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Topological entanglement entropy of the three-dimensional Kitaev model

N. C. Randeep and Naveen Surendran*

Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram-695547, Kerala, India

(Received 6 April 2018; revised manuscript received 3 August 2018; published 20 September 2018)

We calculate the topological entanglement entropy (TEE) for a three-dimensional hyperhoneycomb lattice
generalization of Kitaev’s honeycomb lattice spin model. We find that for this model TEE is not directly
determined by the total quantum dimension of the system. This is in contrast to general two-dimensional systems
and many three-dimensional models, where TEE is related to the total quantum dimension. Our calculation also
provides TEE for a three-dimensional toric-code-type Hamiltonian that emerges as the effective low-energy
theory for the Kitaev model in a particular limit.
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I. INTRODUCTION

Recent years have seen an explosion of research activity in
the study of topologically ordered quantum phases of matter.
Departing from the Landau paradigm of classifying phases
based on symmetries and local order parameters, such phases,
which are gapped, are immune to distinction through any
local operators. Instead, they are characterized by fractional
excitations and ground-state degeneracy dependent on the
topology of the space.

Fractional excitations arise due to nontrivial long-range
correlations in the ground state, i.e., correlations that do not
manifest as a nonzero expectation value for correlators of
local operators. Bipartite entanglement entropy of a system
encapsulates such correlations by measuring the extent to
which one partition is entangled with the other. It is defined
as the von Neumann entropy of the reduced density matrix
of one of the partitions, which is obtained by taking a partial
trace with respect to the degrees of freedom belonging to the
other partition.

In gapped systems, the leading contribution to entangle-
ment entropy comes from a region around the boundary of
the two partitions but lying within the correlation length. As
a result, the entanglement entropy obeys an area law: it is
proportional to the “area” of the boundary between the two
partitions [1].

In a seminal work, Kitaev and Preskill [2] and, indepen-
dently, Levin and Wen [3], showed that in two-dimensional
gapped systems the entanglement entropy S contains, apart
from the term proportional to the length of the boundary L,
a constant term that depends only on the topology of the
boundary curve. They also showed that this constant is related
to the total quantum dimension of the system D = √∑

a d2
a ,

da being the quantum dimension of a-type anyon. Specifically,
S = αL − b0γ , where α is a positive nonuniversal constant,
b0 is the zeroth Betti number (number of connected compo-
nents) of the boundary, and

γ = logD. (1)
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D is greater than 1 only when the system is topologically
ordered and has anyonic excitations. Thus, a nonzero γ is a
signature of topological order and γ is therefore called the
topological entanglement entropy (TEE).

Topological entanglement entropy has been calculated for
two-dimensional models such as the toric code [4,5] and
Kitaev’s honeycomb lattice model [6,7], verifying Eq. (1).

A natural question then is: In higher dimensions D, in
particular for D = 3, does a constant term in entanglement
entropy imply topological order? Grover et al. [8] have ad-
dressed this question and, based on an expansion of local
contributions to the entropy in terms of curvature and its
derivatives, they have found that in three dimensions (and
in general, for any odd D) a constant term can arise in a
generic gapped system purely from local correlations. That
is, a nonzero γ does not necessarily imply topological order.

Furthermore, two-dimensional boundary surfaces have two
topological invariants—in addition to a zeroth Betti number
b0, there is also b1, the first Betti number (number of noncon-
tractible loops)—and TEE, in general, can depend on both:

S = αA − b0γ0 + b1

2
γ1, (2)

where A is the area of the boundary, and α, γ0, and γ1 are
constants. However, for compact surfaces b0 and b1 are not
independent and are related through the Euler characteristic,
χ = 2b0 − b1, which can be thought of as a sum of local terms
and therefore be absorbed into the area term; thus γ0 and γ1

are not independent topological entropies [8].
Even though trivial phases in three dimensions (3D) may

also give rise to a constant term in the entropy, the topological
contribution can still be extracted by considering various
carefully chosen partitionings of the system and then taking an
appropriate linear combination of the corresponding entropies
[2,3,8,9]. In the process local, nontopological contributions
are eliminated. The general structure of entanglement entropy
in three dimensional systems has been studied in Ref. [10].

In three dimensions, TEE has been calculated for some
exactly solvable models. These include the cubic lattice
toric code [9], general quantum double models [8,11,12],
and Walker-Wang models [13–15]. In all these cases, γ0 =
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lnD, which is similar to the general case in two dimensions
(D being the total quantum dimension). TEE has also been
calculated [16] for the three-dimensional Ryu-Kitaev model
[17], which is a generalization of Kitaev’s honeycomb lattice
model [6]. However, for this model it is not clear to us what
the total quantum dimension is and we have not been able to
check the above relation. It is then interesting to examine other
three-dimensional models and see whether such a relation
between TEE and D exists or not.

Partly motivated by the above question, in this paper we
calculate TEE of another three-dimensional generalization of
the Kitaev model defined on the hyperhoneycomb lattice [18].
We find that γ0 = ln 2 and γ1 = 0. For this model the total
quantum dimension D = √

2. Thus, our calculation provides
an example of a three-dimensional model for which γ0 �=
lnD, unlike in the other 3D models mentioned above.

The Kitaev model on a hyperhoneycomb lattice has been of
interest recently in the context of certain iridium oxides [19].
See Ref. [20] for a comprehensive study of the phases of the
Kitaev model in three dimensions and Ref. [21] for a study of
its entanglement spectrum.

The rest of the paper is organized as follows. In Sec. II
we briefly review the Kitaev model on the hyperhoneycomb
lattice, and in Sec. III, following the method of Yao and Qi
[7], we calculate its TEE. We conclude with a discussion in
Sec. IV.

II. KITAEV MODEL ON HYPERHONEYCOMB LATTICE

Kitaev’s honeycomb lattice spin model [6] has become a
paradigm system in the study of topological order in quan-
tum many-body systems. It is an exactly solvable spin-1/2
system with two phases that respectively support Abelian
and non-Abelian anyons. Many proposals have been put forth
for possible physical realizations of the Kitaev Hamiltonian.
(See Ref. [22] for a detailed review.)

A. Hamiltonian

Kitaev’s original model is defined on a honeycomb lattice
with spin-1/2 degrees of freedom at each site. A honeycomb
lattice has three types of links corresponding to three different
orientations, which are respectively labeled x, y, and z links.
Neighboring spins interact via Ising interaction, with the
component of the Pauli matrices in the interaction being the
same as the link type. In general, the Kitaev Hamiltonian can
be defined on any trivalent lattice in which the links can be
similarly labeled, and in such a way that at each site the three
links are all of a different type. Then the Hamiltonian is

H = −Jx

∑
x−links

σx
j σ x

k − Jy

∑
y−links

σ
y

j σ
y

k − Jz

∑
z−links

σ z
j σ z

k .

(3)

In this paper we consider the Kitaev Hamiltonian de-
fined on the three-dimensional lattice introduced in Ref. [18]
(see Fig. 1). The lattice we consider has the same connectivity
as the hyperhoneycomb lattice and is therefore topologically
equivalent to it. Kimchi et al. [19] have proposed a Kitaev-
Heisenberg Hamiltonian—a Kitaev model with additional
Heisenberg interactions—on the hyperhoneycomb lattice to

FIG. 1. The 3D lattice. The four sites labeled (1–4) constitute a
unit cell, and a1, a2, a3 are the basis vectors. x, y, and z links are
represented by dashed, dotted, and bold lines, respectively.

model certain iridium oxides. Their proposal is based on
a mechanism introduced by Jackeli and Khaliullin [23], by
which the bond-anisotropic Kitaev interaction can arise from
strong spin-orbit coupling.

The unit cell of the hyperhoneycomb lattice contains four
sites, as shown in Fig. 1. The basis vectors are given by
a1 = 2x̂, a2 = 2ŷ, a3 = x̂ + ŷ + 2ẑ, and in a given unit cell,
corresponding to the lattice vector r, the four sites are located
at r − ŷ/2 − ẑ, r − ŷ/2, r + ŷ/2, and r + ŷ/2 + ẑ.

B. Majorana fermion representation and ground state

Kitaev mapped the original spin Hamiltonian to a free
fermion one using a Majorana fermion representation of the
spin variables. At each site j he introduced four Majorana
fermion operators γ x

j , γ
y

j , γ z
j , ηj ; different Majorana oper-

ators anticommute, and the square of each of them equals
1. The operators σ̃ α

j = iγ α
j ηj commute with Dk = γ x

k γ
y

k γ z
k ηk

for all values of α, j , and k. Moreover, D2
j = 1; thus its

eigenvalues are ±1. In the subspace with Dj = 1, σ̃ α
j satisfy

the spin-1/2 algebra. Thus, in the enlarged space of Majorana
fermions (four-dimensional at each site) the physical states
correspond to Dj = 1.

In terms of the Majorana operators the Hamiltonian be-
comes

H̃ = i

2

∑
j,k

Jαjk
ûjkηjηk, (4)

where αjk is the type of the link between j and k, and ûjk =
iγ

αjk

j γ
αjk

k .
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[ûjk, H̃ ] = 0 and [ûjk, ûlm] = 0. In the eigenbasis of ûjk

the Hamiltonian becomes

H̃ ({ujk}) = i

2

∑
j,k

Jαjk
ujkηjηk, (5)

where ujk is now the eigenvalue of ûjk . Thus, we have mapped
the spin model to a system of free fermions in the presence of
a static Z2 gauge field.

C. Ground state

To find the ground state, we first note that the elements
of the gauge group are

∏
j D

nj

j , where nj = 0 or 1. Under
a gauge transformation, uij → XiuijXj , where Xi = (1 −
2ni ). The gauge-invariant quantities then are the Wilson-
loop variables Wl = ∏

<ij> uij , where < ij > are the links
belonging to the loop l. The elementary loops, called the
plaquettes, are the smallest loops in the lattice. Following a
theorem by Lieb [24], it has been shown that the ground state
corresponds to Wp = 1 for all plaquettes p [6,18]. To get the
physical ground state, we first find the lowest energy state in
any one of the {uij } configurations for which Wp = 1 for all
p, and then project it to Dj = 1 subspace.

The total Hilbert space is the tensor product of the gauge
sector and the fermion sector. Let u denote a {uij } configu-
ration for which Wp = 1, and let φ(u) be the corresponding
lowest energy fermion wave function. Then the normalized
ground state is (assuming periodic boundary conditions)

|GS〉 = 1√
2N+1

∏
j

(
1 + Dj

2

)
|u〉 ⊗ |φ(u)〉. (6)

Elements of the gauge group are products of Dj over all
possible subsets g of the lattice sites: Dg = ∏

j∈g Dj . Then
the ground state can be written as follows:

|GS〉 = 1√
2N+1

∑
g

Dg|u〉 ⊗ φ(u)〉. (7)

III. ENTANGLEMENT ENTROPY

We now calculate entanglement entropy for the above
ground state. Our calculation is a straightforward generaliza-
tion of Yao and Qi’s computation for the two-dimensional
Kitaev model [7], from hereon referred to as YQ.

The entanglement entropy S between two partitions A and
B of a system is defined as the von Neumann entropy of the
reduced density matrix of one of the partitions,

S = −Tr ρA ln ρA, (8)

where ρA = TrB ρ, with TrB denoting a partial trace with
respect to partition B, and ρ = |GS〉〈GS| is the total density
matrix. Note that S is symmetric under the interchange of
A and B, i.e., we can also write S = −Tr ρB ln ρB , where
ρB = TrA ρ.

Here a comment is in order regarding partial trace for
fermions. Since spatially separated fermion operators do not
commute and are therefore nonlocal, defining a tensor product
state between two partitions with respect to these degrees of
freedom is ambiguous. However, in our case the physical spin
degrees of freedom are quadratic in fermion operators and the

x
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b1

b2

b3

b4
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a3

aa44

FIG. 2. Bipartition scheme in which region A (volume enclosed
by the shaded surface) has the topology of a solid sphere. The dashed
lines are the links on the boundary. uij variables on the boundary
links are transformed to wA,n and wB,n, which are defined on the
links (a2n−1, a2n) and (b2n−1, b2n), respectively.

latter can be treated as local, since the product of any pair
of fermion operators belonging to one partition will commute
with a product of any pair in the other partition. Therefore, we
can perform a partial trace without any ambiguity.

We now briefly go through the steps in YQ and show that
their calculation can be readily extended to the hyperhoney-
comb lattice.

They calculated entanglement entropy using the following
replica method formula [25]:

S = −TrA[ρA log ρA] = − ∂

∂n
TrA[ρn

A]

∣∣∣∣
n=1

. (9)

To obtain ρA we need to do the partial trace over B, TrB ,
and for that we require a set of basis vectors of the form
|ψi〉A ⊗ |χi〉B . But the gauge fields uij are located at the links,
and in any partitioning of the lattice into two regions A and
B, there will be some links straddling both A and B. To get
around this, YQ transformed each pair of uij on the shared
links into two new variables, one of them defined on a link
lying entirely in region A and the other in B. This is a crucial
step in their calculation and is not specific to two dimensions.
In the 3D lattice also the links shared by both regions can
be similarly paired and the corresponding gauge variables can
then be transformed to links lying entirely in either A or B (see
Fig. 2). This procedure will be made more precise when we
calculate SG, the contribution to entanglement entropy from
the gauge sector, in the Appendix.

The calculation for the hyperhoneycomb lattice proceeds
exactly as in YQ and we can directly take their following
main result (for details we refer to their paper [7] and the
associated Supplemental Material):

TrA[ρn
A] = TrA,G

[
ρn

A,G

] · TrA,F

[
ρn

A,F

]
, (10)

where ρA,F = TrB |φ(u)〉〈φ(u)| and ρA,G = TrB |G(u)〉〈G(u)|
are, respectively, the reduced density matrix for the
Majorana fermion wave function |φ(u)〉 and for the state
|G(u)〉 = (1/

√
2(N−1))

∑
ũ |ũ〉 in the gauge sector. Here the
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FIG. 3. Bipartition scheme in which region A (volume enclosed
by the solid surface) is a solid torus. The dashed lines are the links
on the boundary.

ũ summation is over all gauge-field configurations gauge
equivalent to u.

From Eqs. (9) and (10) it immediately follows that the
entanglement entropy S = SG + SF , where SG is the entan-
glement entropy of the gauge part and SF that of the fermionic
part. YQ have further shown that SF has no constant term
independent of the length/area of the boundary, and therefore,
SF does not contribute to TEE.

Calculation of SG proceeds in exactly the same way as
in YQ and the details are given in the Appendix. In our
calculation, we also obtain the dependence of TEE on b0 and
b1. Finally, we get

SG = L ln 2 − b0 ln 2, (11)

where 2L is the number of links on the boundary. Thus SG

depends only on b0 but not on b1.

A. Topological entanglement entropy

As discussed in the Introduction, the constant term by
itself is not a signature of topological order [8]. Moreover,
in the expression for S in general it is difficult to unam-
biguously separate the area term and the constant. However,
TEE can still be extracted using a scheme introduced for
two-dimensional (2D) systems in Refs. [2] and [3]. Here we
follow a generalization of this scheme to three dimensions [9].

The basic idea is to consider a few different regions of
the lattice and then to take a linear combination of corre-
sponding entanglement entropies in such a way that all the
surface contributions mutually cancel and the resultant entity
is a topological invariant, which can then be taken as the
topological entanglement entropy of the system.

We consider two different bipartitions in which region A is:
(1) a spherical shell, which is nontrivial with respect to closed
surfaces, and (2) a solid torus, which is nontrivial with respect
to closed loops (see Fig. 3). In the first case we consider
the four regions in A shown in Fig. 4 (1–4). Let Si be the
entanglement entropy corresponding to the ith region. Then
using Eq. (11) we obtain TEE, S

(1)
top , as

S
(1)
top = −S1 + S2 + S3 − S4 = ln 2. (12)

(1) (2) (3) (4)

(5) (6) (7) (8)

FIG. 4. Various regions considered for the calculation of TEE in
the sphere (1–4) and torus (5–8) bipartition schemes.

In the second case we consider the regions (5–8) shown in
Fig. 4, and we get

S
(2)
top = −S5 + S6 + S7 − S8 = ln 2. (13)

In both the schemes the boundary contributions from various
regions cancel in Stop and it is thus invariant under continuous
deformations [2,3].

Thus we have obtained γ0 [defined in Eq. (2)] to be ln 2.
However, γ0 is not equal to lnD, where the total quantum
dimension D for our model is

√
2.

The total quantum dimension of the 3D Kitaev model
is obtained as follows: In the limit Jz 	 Jx, Jy , the Kitaev
model maps to a toric-code-type Hamiltonian on the diamond
lattice [18]. This Hamiltonian is a sum of mutually commuting
plaquette operators, denoted Bp, the eigenvalues of which are
±1. In the ground state Bp = +1 for all plaquettes.

Certain local constraints demand that those plaquettes for
which Bp = −1 must form a closed loop in a dual lattice,
in which the links represent plaquettes in the original lattice.
Thus the excitations form “flux” tubes. Furthermore, a global
constraint prohibits creation of a single elementary flux tube,
consisting of six excited plaquettes; they can only be created
in pairs. Therefore, an elementary flux tube is in a superselec-
tion sector different from vacuum. There are no other types of
elementary excitations, and the total number of superselection
sectors is 2. Consequently, the total quantum dimension of the
model is

√
2.

Here we note that since γ0 = ln 2 is independent of Jx, Jy ,
and Jz, γ0 has the same value for the diamond lattice toric
code also.

IV. SUMMARY AND DISCUSSION

We have calculated the topological entanglement entropy
for a three-dimensional hyperhoneycomb lattice generaliza-
tion of Kitaev’s honeycomb lattice model. We have found
that γ0, the part of TEE proportional to b0, is ln 2. The total
quantum dimension D of this model is

√
2, and therefore it

provides an example of a 3D system in which the relation
γ0 = lnD does not hold.

Since γ0 = ln 2, it is tempting to interpret it as ln |Z2|,
which is the TEE for a class of discrete gauge theories
called quantum double models [8,11,12], with gauge group
Z2. However, the low-energy effective theory for the Kitaev
model in the limit Jz 	 Jx, Jy is a toric-code-type model
defined on the diamond lattice [18,26], which is not a quantum
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double model. This is because, even though this effective
Hamiltonian is a sum of plaquette operators Bp, each of the
three sigma matrices at a particular site is part of some Bp;
thus Bp’s cannot be considered as the plaquette operators
in a Z2 quantum double model, which are products of the
same type of sigma matrix at different links. Consequently, we
cannot apply the general result for TEE for quantum double
models to our model.

Then the question remains whether TEE being ln 2 for a
3D Kitaev model is a coincidence or due to some underlying
Z2 gauge structure. To answer this we need to further explore
the general relations among topological entanglement entropy,
gauge group, and total quantum dimension in three dimen-
sions.
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APPENDIX: ENTANGLEMENT ENTROPY
OF THE GAUGE SECTOR

Our calculation of SG proceeds as in YQ and differs from
the latter only in that we additionally obtain the explicit
dependence on b0 and b1. The full density matrix in the gauge
sector is

ρG = |G(u)〉〈G(u)| = 1

2(N−1)

∑
ũ
u

|ũ〉〈ũ|. (A1)

To compute the reduced density matrix ρG,A, we have to carry
out a partial trace of ρG with respect to the variables in B. But,
as pointed out earlier, the variables on the links on the bound-
ary surface between A and B belong to both regions. In YQ,
this difficulty is circumvented by the following procedure.

We can write |u〉 = |uA, uB, up〉, where the uA variables
are defined on links entirely in A, uB on links entirely in B,
and up on links on the boundary and shared by both A and
B. Assuming that the number of boundary links is even and
denoting it by 2L, we label the corresponding link variables
up as ua1,b1 , ua2,b2 , . . . ua2L,b2L

, where the sites labeled aj are
in A and those labeled bj are in B. In terms of Majorana vari-
ables, ûaj ,bj

= iγ
αj

aj
γ

αj

bj
, where αj is the link type of (aj , bj ).

We now define new variables ŵA,n = iγ
α(2n−1)
a(2n−1) γ α2n

a2n
and ŵB,n =

iγ
α(2n−1)

b(2n−1)
γ

α2n

b2n
. ŵA,n is defined on the link (a2n−1, a2n), which

lies entirely in A; similarly, ŵB,n is defined on (b2n−1, b2n),
which lies entirely in B (see Fig. 2).

Since {uij } is any gauge-field configuration for which
Wp = 1 for all plaquettes, we can choose uaj ,bj

= 1 for all
the boundary links. Then, it is easy to verify that

|up〉 = 1√
2L

∑
wA=wB=±1

|wA,wB〉, (A2)

where wA and wB denote the set of eigenvalues of ŵA,n and
ŵB,n, respectively. Thus,

|G(u)〉 = 1√
2N+L+1

∑
g

∑
wA=wB

Dg|uA,wA; uB,wB〉. (A3)

Writing Dg = XgA
· XgB

, where gA is the set of sites in g be-
longing to A and XgA

= ∏
j∈gA

Dj . XgB
is similarly defined.

Then,

ρG,A = TrBρG

= 1

2N+L+1

∑
g,g′

∑
w,w′

XgA
|uA,w〉〈uA,w′|X†

g′
A

×
∑

u′
B,w′′

〈u′
B,w′′|XgB

|uB,w〉〈uB,w′|X†
g′

B
|u′

B,w′′〉

ρG,A = 1

2N+L+1

∑
g,g′

∑
w,w′

XgA
|uA,w〉〈uA,w′|X†

g′
A

× 〈uB,w′|X†
g′

B
XgB

|uB,w〉. (A4)

For 〈uB,w′|X†
g′

B
XgB

|uB,w〉 to be nonzero, w = w′. Further
conditions for its nonvanishing depend on the topology of
region B. Let g

(n)
B , n = 1, . . . , nB denote the sites in gB

belonging to the connected component Bn of B. Here nB is
the number of connected components of B. Then the nonvan-
ishing condition becomes, for each n, either g′

B
(n) = g

(n)
B , for

which X
†
g′

B
(n)Xg

(n)
B

= 1 or g′
B

(n) = Bn − gB
(n), in which case

X
†
g′

B
(n)XgB

(n) = XBn
(here XBn

≡ Xg=Bn
). In both the cases

〈uB,w′|X†
g′

B
XgB

|uB,w〉 = 1. Let NA and NB be the number
of sites in A and B, respectively (with NA + NB = N ). Then,

ρG,A = 2nB

2NA+L+1

∑
gA,g′

A,w

XgA
|uA,w〉〈uA,w|X†

g′
A
. (A5)

Next we calculate ρ2
G,A and show that it is proportional to

ρG,A:

ρ2
G,A =

(
2nB

2NA+L+1

)2 ∑
gA, g′

A, w

g̃A, g̃′
A, w′

XgA
|uA,w〉

× 〈uA,w|X†
g′

A
Xg̃A

|uA,w′〉〈uA,w′|X†
g̃′

A
. (A6)

As before, 〈uA,w|X†
g′

A
Xg̃A

|uA,w′〉 is nonzero only when w =
w′ and, for each connected component An in A, either g′

A
(n) =

g
(n)
A , or g′

A
(n) = An − gA

(n) (here gA
(n) denotes the sites in gA

belonging to An). Then

ρ2
G,A =

(
2nB

2NA+L+1

)2

× 2NA+nA

∑
gA,g′

A,w

XgA
|uA,w〉〈uA,w|X†

g′
A
,

(A7)

where nA is the number of connected components in A. Thus,

ρ2
G,A = 2nA+nB−L−1ρG,A. (A8)

From the properties of the density matrix it then
immediately follows that the entanglement entropy
SG = L ln 2 − (nA + nB − 1) ln 2. But nA + nB − 1 = b0,
the number of connected components (zeroth Betti number)
of the boundary surface between A and B, and we have

SG = L ln 2 − b0 ln 2. (A9)
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