the weak s-p hybridization regime, with
the anisotropic magnetic effects being discussed. Furthermore, the paramagnetic and magnetic phases coexisting
with Kondo couplings are systematically investigated through the slave-boson theory, for which the rich effects
on the Chern Kondo phase are obtained, including the antiferromagnetic, collinear antiferromagnetic Kondo
insulator, and Kondo metal phases. The magnetic orders are shown to enhance the effective Kondo hybridization
compared with the case without taking into account magnetic effects, and exhibit different influences on the bulk
topology. In particular, the antiferromagnetic ordering always enhances the topological phase by increasing the
bulk gap of the Chern Kondo phases. The results show the rich topological and magnetic effects obtained in
the present Chern Kondo lattice model. We also investigate how to identify the topology and strong correlation
effects through measuring the Hall conductance and double occupancy, which are achievable in ultracold atom
experiments.
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I. INTRODUCTION

The compound SmB6, a typical strongly correlated in-
sulator, has recently been predicted to be a time-reversal-
invariant topological Kondo insulator (TKI) [1–3], in which
the protected conducting surface states account for the sat-
urated resistivity observed in experiment at low-temperature
limit [4]. The topological surface states of the proposed TKIs
have been observed by experiments [5–14]. On the other
hand, there are still interesting topics that remain to be further
explored, e.g., the existence of a neutral Fermi surface in
the bulk of the TKI SmB6 [15] motivated by the observation
of bulk quantum oscillations [16,17], linear specific heat,
anomalous thermal, and optical conductivity [18–21]. While
from the effective band description the topology of the TKIs
is essentially the same as that of an uncorrelated TI [22],
the new effects arising from the electronic correlations in
TKIs have been predicted in theory [15,22–29]. Nevertheless,
to directly observe the strong correlation effects is typically
challenging for condensed matter experiments. Recently, a
strongly correlated quantum anomalous Hall (QAH) phase,
called Chern Kondo (CK) insulator, was proposed based in
the optical lattice [30]. It was shown that both the novel
topological physics and the strong correlation effects can be
directly measured by taking the advantages of cold atom
platforms which are fully controllable and have been broadly
applied to explore the exotic topological quantum phases and
correlation physics (see, e.g., Refs. [31–49]). In this work,
we shall study the magnetic effects on the CK phase, with
different physics being predicted.

*Corresponding author: xiongjunliu@pku.edu.cn

The original idea of CK insulator [30] is summarized as
follows. Consider a checkerboard superlattice with s orbitals
on A sites and pX orbitals on B sites. Due to anisotropy of
the superlattice, the nearest-neighbor hopping between pX

orbitals is along the X̂ direction and forms an itinerant pX

band, while the nearest-neighbor hopping between s orbitals
is along the Ŷ direction, forming a nearly flat band and
lying below pX band. Through optical-assisted Feshbach res-
onance [50–56] the repulsive onsite interaction for s orbitals is
tuned to be strong, while the onsite interaction for pX orbitals
is negligible. Without s-pX hybridization, the s orbitals on A
sites form a Mott insulator at half-filling. By laser-assisted
tunneling [57–60], the s-pX hybridization is induced and a
periodic Anderson model with laser-induced staggered flux
is realized. When the hybridization is tuned to exceed a
critical value, the Kondo phase emerges with a finite s-pX hy-
bridization gap being formed. The gapped quasiparticle band
results in a nontrivial correlated Chern insulator with QAH
effect [30]. The difference between the noninteracting Chern
insulator and CK insulator can be detected by measuring the
band topology and double occupancy experimentally.

Nevertheless, there are important issues of the CK insu-
lating phase which were not well addressed in the previous
work [30]. First of all, we examine in detail the realization
of the Chern insulating phase, and found that the previous
scheme is not applicable to generate a staggered flux pattern
for the checkerboard lattice, which is essential to realize the
Chern insulating phase. Second, in the original work, only
the paramagnetic state was considered, while it was shown
that in Kondo lattice problems the Ruderman-Kittel-Kasuya-
Yoshida (RKKY) interaction between the localized electrons
competes with the Kondo effect, resulting in magnetic phases
in weak coupling regime [61], and in periodic Anderson
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lattice problems the magnetic instability also occurs in the
Kondo phases [62–65]. It is then important to investigate
the possible existence of magnetic phases in the CK model,
and the effect of magnetism on the CK phase and the phase
transition. In this work, we fully address these issues and
uncover nontrivial topological Kondo physics which were not
predicted previously. In particular, we improve the previous
realization and propose a feasible scheme to generate the s-pX

orbital hybridization with a staggered flux which can induce
QAH phase in the noninteracting regime. Moreover, we study
systematically the magnetic effects on the strongly correlated
QAH phase based on RKKY interaction and the slave-boson
mean-field theory. We map out the magnetic and QAH phase
diagrams, and show that the magnetic orders depend on the
s-pX hybridization strength and the flux φ0 generated by the
laser-assisted tunneling. The different magnetic orders can
have different influences on QAH phases. Interestingly, a
significant enhancement of the correlated QAH effect by the
magnetic ordering is predicted.

The structure of this paper is organized as follows. In
Sec. II, we examine the realization of the CK model in
detail, and propose a feasible scheme for the realization
based on the previous one [30]. In Sec. III, we derive the
effective Kondo lattice Hamiltonian and RKKY interaction,
with which we investigate the magnetic effects controlled by
s-pX hybridization. Section IV presents a systematic study of
the ground-state magnetism and QAH phase diagram through
the slave-boson theory. Especially, in this section we also
study the influences of topology and strong correlation on
the CK phase, which can be identified by measuring Hall
conductance and double occupancy in cold atom experiments.
The conclusions are given in the last Sec. V.

II. IMPROVED SCHEME FOR REALIZATION

In the realization of CK insulator [30], the laser-assisted
tunneling is applied to generate the complex s-pX hybridiza-
tion which is associated with a staggered magnetic flux.
Nevertheless, in Sec. II A we point out that the original
laser-assisted tunneling failed to create the required flux,
and a modified configuration is necessary. In Sec. II B we
improve the original method and propose a feasible scheme
for the realization, as shown in Fig. 5 following the method
in Ref. [66]. Different from the previous proposal which
applies a beam running in the x-y plane to induce Raman
transition [30], in our scheme the Raman beam propagates
along the ẑ direction and has a phase difference between x̂

and ŷ polarization components. We show that the staggered
flux of a minimal plaquette can be tuned freely from 0 to 2π ,
as required for realizing the CK insulator.

A. Synthetic flux: Previous model

In the previous proposal [30], the s-pX orbital hybridiza-
tion is induced by an effective Raman potential VR =
Vm cos(δωt + kRy), where δω and kR are the frequency and
wave vector of the Raman potential, respectively. The s-pX

orbital hybridization is induced when the frequency difference
δω compensates the energy difference between s and pX

orbitals, and can be calculated through the rotating-wave

FIG. 1. (a) Laser-induced s-pX hoppings in previous setup [30]
for one plaquette of the double-well optical lattice. (b) Laser-induced
s-pX hybridization in our scheme for four nearest plaquettes of the
double-well optical lattice.

approximation. To examine the hopping and flux generated
by the VR , we calculate the hopping integrals of a loop round
a minimal square [see Fig. 1(a)] and find that the hopping
integrals take the following form (details of the calculation
can be found in the Appendix):

J1 =
∫

d2r ψp
n,mψs

n+1,meikRy = eikRmIa,

J2 =
∫

d2r ψ
p

n+1,m+1ψ
s
n+1,me−ikRy = −e−ikR (m+ 1

2 )I ∗
b ,

J3 =
∫

d2r ψ
p

n+1,m+1ψ
s
n,m+1e

ikRy = −eikR (m+1)I ∗
a ,

J4 =
∫

d2r ψp
n,mψs

n,m+1e
−ikRy = e−ikR (m+ 1

2 )Ib,

where ψ
p
n,m (ψs

n,m) denotes real maximally localized Wannier
function for s (pX) orbital localized at the site (m, n)a′, with
a′ = a/

√
2 and a being the lattice constant of sublattice.

For simplicity we set the lattice constant a = 1. The orbitals
ψs

0,0(x, y) and ψ
p

0,0(x, y) are parity even and parity odd,
respectively. The quantities Ia and Ib are complex. From the
above result it is apparent that the product of four hopping
integrals is real, implying zero synthetic magnetic flux over
a loop of a plaquette, even though the flux over a triangular
(n,m) → (n + 1,m) → (n + 1,m + 1) → (n,m) might be
nonzero. Thus, time-reversal symmetry is broken, while we
can show that this does not lead to QAH effect. If we apply
a gauge transformation c

†
s,n,m → c

†
s,n,meikRm, in our basis the

hopping integrals become

J1 = Ia, J2 = −e
i
2 kR I ∗

b ,

J3 = −I ∗
a , J4 = e−i i

2 kR Ib. (1)

From the above results one can easily find that the tight-
binding Hamiltonian in k space lacks the τx term, and cannot
lead to QAH effect.

B. Improved scheme

Note that the optical lattice potentials for the checkerboard
lattice [see Fig. 2(a)] are formed by the following standing
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(a) (b)

(c) (d)

FIG. 2. (a) Sketch of generating double-well checkerboard su-
perlattice by a laser beam proposed in Ref. [30]. (b) The checker-
board sublattice and Raman potential for the improved scheme.
(c), (d) The Raman coupling that induces s-pX orbital hybridiza-
tion (c) and creates staggered flux pattern displayed in (d), with
the lattice potential parameters taken as (V0, V1, V2) = (8, 8, 5)ER

and φ0 = 2φ.

wave fields [30]:

Exy = 2E1[cos(k0x)ŷ + cos(k0y)x̂],

Ez = E2[eik0x + eik0y + αe−ik0x+iπ + αeik0y+iπ ]ẑ, (2)

which induces the optical lattice potential as
Vlatt=−V0[cos2(k0x)+ cos2(k0y)] − V1 sin2[(k0/2)(x − y)]−
V2 sin2[(k0/2)(x + y)], with the parameter α used to tuning
the relative magnitudes of the lattice depths V0,1,2.

In the present improved scheme, to generate staggered
synthetic magnetic flux, we add an additional incident beam
with electric field

Ẽxy = Emeikzz−i(ω−δω)t (eiφx x̂ + eiφy ŷ), (3)

which propagates along the z direction and is polarized in the
x-y planes. The Raman potential [see Fig. 2(b)] is generated
by Ẽxy together with the optical lattice beam Exy . For the
two-dimensional (2D) system, one can set that the 2D plane is
located at z = 0. The Raman potential takes the form

VR ∝ E1Emeiδωt (cos k0yeiφx + cos k0xeiφy + H.c.). (4)

In the rotating-wave approximation, the effective A-B on-
site energy difference becomes �s = �E − δω, where �E

is the bare energy difference between pX and s orbitals, as
shown in Fig. 2(c). We now compute the hopping integrals
generated by VR . To illustrate the feature of the hopping
integral, we consider four small plaquettes [Fig. 1(b)], and

calculate the hopping integrals by

J(n,m)→(n,m+1) = tae
−iφy + tbe

−iφx ,

J(n,m+1)→(n−1,m+1) = −tae
iφx − tbe

iφy ,

J(n−1,m+1)→(n−1,m) = −tae
−iφy − tbe

−iφx ,

J(n−1,m)→(n,m) = tae
iφx + tbe

iφy .

(5)

Here, the coefficients ta and tb are real quantities, and are
calculated by

ta =
∫

d2r ψ
p

−1,0(x, y)ψs
0,0(x, y) cos(k0y),

tb = −
∫

d2r ψ
p

−1,0(x, y)ψs
0,0(x, y) cos(k0x). (6)

To obtain the phases of hopping integrals in Eq. (5), we
define

t1 = tae
iφx + tbe

iφy ,

t2 = tae
−iφy + tbe

−iφx , (7)

as shown in Fig. 1(b). The product of the four hopping
integrals in Eq. (5) equals to

(t1t2)2 = (
t2
a eiφx−iφy + t2

b eiφy−iφx + 2tatb
)2

. (8)

It can be easily seen that when φx �= φy and ta �= tb, the above
product is complex, leading to a nonzero staggered flux across
a plaquette as illustrated in Figs. 2(d) and 1(b).

The magnitudes of ta and tb can be computed using the
maximally localized Wannier functions ψp and ψs . On the
other hand, in this work we shall consider the tight-binding
regime, in which case, as a good approximation, the coef-
ficients ta,b can be numerically calculated in the following
approximate way. We take a rectangle piece of lattice potential
containing a single s-pX double well and solve the orbital
wave functions, which replace the Wannier functions in com-
puting ta,b. With the parameter condition that (V0, V1, V2) =
(8, 8, 5)ER [30], where ER = h̄2k2

0/(2m) is the recoil energy,
we find ta ≈ −2tb. Now, the phase φ0 of a plaquette in Eq. (8)
can be simplified to

φ0 = 2φ = 2 arctan
3 sin (φx − φy )

5 cos (φx − φy ) + 4
, (9)

so the total flux φ0 of a plaquette can be tuned from −π to π

through tuning the phase difference φx − φy .
From the relative configuration of lattice and Raman

coupling potentials [Fig. 1(b)], we can verify easily that
J(n−1,m)→(n,m) = −J(n,m)→(n+1,m). For simplicity, we perform
the gauge transformation

s†m,n,σ →(−1)ms†m,n,σ ,

p†
m,n,σ →e−iφ1p†

m,n,σ , (10)

where φ1 is the phase of hopping integral t1 determined
through Eq. (7). With above gauge transformation the hopping
integrals for s orbitals reverses sign ts → −ts , and the phase
of s-pX hopping integral t1 along x̂ direction is transferred
to the hopping integral t2 along ŷ direction so that ±t1 →
tsp and ±t2 → tspeiφ . Finally, the tight-binding Hamiltonian
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H = H0 + Hint reads as

H0 =
∑
iσ

[
tYs s

†
iσ si±Ŷ σ − �ss

†
iσ siσ + tXp p

†
XiσpXi±X̂σ

]

+
∑
〈ij〉σ

F (r)s†iσ pXjσ δj,i+r + H.c., (11)

Hint = Us

∑
i

n̂si↑n̂si↓, (12)

where s
†
jσ /p†

Xjσ are creation operators for s/pX orbitals at the
j th site, σ =↑,↓, F (r) = tsp for r = ±x̂ and F (r) = tspe−iφ

for r = ±ŷ after gauge transformation (10). The interaction
part is tuned by Feshbach resonance [30] and we only study
the strong repulsive Us limit. For convenience, we rotate
the x̂-ŷ coordinate frame by 90◦ to X̂-Ŷ coordinate frame
where X̂ = x̂ + ŷ, Ŷ = −x̂ + ŷ when we Fourier transform
the tight-binding Hamiltonian. We will use this coordinate
frame in the remaining parts. In the k space, the s and pX

orbitals have dispersion relation εsk = 2tYs cos kY and εpk =
2tXp cos kX, respectively. The single-particle part of the tight-

binding Hamiltonian is written as H0 = ∑
kσ C

†
kσH0(k)Ckσ

with C†
kσ = (s†kσ , p

†
Xkσ ) and the Bloch Hamiltonian takes the

form

H0(k) = d0(k)τ0 + dx (k)τx + dy (k)τy + dz(k)τz, (13)

where dx (k) = 2tsp(cos φ cos kX+kY

2 + cos kX−kY

2 ), dy (k) =
2tsp sin φ cos kX+kY

2 , d0/z(k)= ± tXp cos kX+tYs cos kY −�s/2,
and the Pauli matrix τx,y,z act on orbital space. The
single-particle Hamiltonian H0 leads to a QAH phase
when |�s | < 2(ts + tp ) and 0 < φ < π [30].

III. RKKY MAGNETIC INTERACTION

The RKKY interaction in Kondo lattice systems usually
refers to the indirect coupling between local moments induced
by the hybridization between local f electrons and itinerant
d electrons in solid-state physics. The competition between
RKKY interaction (characterized by the Néel temperature
|JKρ|2) and Kondo effect [characterized by the Kondo tem-
perature TK ∼ exp(−1/|JKρ|)] is described by the Doniach
diagram [61] which states that the RKKY interaction dom-
inates in the weak |JK | limit and the Kondo effect dom-
inates in the large |JK | limit. To investigate the possible
magnetic phases in our CK model, we derive the effective
RKKY interaction in this section through two steps. We first
derive the effective Kondo lattice Hamiltonian from our CK
model in Sec. III A, and then derive the effective RKKY in-
teraction in Sec. III B based on the Kondo lattice Hamiltonian
obtained in Sec. III A. We also analyze the static magnetic
susceptibility of the RKKY interaction in Sec. III B. The
static susceptibility is affected by the Fermi surface nesting
effect and the φ-dependent hybridization. We will show that
the Fermi surface nesting effect of the pX band always favors
staggered magnetic order in the X̂ direction, while the hy-
bridization may favor different magnetic orders for different
phase φ of the s-pX hybridization.

A. Effective Kondo lattice Hamiltonian

The Kondo lattice Hamiltonian is the effective Hamiltonian
derived from the periodic Anderson model by eliminating va-
lence fluctuations and performing second-order perturbation
in the Kondo regime where the hybridization is weak and the
local orbital onsite energy lies far below the Fermi level of
itinerant band. This step can be done either by Schrieffer-
Wolff transformation [67] or by projection operator [68]. In
this paper, we take the latter method to handle our CK model,
which is also convenient for deriving the RKKY interaction.

We perform the perturbation in the tYs = 0 and Us = +∞
limit. The Hamiltonian H = H1 + H ′ is separated into two
parts: H1 preserves occupancy number of s orbital atoms, and
the hybridization term H ′ mixes the subspaces with different
number of s-orbital atoms:

H1 =
∑
iσ

[−�ss
†
iσ siσ + tXp p

†
XiσpXi±X̂σ

]+
∑

i

Usn̂si↑n̂si↓,

H ′ =
∑
k,i

Vke
−ik·Ri

√
N

s
†
iσ pXkσ + H.c., (14)

where Vk = 2tsp[exp (iφ) cos kX+kY

2 + cos kX−kY

2 ] is the hy-
bridization function in k space, N denotes the number of
unit cells, and Ri denotes the s-orbital position in the X̂-Ŷ
coordinate frame. The H ′ term is treated as a perturbation if
the hybridization strength is weak. Experimentally, the mag-
nitude of tsp can be tuned independently of the optical lattice
by the strength of the Raman laser. To obtain the effective
Hamiltonian, we define projection operator P and Q = 1 −
P , where P projects onto the subspace in which each s orbital
is singly occupied. From the Schrödinger equation, we obtain
the following equations:

(P + Q)H (P + Q)ψ = Eψ,

PH (P + Q)ψ = EPψ,

QH (P + Q)ψ = EQψ.

(15)

We eliminate Qψ to obtain effective Hamiltonian in subspace
P :

Hp(E) = PHP − PHQ
1

QHQ − E
QHP, (16)

where Hp(E) is the effective Hamiltonian that satisfies

Hp(E)[Pψ] = E[Pψ]. (17)

The approximation we then consider is to substitute the
unknown eigenenergy E by the energy of the unperturbed
states E0. The product of operators PHQ and QHP only keeps
second-order virtual processes that the states in subspace P

transfer to subspace Q and then return back to subspace P .
After some algebra (see the Appendix for details) we obtain
the effective Kondo lattice Hamiltonian:

HKL =
∑
kσ

εpkp
†
XkσpXkσ +

∑
i,k,k′

2Jk,k′,iSi · skk′, (18)

where we have defined the s-orbital spin operators
Si = s

†
iσ ′τ σ ′σ siσ /2, pX-orbital spin operators sk,k′ =

p
†
Xkσ ′τ σ ′σpXk′σ /2, and the anistropic k-dependent Kondo
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coupling Jk,k′,i = 1
N

V ∗
k Vk′ ei(k−k′ )·Ri

εpk+�s
, which contains the

information of the hybridization between s and pX orbitals.

B. RKKY interaction and static spin susceptibility

The RKKY interaction is derived from the Kondo lattice
model in weak Kondo coupling J regime by second-order
perturbation at the cost of eliminating the itinerant electron
degree of freedom. Although the Kondo effect is omitted in
such perturbation treatment, the RKKY interaction is helpful
for searching possible magnetic orders. We now derive the
RKKY interaction based on the Kondo lattice model obtained
in the last subsection by applying the projection operator
method again. In the perturbation treatment, it is assumed that
the pX band is treated as free band without coupling to the
s orbitals, while the s-pX hybridization shall be considered
up to second order to derive RKKY interaction for s orbitals.
Thus, the pX orbital has the Fermi level εp,kF

. The pX orbital
states have fermion distribution np,k = 1 if εp,k < εp,kF

, and
np,k = 0 if εp,k > εp,kF

. We further define that the projection
operator P0 projects states onto the subspace with a ground-
state Fermi sea formed by the pX-orbital degree of freedom,
so in subspace P0 no particle excitation above Fermi sea or
hole excitation below Fermi sea exists. By the second-order
perturbation (see details in the Appendix) similar to that in
the above subsection, we obtain the RKKY interaction

HRKKY =
∑
i,j

2J (Xi − Xj, Yi − Yj )Si · Sj , (19)

where the coupling coefficient takes the form

J (Xi − Xj, Yi − Yj )

=
∑
k,k′

4 cos[(k − k′) · (Ri − Rj )]

N2

× |Vk|2|Vk′ |2 1

εpk + �s

1

εpk′ + �s

np,k − np,k′

εpk − εpk′
. (20)

The static spin susceptibility χ (Q), which is the Fourier
transformation of the real-space coupling coefficient J (Xi −
Xj, Yi − Yj ), can then be obtained directly:

χ (Q) =
∑

k

2|Vk|2|Vk+Q|2 1

εp,k + �s

1

εp,k+Q + �s

× np,k − np,k+Q

εp,k − εp,k+Q
. (21)

The χ (Q) is just the dispersion relation of the RKKY interac-
tion Hamiltonian [69] if we view the quantum spin model (19)
as a classical spin model, and the vector Q which minimizes
χ (Q) is the ground-state magnetic order of the corresponding
classical spin model.

From Eq. (21) one can find the susceptibility function
of Q is different from that in a standard Kondo lattice
model. On one hand, the hybridization function |Vk|2 =
4t2

sp{cos φ[cos(kX ) + cos(kY )] + cos(kX ) cos(kY ) + 1} is k
and φ dependent, originating from the feature of the su-
perlattice that each pX orbital resides in the center of four
nearest-neighbor s orbitals and can hop directly to one of
them with phase. On the other hand, the dispersion of the

itinerant pX band is highly anisotropic and relevant only in
one dimension, while the model is two dimensional due to
the two-dimensional hybridization. For simplicity we replace
the term 1/(εp,k + �s ) with 1/(εp,kF

+ �s ) since the particle
scattering mostly occurs near the Fermi level εp,kF

. We can
then find the RKKY interaction with φ is equivalent to that
with π -φ and the magnetic phase diagram from this approach
is symmetric about φ = π/2.

To see clearly the magnetic effects from the susceptibility
equation (21), we separately look at the contributions from the
Fermi surface nesting term∑

k

np,k − np,k+Q

εp,k − εp,k+Q
, (22)

and from the hybridization term∑
k

|Vk|2|Vk+Q|2 ∝ − cos QX cos QY

− 2 cos φ2(cos QX + cos QY ) − 4. (23)

It can be seen that the Fermi surface nesting term (22) tends
to result in antiferromagnetic order (AF) with QX = 2kF = π

in the X̂ direction since the pX orbitals only hop in the X̂

direction and the band formed by pX orbitals is half-filled.
On the other hand, the effect of the hybridization term (23)
depends on the phase φ. For φ = π/2, Eq. (23) equals to
− cos QX cos QY − 4 and favors the magnetic order with Q =
(0, 0) or (π, π ); while for φ = 0 or π , Eq. (23) equals to
−(cos QX + 2)(cos QY + 2) and favors the magnetic order
with Q = (0, 0). The order Q = (0, 0) therefore competes
with the Fermi surface nesting effect in the X̂ direction.
We numerically calculated Eq. (21) and plotted the one-
dimensional magnetic phase diagram in Fig. 3. The figure
shows that near φ = π/2 the order is AF with Q = (π, π )
while near φ = 0 or π the order is collinear antiferromagnetic
order (CAF) with Q = (π, 0), implying that the Fermi surface
nesting effect dominates in weak hybridization regime. We

RKKY, t
s
Y=0

0.32 0.68
SBMF, t

s
Y=0

0.355 0.68
SBMF, t

s
Y=0.1

SBMF, t
s
Y= -0.1 /

0.6560 1

CAF order
AF order

FIG. 3. One-dimensional magnetic phase diagrams with
(tX

p , tsp, �s ) = (1, 0.3, 3) determined by phase φ. The phase
diagram on the top is obtained from RKKY interaction by
perturbation theory with tY

s = 0, and three lower phase diagrams are
obtained with slave-boson mean-field theory (SBMF) with different
tY
s . The red solid lines correspond to CAF order with Q = (π, 0)

and blue dashed lines correspond to AF order with Q = (π, π ).
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FIG. 4. Magnetic susceptibility/slave-boson mean-field
energy as functions of magnetic order Q with (tY

s , tX
p , tsp, �s ) =

(0, 1, 0.5, 3) for φ = 0 and π/2. The dark blue and yellow colors
represent the minimum and maximum of the susceptibility/energy,
respectively. (a), (b) Static susceptibility χQ obtained from RKKY
interaction by perturbation theory for φ = 0 and π/2. In the limit
QX = π the susceptibility diverges. (c), (d) Mean-field energy EQ

obtained with slave-boson mean-field theory for φ = 0 and π/2. For
(a) and (c), the ground-state magnetic order is (π, 0); for (b) and (d),
the ground-state magnetic order is (π, π ).

also plotted a special case of Eq. (21) with (tYs , tXp , tsp,�s ) =
(0.1, 1, 0.5, 3) as a function of QX and QY in Figs. 4(a) and
4(b). Note that at QX = π in Eq. (22) and the susceptibility
diverges due to the one-dimensional character of pX band
dispersion, although the magnetic order is two dimensional
due to the two-dimensional hybridization.

We further investigate the properties of RKKY interaction
in real space from Eq. (19). In the Ŷ direction, coupling coeffi-
cients with |Yi − Yj | > 1 always vanish due to the anisotropic
pX band and the RKKY magnetic interaction is the fourth-
order virtual process with respect to tsp. While in the X̂

direction, as the value of Eq. (22) diverges at QX = π due
to one-dimensional character of εpk, the coupling coefficients
decay slowly. As a result, the coupling coefficients are short
ranged in the Ŷ direction and long ranged in the X̂ direction.
We numerically calculated the coupling coefficients J (Xi −
Xj, Yi − Yj ) with Eq. (19) for φ = π/2 and 0 as shown in
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FIG. 5. The RKKY coupling coefficient J (X, Y ) = J (Xi −
Xj , Yi − Yj ) with (tY

s , tX
p , �s ) = (0, 1, 3) for (a) φ = π/2 and

(b) φ = 0 in the unit of |J (0, 0)|.

Fig. 5. The signs of J (X, 0) in the two cases are the same
and favor QX = π order. However, the signs of J (X, 1) in
the two cases differ by −1, and it can be seen that QY =
π is supported when φ = π/2 while QY = 0 is supported
when φ = 0, which is consistent with Fig. 3. As the signs of
J (X, Y ) oscillate, there is no geometric frustration in these
two special cases. From these results, we obtain that when φ

is tuned from 0 to π/2 or from π to π/2, the magnetism has a
transition from CAF order to AF order, as shown in Fig. 3.

IV. MAGNETIC PHASES AND THEIR EFFECTS
ON QAH KONDO STATES

Note that the RKKY interaction, which shows the possible
magnetic orders, is obtained by perturbation theory and valid
in weak hybridization regime. Moreover, the derivation of the
effective RKKY interaction is at the cost of eliminating the
pX orbital degree of freedom, which fails to study Kondo and
QAH effects since only the s orbital is left. To overcome these
drawbacks, in this section we apply the nonperturbative slave-
boson mean-field theory to study the ground-state phases and
magnetic effects on the QAH effect in our CK model. To take
into account the magnetic orders suggested by the RKKY
interaction, we apply the spin-rotation invariant slave-boson
mean-field theory [73] in Sec. IV A, which is convenient to
describe various magnetic orders. In Secs. IV B and IV C,
we show the magnetic and correlated QAH phase diagrams in
Fig. 6, and in Sec. IV D we discuss how to identify the influ-
ences of strong correlation and magnetism on the CK phase
by measuring Hall conductance and double occupancy in cold
atom experiments. Different from the previous work [30],
we show the rich magnetic phases coexisting with Kondo
hybridization and find that in the magnetic Kondo phases the
effective hybridization, and then the correlated QAH phase,
are enhanced compared with the paramagnetic Kondo phase
in relatively weak hybridization regime.

A. Slave-boson mean-field theory

In the present CK model (periodic Anderson model), due
to the strong repulsive Hubbard interaction in s orbitals, the
double occupancy of s orbitals is suppressed to zero. Such a
system can be studied with slave-boson theory [70] proposed
by Coleman. Kotliar and Ruckenstein (KR) further extended
the Coleman slave-boson representation to a more complex
form [71] that incorporates the result of the Gutzwiller ap-
proximation [72] on the mean-field level. In this paper, we
apply the spin-rotation invariant slave-boson mean-field the-
ory [73] which is a generalized form of the KR slave-boson
theory and is convenient to explore various magnetic orders.

In the spin-rotation invariant slave-boson theory [73], the
auxiliary bosonic and fermionic operators can be introduced.
For this we introduce the slave-boson operators ê, d̂, p̂0, p̂ =
(p̂1, p̂2, p̂3) that obey bosonic commutation relation. Here,
ê, d̂ correspond to hole and doubly occupied states. The scalar
(S = 0) field p̂0 and vector (S = 1) field p̂ = (p̂1, p̂2, p̂3)
correspond to the singly occupied state. Note that ê, d̂, p̂0

transform as scalars under spin rotation, while p̂ transforms as
a vector. On the other hand, the S = 1

2 pseudofermion opera-
tors ciσ obey fermionic commutation relation. The key idea

125141-6



MAGNETIC EFFECTS ON THE CHERN KONDO INSULATOR PHYSICAL REVIEW B 98, 125141 (2018)

0 0.5 1 1.5 2 2.5 3
tsp

0

0.2

0.4

0.6

0.8

1

/

Ch1=2, CAFKI

Gapless FKM

Ch1=2, AFKI

Ch1=2, CAFKI

Ch1
=2

PKM
Ch1=0, PKI

(a) Gapless CAFKM

Gapless PKM line

0 0.5 1 1.5 2 2.5 3
tsp

0

0.2

0.4

0.6

0.8

1

/

Ch1
=2

AFKI

Gapless FKM

Ch1=2, AFKI

Ch1=2, CAFKI

Ch1=2, PKI

Ch1=0, PKI

(b) Gapless CAFKM

Gapless PKM line

FIG. 6. The magnetic and QAH phase diagrams based on slave-boson theory for (tX
p , �s ) = (1, 3) for tY

s = 0 in (a) and tY
s = 0.1 in

(b), respectively. The Ch1 refers to as the first Chern number. The phases shown here include antiferromagnetic Kondo insulator (AFKI),
collinear antiferromagnetic Kondo insulator (CAFKI), collinear antiferromagnetic Kondo metal (CAFKM), ferromagnetic Kondo metal
(FKM), paramagnetic Kondo insulator (PKI), and paramagnetic Kondo metal (PKM) phases. The dotted lines represent phase boundaries.
The Chern number for φ = 0 and π lines is always zero but is not displayed in the figure.

is that the singly occupied auxiliary bosonic and fermionic
modes shall form into spin- 1

2 s-orbtial fermion states under
proper constraints. The local s-orbital operators sσ are then
represented by sσ = ∑

σ ′ ẑσσ ′cσ ′ , with the matrix z defined as
(see more details in the Appendix)

ẑ = ê†LRp̂ + ˆ̃p
†
LRd̂, (24)

where

L = [(1 − d̂†d̂ )1 − 2p̂†p̂]−
1
2 ,

R = [(1 − ê†ê)1 − 2 ˆ̃p
† ˆ̃p]−

1
2 . (25)

Here, ẑ, L,R are 2 × 2 matrices, matrix elements of the
matrix p̂ are defined as p̂σσ ′ = 1

2

∑3
μ=0 p̂μτμ,σσ ′ , and its

time-reversal transformation reads as ˆ̃pσσ ′ = (T̂ p̂T̂ −1)σσ ′ =
σσ ′p̂σ̄ ′σ̄ . For each s orbital at site Ri , a set of above auxiliary
operators are induced with index i labeling their sites. The
total Hilbert space has been extended now and the physical
subspace can be obtained through the following constraints:

ê
†
i êi + d̂

†
i d̂i +

∑
μ

p̂
†
iμp̂iμ − 1 = 0,

∑
σ

c
†
iσ ciσ −

∑
μ

p̂
†
iμp̂iμ − 2d̂

†
i d̂i = 0,

∑
σσ ′

τ σσ ′c
†
iσ ′ciσ − p̂i0 p̂†

i − p̂†
i p̂i0 + i(p̂†

i × p̂i ) = 0.

(26)

In terms of the auxiliary operators and incorporating the
constraints in the form of Lagrange multiplier fields αi, βi0,
and β i , the CK Hamiltonian takes the form

H =
∑
iσ

[∑
σ ′σ ′′

tYs ẑ
†
iσσ ′ ẑi±Ŷ σ ′′σ c

†
iσ ′ci±Ŷ σ ′′ − �sc

†
iσ ciσ + tXp p

†
XiσpXi±X̂σ

]
+
⎡
⎣∑

〈ij〉σ
F (r)ẑ†iσσ ′c

†
iσ ′pXjσ δj,i+r + H.c.

⎤
⎦

+
∑

i

[
Usd̂

†
i d̂i + αi

(
ê
†
i êi + d̂

†
i d̂i +

∑
μ

p̂
†
iμp̂iμ − 1

)
+ βi0

(∑
σ

c
†
iσ ciσ −

∑
μ

p̂
†
iμp̂iμ − 2d̂

†
i d̂i

)

+β i ·
(∑

σσ ′
τ σσ ′c

†
iσ ′ciσ − p̂i0 p̂†

i − p̂†
i p̂i0 + i(p̂†

i × p̂i )

)]
. (27)

We consider the mean-field approximation to the boson
fields in the above Hamiltonian with infinitely large s-orbital
onsite interaction Us . In this case, the scalar bosonic mean-
field order vanishes di = 0, the scalar mean-field orders

ei, p0i can be assumed spatially uniform so that ei = e

and p0i = p0, and also the Lagrange multiplier fields αi =
α, β0i = β0. We further consider that the vector mean-field
orders take the forms pi = p(cos (Q · Ri ), sin (Q · Ri ), 0) and
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β i = β(cos (Q · Ri ), sin (Q · Ri ), 0), characterizing a spa-
tially rotation structure in the X̂-Ŷ plane. The magnetic
order wave vector Q can be commensurate or incommen-
surate. In particular, Q = (π, π ) denotes AF order, while
the order is incommensurate if any component of Q/π is
irrational. Based on the above assumptions, the mean-field
Hamiltonian (see details in the Appendix) in the basis X†

k ≡
(c†k↑, c

†
k+Q↓, p

†
Xk↑, p

†
Xk+Q↓) takes the form

H =
∑

k

X†
kεkXk + N

[−β0
(
p2

0 + p2
)

+ 2βp0p + α
(
e2 + p2 + p2

0 − 1
)]

, (28)

with matrix εk defined as

εk =

⎛
⎜⎜⎜⎜⎝

εa
sk + β0 εc

sk + β z+Vk z−Vk+Q

εc
sk + β εb

sk + β0 z−Vk z+Vk+Q

z+V ∗
k z−V ∗

k εp,k 0

z−V ∗
k+Q z+V ∗

k+Q 0 εp,k+Q

⎞
⎟⎟⎟⎟⎠. (29)

Here, εa
sk = z2

+εsk + z2
−εsk+Q − �s , εb

sk = z2
+εsk+Q +

z2
−εsk − �s , εc

sk = z+z−(εsk+Q + εsk ) are s-orbital hopping
terms. The renormalization factor takes the form [74]

z± = 1√
2

ep+√
1 − p2+

√
1 − e2 − p2−

± 1√
2

ep−√
1 − p2−

√
1 − e2 − p2+

, (30)

where p± = (p0 ± p)/
√

2 are proportional to the eigenvalues
of the p̂σσ ′ matrix.

The mean-field solutions (saddle-point approximation) are
obtained by minimizing the mean-field free energy (ground-
state energy at zero temperature), which reads as

F = −T
∑
kα

ln[1 + exp[−(Ekα − μ)/T ]]

+N
[−β0

(
p2

0 + p2
)+ 2βp0p + α

(
e2 + p2 + p2

0 − 1
)]

.

(31)

Here, the εkα with α = 1, 2, 3, 4 are four eigenvalues of the
4 × 4 matrix εk. The stationary condition yields the saddle-
point equations

∂F

∂e
= ∂F

∂p0
= ∂F

∂p
= ∂F

∂α
= ∂F

∂β0
= ∂F

∂β
= 0. (32)

The chemical potential μ at half-filling is determined by the
particle-number condition∑

kα

f (Ekα − μ) = 2N, (33)

where f is the Fermi-Dirac distribution function. Since we
only consider the ground state in this paper, the distribution
function is just a step function.

The physical quantities such as particle numbers and
magnetic moments can be represented by correlation func-
tions. Particle number and magnetic moment in s orbitals are

obtained by

ns↑ =
∑

k∈BZ

〈c†k↑ck↑〉,

ns↓ =
∑

k∈BZ

〈c†k↓ck↓〉,

ms =
∑

k∈BZ,σσ ′
〈c†kσ τ σσ ′ck+Qσ ′ 〉.

(34)

Similarly, the particle number and magnetic moment in pX

orbitals take the form

np↑ =
∑

k∈BZ

〈p†
Xk↑pXk↑〉,

np↓ =
∑

k∈BZ

〈p†
Xk↓pXk↓〉,

mp =
∑

k∈BZ,σσ ′
〈p†

Xkστ σσ ′pXk+Qσ ′ 〉.

(35)

The first Chern number Ch1 for the bands below Fermi
level μ is calculated by

Ch1 =
∫

BZ

d2k
∑
α,α′

[f (Ekα′ − μ) − f (Ekα − μ)]

× 1

2π

Im[〈kα′|v̂X|kα〉〈kα|v̂Y |kα′〉]
(Ekα′ − Ekα )2

, (36)

where v̂X/Y = ∂εk/∂kX/Y are velocity operators along X̂/Ŷ

directions and |kα〉 is the eigenvector of matrix εk correspond-
ing to the eigenenergy Ekα .

B. Magnetic phase diagrams

The mean-field saddle-point equations can be solved nu-
merically with an ansatz magnetic order Q = (QX,QY ), and
the saddle-point solution yields the mean-field ground-state
energy EQ. The ground-state magnetic order should be ob-
tained by finding Q that minimizes the mean-field energy EQ.

As suggested by the features of the RKKY interaction
discussed in the last section, the s-pX hybridization favors
the order Q = (0, 0) or (π, π ) and the Fermi surface nesting
effect in pX band favors the order QX = π . As a result, we
consider only the paramagnetic, ferromagnetic [Q = (0, 0)],
AF [Q = (π, π )], and CAF [Q = (π, 0)] orders in the slave-
boson mean-field calculation. In Figs. 4(c) and 4(d) we
plot EQ versus Q for the parameters (tsp, tYs , tXp , tsp,�s ) =
(0.5, 0, 1, 0.5, 3) and φ = 0, π/2, respectively. One can see
that the relation between EQ and Q in low-energy regions
shown in Figs. 4(c) and 4(d) qualitatively agrees with the
relation between the static magnetic susceptibility χQ and
Q in Figs. 4(a) and 4(b), and the ground-state magnetic
orders obtained from both methods are the same. However,
in the strong coupling tsp regime, the magnetic orders from
perturbation theory may not be justified since the perturbation
theory is not valid in strong hybridization regime.

We plot the ground-state magnetic phase diagrams versus
the coupling tsp and phase φ in Fig. 6 with (tXp ,�s ) = (1, 3).
Note that the phase diagram from the present mean-field
calculation is symmetric about φ = π , so for convenience
we plot only the phase diagrams in the region 0 < φ < π .
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FIG. 7. The quasiparticle band obtained with slave-boson the-
ory shows a transition from CAFKI phase to CAFKM phase at
critical value t c

sp � 0.67 for (tY
s , tX

p , �s , φ) = (0.1, 1, 3, 0.9π ). The
special k points are defined as � = (0, 0), A = (π/2, 0), B =
(π/2, π ), Y = (0, π ).

Figure 6(a) shows the phase diagram with tYs = 0, where the
Hamiltonian can be transformed to the Kondo lattice Hamil-
tonian in weak hybridization regime as discussed previously.
In weak hybridization regime tsp � 0.6, the magnetic phase
diagram qualitatively agrees with the perturbation result in
Fig. 3. Namely, near φ = π/2 the phase is AF Kondo insulator
(AFKI), while near φ = 0 and π the phase is CAF Kondo
insulator (CAFKI). At large coupling regime, the slave-boson
theory shows that for φ ≈ π , the phase evolves from CAFKI
phase to the CAF Kondo metal (CAFKM) phase as tsp in-
creases (band structures are shown in Fig. 7), and then to
ferromagnetic Kondo metal (FKM) phase. We note that the
ferromagnetic order is not a ground-state order at half-filling
in standard periodic Anderson model (with simple isotropic
conduction band dispersion and k-independent hybridization)
and may be ground state only away from half-filling in slave-
boson mean-field calculation [63]. However, in the present
CK model the emergence of ferromagnetism at half-filling is
due to the anisotropic k-dependent hybridization function Vk.
In the region φ ≈ 0, the increase of tsp does not affect the
phase diagram much and the magnetic order is always CAF
before magnetic moment decreases to zero. This asymmetry
of the magnetic phase diagram about φ = π/2 is in contrast
to the symmetry of the magnetic phase diagram from RKKY
interaction in the last section, where the second-order per-
turbation eliminates the pX orbitals’ degree of freedom. At
very strong hybridization, the magnetic Kondo phases evolve
into paramagnetic Kondo metal (PKM) phase, and further
into paramagnetic Kondo insulator (PKI) phase, consistent
with the Doniach diagram that the magnetic orders are fully
suppressed in the strong coupling regime [61].

Figure 6(b) shows the magnetic phase diagram with tYs =
0.1. The main difference in this case from that with tYs = 0
[as shown in Fig. 6(a)] lies in weak hybridization tsp regime.
With tYs = 0.1, the AF order disappears when tsp � 0.4 but
again appears at very weak tsp and φ ≈ π . A comparison

of magnetic orders with parameters (tXp , tsp,�s ) = (1, 0.3, 3)
for tYs = 0 and ±0.1 is shown in Fig. 3. One can see that
only when tYs = 0 the magnetic phase diagram from slave-
boson mean-field theory agrees well with magnetic orders
determined by RKKY interaction via perturbation in weak
hybridization regime. In the strong hybridization regime, the
effects of small tYs on magnetism can be neglected compared
to the large tsp. Then, magnetic phase diagrams with tYs = 0.1
and 0 are nearly the same.

The transition from PKM or topological PKI phase to
trivial PKI phase, characterized by the gapless PKM line in
[Figs. 6(a) and 6(b)], occurs when the renormalized s-orbital
onsite energy increases so that β0 − �s satisfies β0 − �s >

|z2
+tYs + tXp |. We note that the PKM has a vanishing indirect

gap, but still has direct gap which is defined as the minimal
energy difference of the upper and lower band states at fixed
momentum (Fig. 7). However, as the energy minimum of the
upper subbands equals to the energy maximum of the lower
subbands, the Chern number of the PKM phase still denotes
the topological invariant of the entire lower subbands.

For the paramagnetic Kondo phases obtained from slave-
boson mean-field theory, the s-orbital onsite energy −�s is
renormalized from far below 0 to above 0 (the pX orbital
onsite energy is 0) and increases with the hybridization tsp [see
Fig. 8(a)], and similar results were also shown by Ref. [75].
In the weak bybridization limit, such property can be verified
by the analytic solution provided in Refs. [65,76], where
β0 − �s ∝ e2 is given. In the strong tsp regime, such property
in our result can be understood in the following way. In the
paramagnetic phase, the mean fields z− = 0, β = 0, p = 0
and the number of order parameters can be reduced to two,
i.e., z+ and β0, because e and p0 can be viewed as functions
of z+ from Eqs. (26) and (30):

e = z+√
2 − z2+

,

p0 =
√

1 − e2. (37)

The Hamiltonian matrix can also be reduced to

εk =
(

z2
+εsk + β0 z+Vk

z+Vk εp,k

)
. (38)

From the formulas in Eq. (26) one can see that e2
i +∑

μ p̂
†
iμp̂iμ = e2

i +∑
σ c

†
iσ ciσ = 1 and the s-orbital occupa-

tion number equals to the pseudofermion occupation number
since di = 0. As tsp increases, the renormalized hybridization
z+tsp and the holon number e2 increases [see Fig. 8(a)], so
the pseudofermion occupation number

∑
σ c

†
iσ ciσ decreases.

As a result, one can deduce β0 should increase. Otherwise, if
the renormalized onsite energy β0 − �s decreases or keeps
unchanged, with the increase of z+tsp, the pseudofermion
occupation number

∑
σ c

†
iσ ciσ in the fully filled lower band

will increase towards 1
2 for each spin component since the

hybridization in the Hamiltonian matrix (38) is off-diagonal
term and two eigenvectors of εk will approach [1, 1]T /

√
2 and

[1,−1]T /
√

2 in the large tsp limit.
The PKM to PKI transition that occurs at β0 − �s =

2(z2
+tYs + tXp ) can be identified by looking at special k points.
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FIG. 8. Numerical results for the parameter condition
(tY

s , tX
p , �s , φ) = (0.1, 1, 3, 0.6π ), computed with slave-boson

theory. (a) The renormalized s-orbital onsite energy β0 − �s

and holon number e2 for PKI phase. (b) The staggered s-orbital
magnetic moment ms and holon number e2 for the AFKI phase.
(c) Quasiparticle gap and Chern number Ch1 for the AFKI phase
(solid lines) and PKI phase (dashed lines). The Chern number for
both phases is different only in the weak tsp regime. In the PKI
phase, it shows e2 = 0 when ln (tsp ) < −1.23, and then both the
quasiparticle gap and Ch1 vanish. (d) The scaling ln (e2) versus
ln (tsp ) for PKI/AFKI phase (circles) and their fitted curves (solid
lines) in the weak tsp regime. For the PKI phase, the fitted curve
reads as e2 ∝ t−2

sp exp(−1.078/t2
sp ) which ends for ln (tsp ) < −1.23,

while for the AFKI phase, the fitted line reads as e2 ∝ t2.29
sp which is

nonzero for finite tsp .

Near the transition point, the minimum energy of the upper
paramagnetic band E+ and maximum energy of the lower
paramagnetic band E− lie within high-symmetry k points
(π, 0) and (0, π ). For the k point (π, 0), energies of upper
and lower bands are

E+(π, 0) = 2tYs + β0 − �s ,

E−(π, 0) = − 2tXp . (39)

For the k point (π, 0), however, when 2(z2
+tYs + tXp ) < β0 −

�s , the energies of upper and lower bands are

E+(0, π ) = − 2tYs + β0 − �s ,

E−(0, π ) = 2tXp , (40)

while when β0 − �s < 2(z2
+tYs + tXp ), the energies of upper

and lower bands are

E+(0, π ) = 2tXp ,

E−(0, π ) = − 2tYs + β0 − �s . (41)

One can see from the above energies that when tYs = 0, the
paramagnetic phase will evolve from metal to insulator at the
transition point, while when tYs > 0, the paramagnetic phase
is always insulator before and after the transition.

In the AFKI phase, the staggered magnetic moment ms

on s orbitals is plotted in Fig. 8(b). The ms approaches local
moment limit ms → 1 as tsp → 0, and decreases with the tsp
increasing until a continuous transition to the paramagnetic
phase occurs. The magnetic moment mp on pX orbitals is
always zero in the AFKI or CAFKI phase, for in our checker-
board superlattice each pX orbital’s four nearest s orbitals are
in AF or CAF order. The effective Kondo interaction between
s and pX orbitals is spin-spin interaction, so particles on pX

orbitals experience frustrated effective magnetic field from s

orbitals and thus have no magnetic moment.

C. QAH phase diagram

The QAH phase diagrams with (tXp ,�s ) = (1, 3), tYs =
0 and 0.1 are plotted in Figs. 6(a) and 6(b), respectively.
With such parameters, in the single-particle regime without
interaction, the QAH effect is trivial with Ch1 = 0 since
|�s | > 2|tYs + tXp | [33]. However, in our CK model Us →
+∞ and with the slave-boson mean-field theory, the renor-
malization for s-orbital onsite energy which raises −�s to
β0 − �s may cause band crossing between s and pX orbitals
and thus possibly make the QAH phase nontrivial. In weak
hybridization regime, as shown in Fig. 6, both AFKI and
CAFKI phases are fully gapped and have quantized Chern
number Ch1 = 2. When tsp gradually increases, the CAFKI
phase near φ = π evolves to gapless CAFKM phase and FKM
phase with unquantized Chern number, while the CAFKI
phase near φ = π and AFKI phase around φ = π/2 are
always gapped with Ch1 = 2. For the PKM or PKI phases
in the large tsp regime and on the left side of the PKM line,
|β0 − �s | < 2|z2

+tYs + tXp | is satisfied and total Chern number
Ch1 = 2 with each spin component having Chern number 1.
The PKM phase with tYs = 0 is at the edge between gapless
phase and gapped phase as discussed in the last subsection, for
the maximum of the lower band equals to the minimum of the
higher band, so the PKM phase has quantized Ch1 although
it is a metallic phase. On the right side of PKM line, the gap
opens again with |β0 − �s | > 2|tYs + tXp | and the QAH effect
is trivial. The phases on the special line where φ = 0 or π also
have trivial band topology because the hybridization function
Vk is real and the Berry curvature vanishes.

We now investigate the effects of magnetism on the QAH
effect. The quasiparticle gap of the QAH phase opens due to
the strongly renormalized s-pX hybridization. In the Coleman
slave-boson representation, the hybridization tsp is renormal-
ized in the form of etsp, indicating that the nonzero effec-
tive hybridization is achieved with e2 > 0 local moment for
each s orbital. In the paramagnetic phase in KR slave-boson
representation, e is just a monotonically increasing function
of tsp’s renormalization factor z+ as shown by Eq. (30), so
the above physical pictures also apply to the KR slave-boson
representation. Figure 8(a) shows numerical results of the
s-orbital holon number e2 and renormalized onsite energy of
the PKI phase with (tYs , tXp ,�s , φ) = (0.1, 1, 3, 0.6π ). Below
the critical hybridization ln (t csp ) ≈ −1.23, the holon number
has a transition to e2 = 0, representing the s and pX or-
bitals are decoupled and gap closes [Fig. 8(c)], i.e., the CK
transition described in the previous work [30]. The analytic
result for paramagnetic slave-boson solutions for standard
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periodic Anderson model [65,77] shows exponential relation
e2 ∝ J−1

K exp (1/JKρ) in the tsp → 0 limit, where the Kondo
coupling satisfies JK ∝ t2

sp and a constant density of state for
itinerant band has been assumed in their derivation. Although
our CK model is anisotropic, the exponential relation e2 ∝
J−1

K exp (1/JKρ) in the PKI phase can be fitted well when
tsp > tcsp as shown in Fig. 8(d). The sudden decrease to zero
of e in our numeric solution of the mean-field equations when
tsp < tcsp may come from the inaccuracy of the numerical
calculation, for e2 decreases towards 0 so fast in the weak
tsp limit. However, since e2 decreases so fast, we can still
view the t csp as a quasicritical point, and below this t csp the
renormalized hybridization can be regarded as 0 and the Ch1

vanishes.
Compared to the PKI phase, in the magnetic Kondo phase

the holon number e2 does not decrease so fast and effective
hybridization is enhanced in the weak hybridization limit.
Among the magnetic Kondo phases, we found in our numer-
ical results there is not much difference in the holon number
e2 between different types of magnetic orders. We plot holon
number e2 of the AFKI phase in Fig. 8(b) as an example,
where e2 is far more larger than that of the PKI phase in
weak hybridization limit, implying the effective hybridization
is enhanced compared to paramagnetic phase in such limit.
Similar results were also shown by Refs. [62,63] for standard
Anderson model. Another numerical study of standard one-
dimensional periodic Anderson model with density-matrix
renormalization group (DMRG) [65] found that the relation
between e2 and tsp is power law ln e ∝ ln tsp at weak tsp with
infinite large Us in the Kondo regime, in contrast to the PKI
phase obtained with slave-boson mean-field theory, where
e2 ∝ J−1

K exp (1/JKρ). It was also found that although the
ground state has zero total spin, the antiferromagnetic corre-
lation is strong. For the present CK model, we also plotted the
fitted power-law relation ln e ∝ ln tsp for the AFKI phase in
Fig. 8(d), which qualitatively agrees with the DMRG result in
Ref. [65]. As the magnetic Kondo phase is energetically more
stable than the PKI phase in the weak hybridization regime,
the CK transition in the PKI phase described in the previous
work [30] will not occur in our CK model.

The present mean-field calculation also shows that differ-
ent magnetic orders have different influences on QAH effect.
The AF order always enhances the quasiparticle gap of the
QAH phase compared to the paramagnetic phase, and we plot
the comparison of gap between AFKI and PKI phase with
φ = 0.6π in Fig. 8(c) as an example. In Fig. 8(c), similar
to that shown in Refs. [63,64], the gap of the AFKI phase
has a peak for tsp ≈ 0.8 that results from the increase of
the self-consistent magnetic field β on s orbital (for detailed
discussion, see Appendix). Note that other magnetic orders
do not always enhance the gap. For CAF order, we obtain
a CAFKI phase in the weak hybridization regime where
the quasiparticle gap is enhanced, but as the hybridization
increases, we obtain a CAFKI phase near φ � 0 and obtain
a CAFKM phase near φ ≈ π as shown from Fig. 6 with
moderate tsp. For the CAFKM phase, the quasiparticle is
gapless and the Hall effect is not quantized any more. For
ferromagnetic order, we always obtain a gapless FKM phase
since the spin splitting is uniform in real space and thus the
Hall effect is always not quantized.

D. Experimental measurement of the topology
and strong correlation effects

The fully controllable cold atom experimental technolo-
gies including the Hall-effect measurement [78] and double-
occupancy measurement [79,80] can enable us to identify
the topology and influences of strong correlation on the CK
phase. We now predict and discuss the observables including
Hall conductance and double occupancy that can be affected
by the topology and correlation effect, respectively. With
the coexistence of magnetic order, these observables in the
magnetic CK phase will be qualitatively different from those
in the PKI phase.

The nontrivial band topology is determined by the exis-
tence of quasiparticle gap and band inversion. Having been
discussed in the last subsection, the quasiparticle gap is
affected by the existence of effective Kondo hybridization
and the magnetic orders, while the band inversion is affected
by the magnitude of the renormalized s-pX onsite energy
difference, which is controlled by the strength of tsp. This
leads to a rich QAH phase diagram. To identify the topological
physics, one can either tune the magnitude of tsp with phase
φ fixed, or tune phase φ with the magnitude of tsp fixed. In
particular, one can tune the magnitude of tsp with parameters
(tYs , tXp ,�s , φ) = (0.1, 1, 3, 0.6π ) being fixed. In the nonin-
teracting regime, the s-orbital onsite energy lies far below the
pX orbital, and the phase is trivial irrespective of magnitude of
tsp. However, in the presence of strong repulsive interaction,
the s-pX onsite energy difference is strongly renormalized
to a small quantity, with the effective hybridization being
enhanced by the AF magnetic order in contrast to the para-
magnetic phase, leading to the nontrivial QAH effect with
Ch1 = 2 when tsp is not too strong, as shown in Fig. 8(c).
We note that for large enough tsp, the onsite energy difference
can be further renormalized, finally yielding a large magnitude
again, and the phase can reenter the trivial regime, as shown
in Figs. 8(b) and 8(c). Further, one can also tune φ from 0
to π and keep (tYs , tXp , tsp,�s ) = (0.1, 1, 0.77, 3) being fixed.
In this case, the ground-state phases can be CAFKI, AFKI,
CAFKI(M), or FKM phases with different φ (Figs. 6 and 9).
Among these magnetic orders, the AF order always leads to an
insulating phase with enhanced gap and QAH effect, the CAF
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p , tsp, �s ) = (0.1, 1, 0.77, 3) obtained with slave-

boson theory. (a) Quasiparticle gaps for three types of magnetic
orders versus φ. (b) Ground-state magnetic order and first Chern
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FIG. 10. Double-occupancy probability for s orbitals (Ds) and
for pX orbitals (Dp) with (tY

s , tX
p , �s , φ) = (0.1, 1, 3, 0.6π ). (a)

Single-particle regime with Us = 0. (b) AFKI phase in the regime
with Us → +∞. (c) PKI in the regime with Us → +∞. The results
in (b) and (c) are obtained with slave-boson theory. Note that Dp

in (c) has a transition point labeled by a black circle. As seen in
Fig. 8(a), when tsp � 1.45, the AFKI magnetic moment vanishes and
the system enters the PKI phase.

order may lead to insulating or metallic phase determined by
tsp and φ, while the ferromagnetic order always results in
metallic phase without quantized Hall effect.

Concerning the strong correlation effects, we show the
double occupancy Dp for pX orbital and Ds for s orbital
with (tYs , tXp ,�s , φ) = (0.1, 1, 3, 0.6π ) in Fig. 10(b). We also
calculated the double occupancy for the single-particle regime
(Us = 0) and PKI phase as a comparison in Figs. 10(a) and
10(c). Figure 10(a) differs from 10(b) and 10(c) for lack
of correlation effect, while 10(b) differs from 10(c) without
consideration of the magnetism. The Dp for noninteraction
pX orbital is calculated by Wick’s theorem Dp = np↑np↓ for
Figs. 10(a)–10(c). In the single-particle regime with Us = 0
corresponding to Fig. 10(a), the onsite energy for s orbital
lies below that of pX orbital and thus the particle number and
double occupancy on s orbitals are larger than that on pX or-
bitals. Figures 10(b) and 10(c) correspond to the AFKI phase
and PKI phase, respectively, in strong correlated regime with
repulsive Us → ∞. Before the laser-assisted hybridization tsp
is induced, the s orbitals form a half-filled Mott insulator and
the double occupancy Ds on s orbitals is suppressed to zero
with the s-orbital onsite energy being renormalized to above
pX orbital due to strong Us . Thus, in Figs. 10(b) and 10(c)
Dp is greatly enhanced compared to that in the single-particle
regime in Fig. 10(a). When hybridization tsp is induced and
effective hybridization exists, Ds keeps to be zero, while
particles on s orbitals begin to pump into pX orbitals, with
the s-orbital onsite energy being further renormalized. The
difference between Figs. 10(b) and 10(c) occurs in the weak
hybridization tsp limit. For the AFKI case with magnetic
order, effective hybridization is enhanced and exists as long as
tsp �= 0, while for the PKI phase the existence of effective hy-
bridization needs the hybridization to exceed its quasicritical
value t csp, i.e., after the CK transition. Around the quasicritical
t csp, for the AFKI phase the Dp increases smoothly while for

the PKI phase the Dp starts to increase abruptly at tsp � t csp,
showing the difference between emergence of the magnetic
and paramagnetic CK phases.

V. CONCLUSIONS

In this work, we have examined the Chern Kondo insulator
by revisiting its realization and studied the magnetic effects
on the Chern Kondo phases. An improved scheme for the
realization of Chern Kondo insulator is proposed, solving the
challenges in the previous realization. The Ruderman-Kittel-
Kasuya-Yoshida magnetic interaction is analyzed at weak hy-
bridization limit, with the anisotropic magnetic effects being
discussed. We further systematically studied the paramagnetic
and magnetic phases coexisting with Kondo hybridization
based on slave-boson theory and mapped out the full mag-
netic and correlated QAH phase diagrams. The rich phases,
including the paramagnetic/magnetic Kondo insulating phases
and magnetic Kondo metallic phases, have been obtained
and investigated in detail. Interestingly, the effective Kondo
hybridization can be typically strengthened by taking into
account magnetic effects. In particular, we showed that the ex-
istence of antiferromagnetic order enhances the Kondo phase,
with the topological bulk gap being increased compared with
that in the paramagnetic regime. On the other hand, the Kondo
phases coexisting with collinear antiferromagnetic order have
metal-insulator transition determined by the strength and
phase of hybridization, which is absent in the paramagnetic
Kondo phase. Moreover, in the large hybridization regime,
the bulk phase may eventually enter the paramagnetic Kondo
insulating states, which manifests that the magnetic orders are
fully suppressed in the strongly Kondo regime. The Chern
Kondo phases can be detected by measuring the Chern num-
ber of bulk topology and the double occupancy, which are
achievable in cold atom experiments. The rich strongly cor-
related and topological physics may motivate further studies
of the Chern Kondo phases in theory and experiment.
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APPENDIX

1. The s- pX hopping integrals from laser-assisted tunneling
in the previous realization

In this section we will evaluate the hopping integrals for
original laser-assisted tunneling in Fig. 1(a):

J1 =
∫

d2r ψp
n,m(x, y)ψs

n+1,m(x, y)eikR (y−m)eikRm,

J2 =
∫

d2r ψ
p

n+1,m+1(x, y)ψs
n+1,m(x, y)e−ikR [y−(m+ 1

2 )]

× e−ikR (m+ 1
2 ),
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J3 =
∫

d2r ψ
p

n+1,m+1(x, y)ψs
n,m+1(x, y)eikR [y−(m+1)]eikR (m+1),

J4 =
∫

d2r ψp
n,m(x, y)ψs

n,m+1(x, y)e−ikR [y−(m+ 1
2 )]e−ikR (m+ 1

2 ).

(A1)

Here, ψ
p
n,m(x, y) and ψs

n,m(x, y) are real maximally localized
Wannier functions for pX (s) orbitals, (n,m) is the coor-
dinate of lattice site, and ψ

p

0,0(x, y)/ψs
0,0(x, y) are odd/even

functions, respectively. We also have ψn,m(x, y) = ψ0,0(x −
n, y − m), then the integrals can be simplified:

I1 =
∫

d2r ψp
n,m(x, y)ψs

n+1,m(x, y)eikR (y−m)

=
∫

d2r ψ
p

0,0(x, y)ψs
1,0(x, y)eikRy,

I3 =
∫

d2r ψ
p

n+1,m+1(x, y)ψs
n,m+1(x, y)eikR (y−(m+1))

= −
∫

d2r ψ
p

0,0(x, y)ψs
1,0(x, y)e−ikRy . (A2)

In the above formulas, we have used the property of integral:

∫
dr2f (x, y) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy f (x, y)

=
∫ +∞

−∞
dx

∫ +∞

−∞
dy f (−x,−y)

=
∫

dr2f (−x,−y). (A3)

Decomposing the complex integral into real and imaginary
parts, we can obtain the relation between I1 and I3:

I1 = +
∫

d2r ψ
p

0,0(x, y)ψs
1,0(x, y) cos(kRy)

+ i

∫
d2r ψ

p

0,0(x, y)ψs
1,0(x, y) sin(kRy) = Ia,

I3 = −
∫

d2r ψ
p

0,0(x, y)ψs
1,0(x, y) cos(kRy)

+ i

∫
d2r ψ

p

0,0(x, y)ψs
1,0(x, y) sin(kRy) = −I ∗

a . (A4)

Similarly,

I2 =
∫

d2r ψ
p

n+1,m+1(x, y)ψs
n+1,m(x, y)e−ikR [y−(m+ 1

2 )]

= −
∫

d2r ψ
p

0,0

(
x, y + 1

2

)
ψs

0,0

(
x, y − 1

2

)
eikRy,

I4 =
∫

d2r ψp
n,m(x, y)ψs

n,m+1(x, y)e−ikR [y−(m+ 1
2 )]

=
∫

d2r ψ
p

0,0

(
x, y + 1

2

)
ψs

0,0

(
x, y − 1

2

)
e−ikRy . (A5)

Decomposing these two numbers into real and imaginary
parts, we can obtain the relation between I2 and I4:

I2 = −
∫

d2r ψ
p

0,0

(
x, y + 1

2

)
ψs

0,0

(
x, y − 1

2

)
cos(kRy)

− i

∫
d2r ψ

p

0,0

(
x, y + 1

2

)
ψs

0,0

(
x, y − 1

2

)
sin(kRy)

= −I ∗
b ,

I4 = +
∫

d2r ψ
p

0,0

(
x, y + 1

2

)
ψs

0,0

(
x, y − 1

2

)
cos(kRy)

− i

∫
d2r ψ

p

0,0

(
x, y + 1

2

)
ψs

0,0

(
x, y − 1

2

)
sin(kRy)

= Ib. (A6)

2. Effective Kondo lattice Hamiltonian

The effective Kondo lattice Hamiltonian is derived through
perturbation theory when s-pX hybridization is weak and the
s-orbital onsite energy lies far below the pX orbital. Here, we
provide detailed derivation of the Kondo lattice Hamiltonian

HKL =
∑
kσ

εpkp
†
XkσpXkσ +

∑
i,k,k′

Jk,k′,iSi · skk′ (A7)

from the original Hamiltonian

H = H1 + H ′,

H1 =
∑
iσ

[−�ss
†
iσ siσ + tXp p

†
XiσpXi±X̂σ

]+
∑

i

Usn̂si↑n̂si↓,

H ′ =
∑
k,i

Vke
−ik·Ri

√
N

s
†
iσ pXkσ + H.c., (A8)

and the definition of the effective Hamiltonian

Hp(E) = PHP − PHQ
1

QHQ − E
QHP, (A9)

where the projection operator P project states onto subspace
with each s orbital singly occupied and Q = 1 − P .

We separate H ′ into H ′ = H+ + H−, where H+ =∑
k,i N

−1/2Vke
−ik·Ri s

†
iσ pXkσ and H− = ∑

k,i N
−1/2Vk

eik·Ri p
†
Xkσ siσ . The operator H+ increases one particle on

s orbitals and H− decreases one particle on s orbitals.
Consider the approximation that replaces the unknown E

with the unperturbed energy E0. The formulas become

PH1Q = 0,

PH ′P = 0,

QH ′Q = 0,

(A10)
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and the effective Hamiltonian can be simplified to the form

Hp(E) ≈ P (H1 + H+ + H−)P − P (H1 + H+ + H−)Q
1

QHQ − E0
Q(H1 + H+ + H−)P

= PH1P − PH+Q
1

QH1Q − E0
QH−P − PH−Q

1

QH1Q − E0
QH+P. (A11)

Substituting H1, H+, and H− into above formula yields the form

Hp(E) =
∑
kσ

εpkp
†
XkσpXkσ −

∑
k, k′

i, σ, σ ′

V ∗
k Vk′ei(k−k′ )·Ri

N

s
†
iσ ′pXk′σ ′p

†
Xkσ siσ

εpk + �s

−
∑
k, k′

i, σ, σ ′

V ∗
k Vk′ei(k′−k)·Ri

N

p
†
Xk′σ ′siσ ′s

†
iσ pXkσ

Us − εpk − �s

. (A12)

Here, we have discarded the onsite energy −N�s for s orbitals, for it is a constant in the subspace P . The third term in
the above formula can be omitted since we only consider the infinitely large Us limit. Using the identity s

†
iσ ′pXk′σ ′p

†
Xkσ siσ =

s
†
iσ ′siσ (δσσ ′δkk′ − p

†
XkσpXk′σ ′ ), the effective Hamiltonian reads as

Hp(E) =
∑
kσ

εpkp
†
XkσpXkσ +

∑
k, k′

i, σ, σ ′

V ∗
k Vk′ei(k−k′ )·Ri

N

s
†
iσ ′siσp

†
XkσpXk′σ ′

εpk + �s

−
∑

k, i, σ

V ∗
k Vk

s
†
iσ siσ

εpk + �s

.
(A13)

The third term in the above formula is also a constant in the subspace P . Defining the spin density operators Si =
s
†
iσ ′τ σ ′σ siσ /2, sk,k′ = p

†
Xkσ ′τ σ ′σpXk′σ /2 where τ is the vector formed by three Pauli matrices, we obtain the identities

s
†
i↑si↓p

†
Xk↓pXk′↑ = S+

i s−
kk′,

s
†
i↓si↑p

†
Xk↑pXk′↓ = S−

i s+
kk′,

s
†
i↑si↑p

†
Xk↑pXk′↑ + s

†
i↓si↓p

†
Xk↓pk′↓ = 1

2 (p†
Xk↑pXk′↑ + p

†
Xk↓pXk′↓) + 2Sz

i s
z
kk′ .

(A14)

The potential scattering term p
†
Xk↑pXk′↑ + p

†
Xk↓pXk′↓ in the third line can be omitted if we only care about the phenomena about

magnetism. Finally, we obtain the effective Kondo lattice Hamiltonian:

HKL =
∑
kσ

εpkp
†
XkσpXkσ +

∑
i,k,k′

2Jk,k′,iSi · skk′ . (A15)

Here, the anisotropic k-dependent Kondo coupling Jk,k′,i = 1
N

V ∗
k Vk′ ei(k−k′ )·Ri

εpk+�s
contains the information of the hybridization between

s and pX orbitals.

3. RKKY interaction

To derive the RKKY interaction, we take the pX orbital hopping terms as unperturbed Hamiltonian and take the Kondo
interaction as the perturbation. We separate the Kondo interaction into three terms, and the Kondo lattice Hamiltonian reads as

HKL =
∑

k

εpkp
†
XkσpXkσ +

∑
k,k′,i

Jk,k′,i

(
S−

i p
†
Xk↑pXk′↓ + S+

i p
†
Xk↓pXk′↑ + Sz

i

∑
σ

σp
†
XkσpXk′σ

)
. (A16)

Now, we define three components of the Kondo interaction H− = ∑
k,k′,i Jk,k′,iS

−
i p

†
Xk↑pXk′↓, H+ = ∑

k,k′,i Jk,k′,iS
+
i p

†
Xk↓pXk′↑,

and Hz = ∑
k,k′,i Jk,k′,iS

z
i

∑
σ σp

†
XkσpXk′σ . We also define the projection operator P0 that projects the original Hilbert space of

Kondo lattice onto the subspace with a ground-state Fermi sea formed by pX orbital degree of freedom, i.e., n̂pkσ = 1 when
εp,k < εp,kF

, and n̂pkσ = 0 when εp,k > εp,kF
. The states in subspace Q0 = 1 − P0 have particle-type or hole-type excitations in

pX orbital degree of freedom.
Following the steps in the derivation of the Kondo lattice Hamiltonian, the effective Hamiltonian Hp0 reads as

Hp0 = P0HKLP0 + P0HzQ0
1

Q0HKLQ − E0
Q0HzP0 + P0H+Q0

1

Q0HKLQ− E0
Q0H−P0 +P0H−Q0

1

Q0HKLQ− E0
Q0H+P0.

(A17)
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The first term, P0HKLP0 = ∑
εpk<εpkF

2εpk , is a constant term and does not affect the magnetism. The second term takes the form

P0HzQ0
1

Q0HKLQ − E0
Q0HzP0 =

∑
kk′ij

Jkk′iJk′kjS
z
i S

z
j (p†

k↑pk′↑p
†
k′↑pk↑ + p

†
k↓pk′↓p

†
k′↓pk↓)/(εp,k′ − εp,k )

=
∑
kk′ij

2Jkk′iJk′kjS
z
i S

z
j [np,k (1 − np,k′ )]/(εp,k′ − εp,k )

=
∑
ijkk′

2Jkk′iJk′kjS
z
i S

z
j [np,k − np,k′ ]/(εp,k′ − εp,k ). (A18)

Similarly, the third term reads as

P0H+Q0
1

Q0HKLQ − E0
Q0H−P0 =

∑
ijkk′

2Jkk′iJk′kjS
+
i S−

j [np,k − np,k′ ]/(εp,k′ − εp,k ), (A19)

and the fourth term reads as

P0H−Q0
1

Q0HKLQ − E0
Q0H+P0 =

∑
ijkk′

2Jkk′iJk′kjS
−
i S+

j [np,k − np,k′ ]/(εp,k′ − εp,k ). (A20)

Finally, we obtain the RKKY interaction

HRKKY =
∑
i,j

2J (Xi − Xj, Yi − Yj )Si · Sj , (A21)

where coupling coefficient takes the form

J (Xi − Xj, Yi − Yj ) =
∑
k,k′

Jk,k′,j Jk′,k,j =
∑
k,k′

4 cos[(k − k′) · (Ri − Rj )]

N2
|Vk|2|Vk′ |2 1

εpk + �s

1

εpk′ + �s

np,k − np,k′

εp,k − εp,k′
. (A22)

4. Slave-boson mean-field Hamiltonian

In this section, we first review the spin-rotation invariant
slave-boson formulas introduced in Ref. [73] and then provide
the derivation of mean-field Hamiltonian of the CK model fol-
lowing [62,74]. The spin-rotation invariant type slave-boson
theory [73] is convenient to describe various magnetic orders.
Furthermore, it will give better results when considering
fluctuations around mean-field solutions [73], although our
treatment is only restricted to mean-field level.

The purpose of the slave-boson mean-field theory is to con-
struct composite particle states and Hamiltonian operator that
are equivalent to the original states and Hamiltonian, and then
take the boson fields to be mean fields as an approximation. In
the spin-rotation invariant slave-boson theory [73], auxiliary
bosonic and fermionic operators are introduced. On the one
hand, the slave-boson operators ê, d̂, p̂0, p̂ = (p̂1, p̂2, p̂3) that
obey bosonic commutation relation are introduced. Here, ê, d̂

correspond to hole and doubly occupied states; scalar (S = 0)
field p̂0 and vector (S = 1) field p̂ = (p̂1, p̂2, p̂3) correspond
to the singly occupied state. ê, d̂, p̂0 transform as a scalar
under spin rotation and p̂ transforms as a vector. On the
other hand, the S = 1

2 pseudofermion operators ciσ obey the
fermionic commutation relation.

The holon and doublon states can be constructed directly:

|0〉 = ê†|vac〉, |↑↓〉 = d̂†c†↑c
†
↓|vac〉, (A23)

where |vac〉 is the vacuum for both boson and fermion states.
Concerning the singly occupied states, there are two ways to
construct a composite S = 1

2 state via combining the slave-
boson operators p̂0, p̂1, p̂2, p̂3 with pseudofermion operator

ciσ . The first type composite S = 1
2 states are

∣∣ 1
2 , σ

〉 = p̂
†
0c

†
σ |vac〉. (A24)

Alternatively, we can define S = 1 eigenstates of vector p̂

bosons:

p̂
†
1,1 = 1√

2
(p̂†

1 − ip̂
†
2), p̂

†
1,−1 = − 1√

2
(p̂†

1 + ip̂
†
2),

p̂
†
1,0 = −p̂

†
3, (A25)

and with the Clebsch-Gordan coefficients, we obtain the
second-type composite S = 1

2 states

∣∣∣∣12 ,
1

2

〉
= − 1√

3
p̂
†
1,0c

†
↑|vac〉 +

√
2√
3
p̂
†
1,1c

†
↓|vac〉,

∣∣∣∣12 ,−1

2

〉
= 1√

3
p̂
†
1,0c

†
↓|vac〉 −

√
2√
3
p̂
†
1,−1c

†
↑|vac〉. (A26)

Moreover, the combination of the above two types also results
in a spin- 1

2 particle via defining

|σ 〉 =
∑
σ ′

p̂
†
σσ ′c

†
σ ′ |vac〉, (A27)

where p̂
†
σσ ′ is the matrix elements of

p̂† =
[

ap̂
†
0 + bp̂

†
3 b(p̂†

1 − ip̂
†
2)

b(p̂†
1 + ip̂

†
2) ap̂

†
0 − bp̂

†
3

]
. (A28)
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From normalization condition, we obtain a2 + 3b2 = 1 and
we take a = b = 1

2 , then

p̂
†
σσ ′ = 1

2

3∑
μ=0

p̂†
μτμ,σσ ′ , p̂σσ ′ = 1

2

3∑
μ=0

p̂μτμ,σσ ′ . (A29)

To project out the unphysical states in the extended Hilbert
space, the following constraints are necessary:

ê
†
i êi + d̂

†
i d̂i +

∑
μ

p̂
†
iμp̂iμ − 1 = 0,

∑
σ

c
†
iσ ciσ −

∑
μ

p̂
†
iμp̂iμ − 2d̂

†
i d̂i = 0,

∑
σσ ′

τ σσ ′c
†
iσ ′ciσ − p̂i0 p̂†

i − p̂†
i p̂i0 + i(p̂†

i × p̂i ) = 0.

(A30)

Alternatively, they can be written as

ê
†
i êi + d̂

†
i d̂i +

∑
μ

p̂
†
iμp̂iμ = 1,

c
†
iσ ′ciσ = 2

∑
σ1

p̂
†
iσ1σ

p̂iσ ′σ1 + δσσ ′ d̂
†
i d̂i , (A31)

where the first constraint means that each physical state has
one boson, and the second constraint guarantees that correct
boson states are attached to the corresponding fermion states.
One can easily check that with the above constraints and
the formulas [pσσ ′, p

†
σ ′σ ] = 1

2 and pσσ̄p
†
σ σ̄ |vac〉 = 0, only the

following four physical states are left:

|↑〉 = p̂
†
↑↑c

†
↑|vac〉 + p̂

†
↑↓c

†
↓|vac〉,

|↓〉 = p̂
†
↓↑c

†
↑|vac〉 + p̂

†
↓↓c

†
↓|vac〉,

|0〉 = ê†|vac〉,
|↑↓〉 = d̂†c†↑c

†
↓|vac〉,

(A32)

where the former two states are singly occupied states, the
third is holon, and the last is doublon. The local s-orbital oper-
ators sσ in our CK model are represented by sσ = ∑

σ ′ ẑσσ ′cσ ′ ,
with the matrix z defined as

ẑ = ê†LRp̂ + ˆ̃p
†
LRd̂, (A33)

where

L = [(1 − d̂†d̂ )1 − 2p̂†p̂]−
1
2 , R = [(1 − ê†ê)1 − 2 ˆ̃p

† ˆ̃p]−
1
2 .

(A34)

Here, 1 is a 2 × 2 identity matrix, and ˆ̃p
σσ ′ = (T̂ p̂T̂ −1)σσ ′ =

σσ ′p̂σ̄ ′σ̄ is time reversal of p̂σσ ′ . The operator LR in
Eq. (A33) equals to identity matrix and acts as a renormaliza-
tion factor in the mean-field approximation. For each s orbital
at site Ri , a set of above auxiliary operators are induced with
index i labeling their sites. In terms of the auxiliary operators
and writing the constraints in the form of Lagrange multiplier
fields, the CK Hamiltonian reads as

H =
∑
iσ

[∑
σ ′σ ′′

tYs ẑ
†
iσσ ′ ẑi±Ŷ σ ′′σ c

†
iσ ′ci±Ŷ σ ′′ − �sc

†
iσ ciσ + tXp p

†
XiσpXi±X̂σ

]
+
⎡
⎣∑

〈ij〉σ
F (r)ẑ†iσσ ′c

†
iσ ′pXjσ δj,i+r + H.c.

⎤
⎦

+
∑

i

[
Usd̂

†
i d̂i + αi

(
ê
†
i êi + d̂

†
i d̂i +

∑
μ

p̂
†
iμp̂iμ − 1

)
+ βi0

(∑
σ

c
†
iσ ciσ −

∑
μ

p̂
†
iμp̂iμ − 2d̂

†
i d̂i

)

+β i ·
(∑

σσ ′
τ σσ ′c

†
iσ ′ciσ − p̂i0 p̂†

i − p̂†
i p̂i0 + i(p̂†

i × p̂i )

)]
. (A35)

Here, the Usd̂
†
i d̂i operator equals to the Usn̂si↑n̂si↓ under the

constraints (A31).
To perform the saddle-point approximation, we assume

the magnetization is in the X-Y plane and takes the form
of Mi = Mn̂i , where n̂i = (cos φi, sin φi, 0), and φi = Q · Ri

is site-dependent angle. To describe such magnetization in
the mean-field theory, we assume that the vector slave-boson
order parameter has the same spatial variation as Mi , so
pi = pn̂i , β i = βn̂i . On the other hand, the scalar fields
ei, p0i , αi, β0i are assumed to be uniform in real space and
di = 0 since Us is infinitely large. We also assume that all
the mean fields are real numbers. The matrix

√
2p̂

i
which

is defined as p̂σσ ′ = 1
2

∑3
μ=0 p̂μτμ,σσ ′ has eigenvalues pν =

(p0 + νp)/
√

2 and eigenvectors χν
i = 1√

2
[νe−iφi , 1]T with

ν = ±1. The matrix z
i
, which is defined as

ẑ
i
= ê

†
i LiRip̂i

+ ˆ̃p
†
i
LiRid̂i , (A36)

with

Li = [(1 − d̂
†
i d̂i )1 − 2p̂†

i
p̂

i
]−

1
2 ,

Ri = [(1 − ê
†
i êi )1 − 2 ˆ̃p

†
i

ˆ̃p
i
]−

1
2 , (A37)

can be easily evaluated by writing the p̂
i

matrix as∑
ν pνχ

ν
i χ

ν†
i /

√
2:

z
i
=
[

z+ z−e−iφi

z−eiφi z+

]
. (A38)

Here, we have

z± = ep+L+R−/
√

2 ± ep−L−R+/
√

2,

Lν = [
1 − p2

ν

]− 1
2 , Rν = [

1 − e2 − p2
ν

]− 1
2 . (A39)

Now, we present the Fourier transformation terms in the
mean-field Hamiltonian. First, we consider the hopping terms
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tYs,i,j between s orbitals. From the definition sσ = ∑
σ ′ ẑσσ ′cσ ′ , these terms are represented by the pseudofermion operators:∑

ijσ

tYs,i,j s
†
iσ sjσ =

∑
ijσσ1σ2

tYs,i,j z
†
iσσ1

c
†
iσ1

cjσ2zjσ2σ

=
∑

ijσ1σ2

[∑
σ

tYs,i,j z
†
iσσ1

zjσ2σ

]
c
†
iσ1

cjσ2

=
∑
ij

tYs,i,j [c†i↑cj↑(z2
+ + z2

−eiφi−iφj ) + c
†
i↓cj↓(z2

+ + z2
−eiφj −iφi )

+ c
†
i↑cj↓z+z−(eiφi + e−iφj ) + c

†
i↓cj↑z+z−(e−iφi + eiφj )]. (A40)

The fermion operators in k space read as

c
†
i =

∑
k

eik·Ri c
†
k, ci =

∑
k

e−ik·Ri ck. (A41)

After Fourier transformation, the tYs hopping terms take the form∑
ijσ

tYs,i,j s
†
iσ sjσ =

∑
k

[(z2
+tk + z2

−tk+Q)c†k↑ck↑ + (z2
−tk + z2

+tk+Q)c†k+Q↓ck+Q↓

+ z+z−(tk+Q + tk )c†k↑ck+Q↓ + z+z−(tk+Q + tk )c†k+Q↓ck↑], (A42)

where the dispersion tk is defined as tk = εsk = 2tYs cos kY in our model. Further, we give the Fourier transformation of the
operators contained in the Lagrangian multiplier into k space:∑

i

β i · τ σσ ′c
†
σ ′cσ =

∑
i

β(cos φi, sin φi, 0)(τx, τy, τz)σσ ′c
†
iσ ciσ ′

=
∑

i

βe−iφi c
†
i↓ci↑ + βeiφi c

†
i↑ci↓

=
∑
i,k,k′

[βei(k−Q−k′ )·Ri c
†
k↓ck′↑ + βei(k+Q−k′ )·Ri c

†
k↑ck′↓]

=
∑

k

[βc
†
k+Q↓ck↑ + βc

†
k↑ck+Q↓]. (A43)

Finally, we give the Fourier transformation of the hybridization terms into the k space:∑
i,r,σ

F (r)z†iσσ1
s
†
iσ1

pX,i+r,σ + H.c. =
∑
i,r

F (r)[z+c
†
i↑pX,i+r,↑ + z+c

†
i↓pX,i+r,↓]

+
∑
i,r

F (r)[z−e−iφi c
†
i↓pX,i+r,↑ + z−eiφi c

†
i↑pX,i+r↓] + H.c.

=
∑
i,r,σ

z+F (r)c†iσ pX,i+r,σ +
∑
kk′

∑
i,r

z−F (r)ei(k−Q)(Ri−Ri+r )e−i[k′−(k−Q)]Ri+rc
†
k↓pXk′↑

+
∑
kk′

∑
i,r

z−F (r)ei(k+Q)(Ri−Ri+r )e−i[k′−(k+Q)]Ri+rc
†
k↑pXk′↓ + H.c.

=
∑

k

[
z+Vkc

†
k↑pXk↑ + z+Vk+Qc

†
k+Q↓pXk+Q↓ + z−Vkc

†
k+Q↓pXk↑ + z−Vk+Qc

†
k↑pXk+Q↓

]

+ H.c. (A44)

With the above results, we have replaced operators f
†
iσ with c

†
iσ and can write the mean-field Hamiltonian in the basis

X†
k ≡ (c†k↑, c

†
k+Q↓, p

†
Xk↑, p

†
Xk+Q↓) as

H =
∑

k

X†
kεkXk + N

[−β0
(
p2

0 + p2
)+ 2βp0p + α

(
e2 + p2 + p2

0 − 1
)]

, (A45)
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FIG. 11. The band gap versus spontaneous magnetization β

in the mean-field Hamiltonian of the simple 1D periodic An-
derson model and the CK insulator model, respectively. The
dashed lines denote the magnitude of the band gap with β =
0 in the corresponding models. For the 1D periodic Anderson
model, the parameters used are (z+v, εk ) = (0.7, 2 cos k), and for
the CK model, the parameters are (tY

s , tX
p , �s , φ, tsp, z+, z−, β0) =

(0.1, 1, 3, 0.5π, 0.53, 0.565, 0.358, 2.56).

with matrix εk defined as

εk =

⎛
⎜⎜⎜⎝

εa
sk + β0 εc

sk + β z+Vk z−Vk+Q

εc
sk + β εb

sk + β0 z−Vk z+Vk+Q

z+V ∗
k z−V ∗

k εp,k 0

z−V ∗
k+Q z+V ∗

k+Q 0 εp,k+Q

⎞
⎟⎟⎟⎠, (A46)

where εa
sk = z2

+εsk + z2
−εsk+Q − �s , εb

sk = z2
+εsk+Q +

z2
−εsk − �s , εc

sk = z+z−(εsk+Q + εsk ) are s-orbital hopping
terms.

5. Effects of the magnetic moment on the band gap

Here, we investigate how the topological band gap is
enhanced by the spontaneous magnetization β. We calculate
the band gap versus the mean-field order β with all other
mean-field parameters being fixed, and find that when β varies
from 0 to a large value, the band gap is enhanced and will
reach its maximum at intermediate β value. To show the
generality of this property, we first consider a simple 1D
periodic Anderson model with antiferromagnetic mean-field
Hamiltonian

H 1D
k =

⎡
⎢⎢⎢⎣

0 β z+v 0

β 0 0 z+v

z+v 0 εk 0

0 z+v 0 −εk

⎤
⎥⎥⎥⎦, (A47)

which can be directly diagonalized as

Ek = ±

√√√√β2 + ε2
k + 2(z+v)2 ±

√
β4 − 2β2ε2

k + ε4
k + 4(z+v)2

(
β2 + ε2

k

)
2

. (A48)

We further show the same phenomenon in our CK model by calculating the band gap with Eq. (29) and antiferromagnetic order,
where we also vary the magnetization β but fix other mean-field parameters. The numerical results with specific parameters for
the two models are shown in Fig. 11.
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