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Theory of electronic magnetoelectric coupling in d5 Mott insulators
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Motivated by recent terahertz (THz) spectroscopy measurements in α-RuCl3, we develop a theory for
magnetoelectric (ME) effects in Mott insulators of d5 transition metal ions in an octahedral crystal field. For
4d and 5d compounds, the relatively wide-spread orbitals favor charge fluctuations of localized electrons to
neighboring ions and a significant ME effect from electronic mechanisms is expected. From a three-orbital
Hubbard model with strong spin-orbit coupling, we derive the mechanisms for the electric polarization
originating from virtual hopping of the localized holes carrying the spins. We consider the electric polarization
generated by pairs of spin operators on nearest-neighbor bonds with either an edge-sharing geometry (i.e.,
two ligands are shared) or a corner-sharing geometry (i.e., one ligand is shared). The allowed couplings are
first derived using a symmetry approach. Then, we explicitly calculate the coupling constants and evaluate the
effective polarization operator in the ground state manifold using perturbation theory and exact diagonalization.
The results are relevant when considering the THz optical conductivity of magnetic systems such as some
perovskite iridates or Kitaev materials. In particular, they help explain the recent THz optical measurements
of α-RuCl3 for which the electric-dipole-induced contribution has been shown to be strong.
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I. INTRODUCTION

Multiferroics are defined by the existence of the static
magnetoelectric (ME) effect, i.e., the control of electric polar-
ization by a magnetic field and of magnetization by an electric
field [1–7]. In the dynamical regime, the magnetically induced
ferroelectricity leads to the emergence of electromagnons,
low-lying modes associated with the hybridization of spin
waves with the electric polarization [8–14].

However, ME effects are not limited to multiferroics. In
magnetic Mott insulators with lattice inversion invariance and
no electric polarization in the ground state, i.e., without the
static ME effect and reduction of the symmetry accomp-
anying the long-range ordering, dynamical ME effects are still
possible.

Three types of mechanisms for the ME coupling between
the local electric polarization Pij and spin operators at sites
i and j are typically considered for multiferroics: (i) the
exchange-striction mechanism arising from the symmetric
spin exchange interaction Si × Sj [15], (ii) the spin-current
model arising from the antisymmetric spin exchange inter-
action Si × Sj (or inverse Dzyaloshinskii-Moriya interaction)
[16–18], and (iii) the spin dependent p-d hybridization mech-
anism, which causes single spin anisotropy [19–21]. Only the
mechanism (ii) is allowed in a system with inversion symme-
try, whereas the lack of inversion symmetry centered at the
middle of bonds and spin sites is necessary for mechanisms
(i) and (iii), respectively.

The ME coupling affects the charge dynamics of the
electrons in the magnetic energy scale, far below the optical
gap of Mott insulators. Thanks to the coupling, the magnetic
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excitations respond to an AC electric field and can be probed,
for example, by measuring the terahertz (THz) dielectric
response. This is especially interesting for quantum spin liq-
uids (QSL) with fractionalized excitations, which result in a
continuous subgap optical conductivity. This effect has been
predicted and observed in some QSLs [22–25] and explained
with a different kind of ME mechanism. For the single-band
Hubbard model, charge effects are possible through virtual
hopping of the electrons, which scales as (t/U )n for loops
of size n (with t the hopping amplitude and U the on-site
repulsion) [26]. Even without spin-orbit coupling (SOC), a
nontrivial ME coupling arises for odd n, starting from trian-
gular loops, and explains the subgap optical conductivity of
gapless QSLs on triangular and kagome lattices [22,23,27,28].

More recently, a subgap optical conductivity was observed
in the Kitaev material α-RuCl3 in a series of THz spec-
troscopy measurements [29–33]. In a previous work, we
showed that the virtual hopping mechanism can be relevant for
n = 2 (single bonds) when considering multiorbital systems
such as Kitaev materials with strong SOC [34].

In this paper, motivated by the THz spectroscopy results
in α-RuCl3, we derive the general mechanisms for the po-
larization operators of 4d5 and 5d5 Mott insulators arising
from the electronic charge in t2g orbitals. More specifically,
we consider systems with inversion symmetry and without
degeneracy of the local ground states (other than the Kramers
degeneracy), so that the low-energy manifold is described
with pseudospin-1/2 variables on each site. We focus on
systems with d5 transition metal (TM) ions, each surrounded
by an octahedral complex of ligands that connect neighboring
TM sites. For 4d and 5d compounds, the wide-spread orbitals
favor charge fluctuations of the localized holes to neighboring
ions, so that we expect significant ME effects from purely
electronic mechanisms.
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FIG. 1. (a) Corner-sharing and (b) edge-sharing geometries. The
blue spheres represent the TM ions and the smaller red spheres the
ligands. Deviations from φ = 90◦ and ϕ = 180◦ are considered in
Appendices A and B.

Two geometries are considered: the edge-sharing geometry
(i.e., two ligands are shared) and the corner-sharing geometry
(i.e., one ligand is shared) as shown in Fig. 1. Our goal is
to calculate the effective polarization in the magnetic ground
state manifold, i.e., in terms of spin-1/2 operators. Due to
time-reversal symmetry, there are no one-spin terms and we
only consider terms written with two-spin operators from
nearest neighbors.

The spin-current model, which lead to the Katsura-
Nagaosa-Balatsky (KNB) formula Pij ∝ êij × (Si × Sj ) [16],
where êij is the unit vector parallel to the bond, was originally
based on a purely electronic mechanism made possible by
finite matrix elements such as 〈dxy |y|px〉 between neighbor-
ing TM ions and ligands [16]. The same matrix elements
have been shown to give rise to additional symmetry-allowed
couplings between Pij and Si × Sj when the symmetry is low
enough [35–37].

In short, the position operator r has two types of finite ma-
trix elements in the tight-binding formalism. The KNB type
〈i, α|r|j, β〉 for ions i �= j (typically one TM ion and one lig-
and) with orbitals α and β, and the lattice type 〈i, α|r|i, β〉 =
riδα,β where ri is the position of ion i. If combined with first-
principle calculations to accurately evaluate the 〈i, α|r|j, β〉
integrals, the ME effect in Kitaev materials and other d5 Mott
insulators can be evaluated from our results.

This paper is organized as follows. First, in Sec. II, we
introduce the Hamiltonians. In Sec. III, we derive the allowed
ME couplings using a symmetry group approach. In addition,
we stress the importance of SOC in Sec. IV. In Sec. V, we de-
fine two different electronic mechanisms for the polarization
starting from the usual LCAO (linear combination of atomic
orbitals) approximation of the tight-binding model. We then
explicitly consider the mechanisms in Sec. VI in the edge- and
corner-sharing geometries for large SOC. Finally, we discuss
our findings and conclude in Sec. VII.

II. MODEL

We consider Mott insulators with unfilled t2g orbitals under
an octahedral crystal field (CF) of chalcogens or halogens,
which strongly split the t2g and eg orbitals. In the d5 configura-
tion, there is one hole in the t2g orbitals per site. Accordingly,
we consider a three-band Hubbard model for the holes on the
lattice of TM ions, with a filling corresponding to one hole per
site,

H = Hhop + Hion + Hint, (1)

which is the sum of a hopping, on-site, and interaction Hamil-
tonian, respectively. Because we are interested in bonds made
of two neighboring TM ions, it is enough to consider only two
sites. The Hamiltonians are concisely expressed by using the
hole operators

c†i = (c†i,yz,↑, c
†
i,yz,↓, c

†
i,xz,↑, c

†
i,xz,↓, c

†
i,xy,↑, c

†
i,xy,↓). (2)

States with doubly occupied sites (thereafter called polar
states) are affected by the Coulomb interaction and Hund’s
coupling as described by the Kanamori Hamiltonian [38,39]
with intraorbital Coulomb repulsion U , interorbital repulsion
U ′ = U − 2JH , and Hund’s coupling JH ,

Hint = U
∑
i,a

ni,a,↑ni,a,↓ + (U ′ − JH )
∑

i,a<b,σ

ni,a,σ ni,b,σ

+U ′
i,a �=bni,a,↑ni,b,↓ − JH

∑
i,a �=b

c
†
i,a,↑ci,a,↓c

†
i,b,↓ci,b,↑

+ JH

∑
i,a �=b

c
†
i,a,↑c

†
i,a,↓ci,b,↓ci,b,↑. (3)

Each hole can jump onto the filled p6 orbitals of the ligands
at a cost �pd , the charge-transfer energy. Additionally, direct
hopping between TM ions are also possible. We consider the
limit where �pd 
 U , i.e., the system is in a Mott insulating
phase (in contrast with the charge-transfer insulator), so that
intermediate states with unfilled p orbitals can be integrated
out to give the effective Hamiltonian (1). Moreover, in this
limit, intermediate states with two or more unfilled p orbitals
are neglected and the effective hopping integrals are simply
obtained by considering the different TM-L-TM hopping
processes through each ligand (L) separately. Summing the
contributions from all ligands, we obtain

Hhop = −
∑
〈ij〉

c†i (T̂ij ⊗ I2×2)cj , (4)

where T̂ij is the hopping matrix between sites i and j ,

T
αβ

ij = t
αβ

ij +
∑

p

∑
γ=x,y,z

t
αγ

ip t
βγ

jp

�pd

. (5)

Here t
αβ

ij is the hopping between the two TM ions at sites i

and j with respective orbitals α and β, p labels the ligands
between the two TM ions, γ labels their orbitals, and t

αγ

ip is
the hopping between the TM ion i and ligand p with orbitals
α and γ , respectively. The different hopping amplitudes are
the usual Slater-Koster integrals [40].

Finally, the on-site six-dimensional Hilbert space is further
split by Hion. Each hole has an effective L = 1 orbital angular

125135-2



THEORY OF ELECTRONIC MAGNETOELECTRIC COUPLING … PHYSICAL REVIEW B 98, 125135 (2018)

momentum in addition to its spin-1/2 angular momentum.
The on-site Hamiltonian consists of SOC,

HSOC = λ

2

∑
i,a

c†i (La ⊗ σa )ci (6)

with λ > 0, and additional CF splitting,

HCF = �
∑

i

c†i [(L · n̂CF)2 ⊗ I2×2]ci , (7)

so that Hion = HSOC + HCF. Here, (La )bc = −iεabc and σa

are the Pauli matrices. The unit vector n̂CF depends on the
system considered. In this paper, only the trigonal (n̂CF =
[111]) and tetragonal (n̂CF = [001]) distortions are explicitly
considered in the edge-sharing and corner-sharing geometries,
respectively. They correspond (up to a constant) to

L2
[111] = −1

3

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ and L2

[001] =
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠. (8)

The SOC Hamiltonian splits the t2g orbitals into states with
total effective angular momentum J = 1/2 and J = 3/2 with
energies −λ and λ/2, respectively. The CF distortion by itself
also splits the three t2g states into a b2g state and two eg states.
Generally, the combination of SOC and CF splits the states
into three Kramers doublets.

We consider the situation where pseudospin-1/2 variables
can safely be defined. This implies that the ground state is
a doublet (always the case with λ > 0) that is sufficiently
gapped from the other four states; it should be larger than the
magnetic scale t2

eff/U . (Here teff refers generally to the ampli-
tude of the effective hopping between neighboring TM sites.)
In the next section, we consider the allowed ME couplings on
a symmetry basis and do not make additional assumptions for
the on-site Hamiltonian. In Sec. VI, when explicitly consider-
ing the microscopic mechanisms, we will make the assump-
tion that SOC is large, λ 
 t2

eff/U . Moreover, the additional
CF distortion, whose main effect is to lower the symmetry,
will be introduced perturbatively in analytical calculations.

FIG. 2. Crystal structure of Kitaev materials. The blue spheres
are the TM ions (Ir or Ru) and the red spheres are the ligand (O or
Cl). Each TM-TM bond is in the edge-sharing geometry.

This situation is particularly relevant for late TM ions such
as Ir, Os, Rh, and Ru [41].

In this limit, the present model on the two-dimensional
honeycomb lattice (with edge-sharing bonds, see Fig. 2) has
been discussed extensively [42–49] in the context of Ki-
taev materials such as α-RuCl3 [50,51]and ‘Kitaev iridates’
A2IrO3 with A=Na, Li [52,53]. The model on the square
lattice (with corner-sharing bonds) has been discussed in the
context of iridates or rhodates compounds such as Sr2IrO4 and
Sr2Ir1−xRhxO4 [54].

III. SYMMETRY CONSIDERATIONS

Group theory is a powerful tool to derive the allowed spin-
polarization coupling [35–37]. Here we explicitly consider
the two geometries depicted in Fig. 1 with and without the
inclusion of CF distortions. In the ground state manifold (one
pseudospin-1/2 per TM ion), because of the time-reversal
and inversion symmetry, the general form of the coupling be-
tween the electric polarization and the pseudospins (referred
to as simply spins from now on) for a given bond 〈ij 〉 is
P = m̂(Si × Sj ), or⎛

⎝Px

Py

Pz

⎞
⎠ =

⎛
⎝mxx mxy mxz

myx myy myz

mzx mzy mzz

⎞
⎠

⎛
⎝(Si × Sj )x

(Si × Sj )y
(Si × Sj )z

⎞
⎠. (9)

For a bond in the x direction, the KNB coupling corre-
sponds to the case myz = −mzy and all other components
equal to zero. In general, the allowed matrix elements of m̂

are dictated by the symmetry group of the bond 〈ij 〉.

A. Edge-sharing geometry

Let us first consider the situation where each TM ion is
surrounded by six ligands forming edge-sharing octahedra:
Neighboring TM ions share two ligands each forming a φ =
90◦ TM-L-TM bond as depicted in Fig. 1(b).

1. Full octahedral symmetry

Ideally, the ligands form a perfect octahedra around each
TM ion in the ±x̂, ±ŷ, and ±ẑ directions, in which case the
point group of the system is Oh. Let us consider a bond in the
(x̂ − ŷ)/

√
2 direction (also called a Z bond). The other bonds

in the honeycomb lattice of Fig. 2 are simply related by cyclic
permutations.

The structure has three C2 symmetries along the û =
(x̂ − ŷ)/

√
2, v̂ = (x̂ + ŷ)/

√
2, and ŵ = ẑ axis. The symmetry

group is thus D2h. The character table D2h is shown in
Table IV of Appendix C along with the character tables of
other relevant groups.

The T2 representation of O breaks into three different
irreducible representations of D2h: T2 → B1 ⊕ B2 ⊕ B3 for
the three dab orbitals where a and b correspond to the û, v̂,
and ŵ directions. The effective hopping (after integrating out
the ligand) between the t2g orbitals of sites i and j therefore
must be

T̂Z (D2h) =
⎛
⎝t11 0 0

0 t22 0
0 0 t33

⎞
⎠

B′,B′

=
⎛
⎝t1 t2 0

t2 t1 0
0 0 t3

⎞
⎠

B,B

, (10)
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where B and B′ are the {x̂, ŷ, ẑ} and {û, v̂, ŵ} bases, respec-
tively. The hopping integrals can be expressed via the Slater-
Koster integrals [40,45] (tpdσ , tpdπ , tddσ , tddπ , and tddδ),

t1 = tddπ + tddδ

2
,

t2 = −tddπ + tddδ

2
+ t2

pdπ

�pd

,

t3 = 3tddσ + tddδ

4
. (11)

The spin operators S · û, S · v̂, and S · ŵ transform as
B1,g , B2,g , and B3,g , respectively, and the antisymmetrization
between site i and j from the cross product acts as an extra
B1,u. The polarization Pα simply acts as a vector: Bα,u. Hence,
only two independent coupling constants are allowed,

m̂(D2h) =
⎛
⎝0 0 0

0 0 m4

0 m5 0

⎞
⎠

B′,B′

. (12)

Note that unlike the hopping matrix, which is symmetric,
the spin-polarization coupling matrix does not have to be
symmetric nor antisymmetric. Already, this is more general
than the P ∝ êij × (Si × Sj ) coupling, as m4 and m5 are a
priori not related.

2. With trigonal distortion

Real materials have additional distortions away from the
octahedral CF. For Kitaev materials, the most commonly
considered distortion is a uniform elongation or compression
perpendicular to the plane containing the honeycomb lattice,
along the (x̂ + ŷ + ẑ)/

√
3 axis. In this case, the C3 symmetry

is intact and the point group of the system is D3d . The
symmetry group of the bond is then reduced to D2h → C2h.
Its character table is shown in Table V of Appendix C.

In this case, the hopping matrix has one additional allowed
term,

T̂Z (C2h) =
⎛
⎝t11 0 0

0 t22 t23

0 t23 t33

⎞
⎠

B′,B′

=
⎛
⎝t1 t2 t4

t2 t1 t4
t4 t4 t3

⎞
⎠

B,B

,

(13)

Similarly, in the C2h symmetry there are five allowed coupling
constants between the spin antisymmetric vector and the
polarization:

m̂(C2h) =
⎛
⎝m1 0 0

0 m2 m4

0 m5 m3

⎞
⎠

B′,B′

. (14)

3. Additional distortions

In addition to the trigonal distortion, a monoclinic distor-
tion is also usually observed, albeit small. It further lowers the
symmetry group of the bond, C2h → Ci . In this a case, there
are no constraints; the hopping matrix has six independent
terms and the matrix m̂ has nine. However we will not
consider this symmetry situation in the following and limit
ourselves to the trigonal distortion.

A particular distortion is worth mentioning: when, for each
bond, the two ligands move toward or away from the center of
the bond, in the ±v̂ direction. In principle, the bond has a C2h

symmetry in this case. However, the microscopic processes
we consider are derived in the subsystem including only the
two TM ions and two ligands. Because the displacement
of the ligands is along the v̂ axis, one of the C2 axes, the
processes will only yield coupling consistent with the D2h

symmetry group. In a sense, this is the most practical way
to study the TM-L-TM angle dependence away from the ideal
φ = 90◦ bond geometry. This case is explicitly considered in
Appendix A.

B. Corner-sharing geometry

In the corner-sharing geometry, the octahedral complexes
of two neighboring TM ions share one ligand. When an
angle is introduced away from ϕ = 180◦, the bond inversion
symmetry is broken and additional couplings are possible,
deviating from Eq. (9). The ϕ �= 180 geometry is considered
in Appendix B.

1. Full octahedral symmetry

A bond consists of two octahedra connected along, say, the
x̂ direction as depicted in Fig. 1(a). The structure has four C2

axes, in addition to one C4 axis and inversion symmetry. The
symmetry group is thus D4h and its character table is shown
in Table VI. The T2 representation of O breaks into three
different irreducible representations of D4h: T2 → B2 ⊕ E

for the three t2g orbitals. The dyz orbital transforms as B2g ,
while (dxy, dxz) transforms as Eg . The effective hopping (after
integrating out the ligand) between the t2g orbitals of sites i

and j therefore must be

T̂x (D4h) =
⎛
⎝t1 0 0

0 t2 0
0 0 t2

⎞
⎠

B,B

. (15)

Neglecting the d-d direct hopping, which is safe in the present

geometry, we have t1 = 0 and t2 = − t2
pdπ

�pd
≡ t . The ME

coupling is

m̂x (D4h) =
⎛
⎝0 0 0

0 0 m1

0 −m1 0

⎞
⎠

B,B

, (16)

which corresponds to the KNB formula because of the high
symmetry of the system (in contrast to the edge-sharing
geometry).

2. Tetragonal distortion

A uniform tetragonal distortion only affects the ligands
above and below the TM ions. It reduces the bond symmetry
from D4h to D2h. Equation (16) thus becomes similar to
Eq. (12) and allows a deviation from the KNB form,

m̂x (D2h) =
⎛
⎝0 0 0

0 0 m1

0 m2 0

⎞
⎠

B,B

. (17)

125135-4



THEORY OF ELECTRONIC MAGNETOELECTRIC COUPLING … PHYSICAL REVIEW B 98, 125135 (2018)

The hopping processes, however, are not affected by the
ligand in the ±ẑ direction and thus by the tetragonal distortion.

IV. IMPORTANCE OF SPIN-ORBIT COUPLING

There are two potential origins for the coupling between
spin and charge (or polarization) of the electrons. The intrinsic
Pauli exclusion principle prevents two electrons with the same
magnetic state to be on the same site. Alternatively, SOC
explicitly couples the motion of an electron with its spin.
Here, we show that SOC is actually essential in order to have
a finite electronic ME coupling involving pairs of spin-1/2
operators in systems with inversion symmetry.

Without SOC, the orbital degeneracy is only lifted by
the CF distortion and the pseudospins of the ground state
manifold are the original spins of the holes. Due to inversion
symmetry, the polarization operator P = m̂(Si × Sj ) only has
finite matrix elements between the singlet and triplets in spin
space. The microscopic operator P is obviously trivial in terms
of electronic spin operators. Therefore, the effective polariza-
tion operator in the ground state manifold vanishes without
SOC. This argument is only valid when the symmetry group
of the bond contains inversion symmetry, without which spin-
symmetric matrix elements (i.e., triplet to triplet or singlet to
singlet) are possible.

To understand better the role of SOC, we consider the
localized single-hole wave functions in the ground state. If
we now consider a single bond 〈ij 〉, each wave function
transforms as a representation, say �, of the bond symmetry
group. Without SOC, � is one dimensional with an extra
spin degeneracy. With SOC, however, � is a two-dimensional
representation of the corresponding spin double group that
mixes orbitals and spins.

Because the wave functions are on different sites, there
is an extra site index. For two sites, this extra degree of
freedom transforms as one of two different one-dimensional
representations of the bond symmetry group so that the two-
hole state is overall odd under exchange (as imposed by the
fermionic statistic): either �sym = 1, the trivial representation,
or �antisym. The explicit identification of �antisym depends on
the group (see, e.g., the tables in Appendix C, where it
is indicated as “i-j antisym”), but it is always odd under
inversion symmetry.

Without SOC, � ⊗ � = 1 and, due to the extra spin degen-
eracy (singlet or triplet), the full two-hole ground state mani-
fold transforms as �sym ⊕ �antisym. Because the polarization is
odd under inversion, only matrix elements between spin triplet
and spin singlet are possible when SOC is absent, which, as
already mentioned, cannot be finite. Once SOC is introduced,
each irreducible representation of � ⊗ � = ∑

k �k is either
even or odd under permutation of the single-hole wave func-
tions and has to be combined accordingly with �sym or �antsym.
However, the dichotomy does not correspond to spin triplet
and spin singlet anymore, and the above argument cannot be
used.

V. POLARIZATION

We start by defining the polarization operator P in second
quantized notation. This is done by explicitly calculating its

matrix elements between the different single-electron wave
functions. In this section, the spin degree of freedom is not im-
portant and not written explicitly. The Bloch wave functions
can be expressed as

ψm(k, r) = 1

N

∑
n

am(Rn, r )eik·r, (18)

where Rn are lattice vectors, N is the number of unit cells,
and am(Rn, r ) is a Wannier function for the unit cells at Rn. In
the tight-binding approach, the LCAO approximation is used
for which the exact Wannier functions are replaced by isolated
atomic orbitals (or a linear combination of them, when there
are multiple atoms per unit cell).

We now consider a single TM-TM bond consisting of two
TM ions at positions rTM

1 and rTM
2 and M ligands at positions

rL
p (p = 1, . . . , M). There are thus 10 + 3M different atomic

orbitals centered at 2 + M different positions,

ψat(r) =
{

ψα

(
r − rTM

1

)
, ψα

(
r − rTM

2

)
(d orbitals)

ψγ

(
r − rL

p

)
p = 1, . . . , M (p orbitals)

,

(19)

where α ∈ {yz, xz, xy, x2 − y2, 3z2 − r2}, and γ ∈ {x, y, z}.
We furthermore assume, for simplicity, that the atomic orbitals
are orthogonal to each other. The different atomic orbitals
are written as |R, α〉, where R is the position of the cor-
responding ion and α labels the orbital. The polarization
operators P = er is then obtained by calculating the different
matrix elements e〈R, α|r|R′, β〉. In the following, we set the
elementary charge e = 1. In general, P can be decomposed
into single-site terms (R = R′) and two-site terms (R �= R′),
which we call “lattice polarization” and “hopping polariza-
tion,” respectively.

A. Lattice polarization

First, for a given ion, the matrix elements are given by

〈R, α|r|R, β〉 = Rδαβ + 〈0, α|r|0, β〉 = Rδαβ. (20)

Indeed, the product of two d or two p orbitals is even under in-
version symmetry. This defines the lattice polarization, which
reads

∑
i rini , where ni = ∑

α ni,α = ∑
α c

†
i,αci,α for the ion

at position ri (both ligands and TM ions). Moreover, the Mott
insulator is overall neutral and has a fixed number of electrons
on each equivalent site in the ground state manifold: nTM (nL)
for TM ions (ligands). The lattice polarization is

Plat =
∑
i∈TM

rTM
i δni +

∑
p∈L

rL
pδnp, (21)

where δni = ni − nTM(L) for TM ions (ligands). This contri-
bution is intrinsic to the tight-binding model. It is directly
related to the “Hubbard current” that we obtain at first order
in the vector potential from the Peierls substitution in the
hopping integrals. In the Mott insulating phase, it arises from
virtual hopping between neighboring atoms when t/U is
finite, so that the ground states are not exact magnetic states
but contain a small mixture of polar states. After integrating
out the p-orbital intermediate states, we are left with two types
of contributions at the lowest order in t/U : the contribution
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from the TM ions and from the ligands [first and second term
in Eq. (21)]. For a TM-TM pair 〈ij 〉, the contribution from the
TM ions is

P(TM)
lat,〈ij〉,eff = P

[
Hij

hop

Qj

(E0 − H0)2
Hji

hop

−Hji

hop

Qi

(E0 − H0)2
Hij

hop

]
P aij , (22)

where P and Qk are the projection operators on the ground
state manifold (with energy E0) and polar states with double
occupancy at site k, respectively. H0 is the local Hamiltonian
(without hopping), Hij

hop is the effective hopping Hamiltonian
between sites i and j , and aij = rTM

j − rTM
i , whose norm

is a, the lattice spacing. This operator scales as t2
eff/U 2 or

t4
pd/(�2

pdU
2). Here tpd generally denotes the TM-L hopping

integrals.
The contribution from the ligands comes when we apply

P on a polar state with a hole on a ligand. After integrating
out the intermediate states, the operator takes the form of an
effective hopping,

P(L)
lat,〈ij〉 =

∑
p

∑
γ=x,y,z

t
αγ

ip t
βγ

jp

�2
pd

rL
p (c†i,αcj,β + c

†
j,βci,α ), (23)

where p labels the ligands between the two TM ions at
positions rL

p and γ labels their orbitals. This operators scales
as t2

pd/�
2
pd and its projection onto the ground state manifold

is

P(L)
lat,〈ij〉,eff = P

[
P(L)

lat,ij

Qj

E0 − H0
Hji

hop

+ P(L)
lat,j i

Qi

E0 − H0
Hij

hop

]
P + H.c., (24)

which, unlike the contributions from TM ions, scales as
t2
pd teff/(�2

pdU ) or t4
pd/(�3

pdU ) and is thus smaller by a factor
of U/�pd .

B. Hopping polarization

The remaining matrix elements are

〈R, α|r|R′, β〉 = 〈R, α|r − r0|R′, β〉 =
〈
−d

2
, α|r|d

2
, β

〉
,

(25)

where R �= R′, r0 = (R + R′)/2 and d = R′ − R is the vec-
tor separating the two ions: either TM-TM (in which case
‖ d ‖= a) or TM-L. Anticipating the integrating out of the p-
orbital states, we only consider the d-d and the p-d polariza-
tion integrals. The behavior under inversion symmetry implies
that 〈R, α|r|R′, γ 〉 = 〈R, γ |r|R′, α〉 for a p-d integral and
that 〈R, α|r|R′, β〉 = −〈R, β|r|R′, α〉 for a d-d integral.

After integrating out the intermediate states, we have

Phop =
∑
〈i,j〉

∑
α,β

pij (α, β )(c†i,αcj,β + c
†
j,βci,α ), (26)

where pij (α, β ) is the effective polarization integral between
the TM ions at site i and j with orbitals α and β, respectively.

The projection onto the ground state manifold is obtained
similarly to Eq. (24).

There are two contributions to pij (α, β ): one from direct
d-d polarization integrals, and a TM-L-TM superexchange-
like contribution from p-d integrals, so that

pij (α, β ) = 〈
rTM
i , α

∣∣r∣∣rTM
j , β

〉 + ∑
p

∑
γ=x,y,z

×
〈
rTM
i , α

∣∣r∣∣rL
p, γ

〉
t
βγ

jp + t
αγ

ip

〈
rL
p, γ

∣∣r∣∣rTM
j , β

〉
�pd

,

(27)

where p labels the ligands between the two TM ions and γ

their orbitals. Such integrals between d and p orbitals were
used in the original KNB derivation [16]. However, in the
KNB formalism the integrals are only considered at zeroth
order in the interatomic distance (i.e., with rTM

i = rTM
j ). The

outcome of this approximation is that the finite integrals
involving t2g orbitals, 〈pz|y|dyz〉 and its six permutations, are
all equal to each other.

In the following, we derive a more complete scheme to
calculate the different integrals for any vector d separating two
ions, in a manner that is reminiscent of the Slater-Koster hop-
ping integrals [40]. We find five different symmetry-allowed
integrals for a p-d pair and only two for a d-d pair.

To summarize, we have two different mechanisms. The lat-
tice polarization has a contribution from the TM ions, which
scales as a · t4

pd/(�2
pdU

2), and a contribution from the lig-
ands, which scales as a · t4

pd/(�3
pdU ). In the magnetic ground

state manifold, the hopping polarization is obtained after one
additional virtual hopping and thus scale as peff teff/U [where
peff generally represents the effective hopping polarization
between two TM sites defined by Eq. (27)]. In terms of p-d
integrals, the scaling is ppdt

3
pd/(�2

pdU ). Therefore, in the
Mott insulating limit where �pd 
 U , the dominant contri-
bution is determined by comparing peff with a · teff/U , or by
directly comparing ppd with a · tpd/U if the p-d integrals are
dominant.

C. Polarization integrals

The integrals in Eq. (26) are two-center integrals with an
extra l = 1 spherical harmonic at the middle point. A p orbital
can be expressed as a linear combination of pσ and pπ±
functions with respect to the axis d along the bond, and a d

orbital can be expressed as a combination of dσ , dπ±, and
dδ± functions. Here σ , π±, and δ± refer to the component
of angular momentum along the axis. The different labels di-
rectly correspond to the cubic harmonics as shown in Table I.

For p-d integrals, five symmetry channels are allowed.
They can be separated into longitudinal (P along the bond)

TABLE I. Cubic harmonics of p and d orbitals expressed with
respect to their component of angular momentum along the z axis.

x y z yz xz xy
x2−y2

2
3z2−r2

2
√

3

π+ π− σ π− π+ δ+ δ− σ
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and transverse (P orthogonal to the bond) components. To
lighten the notation, the center of the atomic orbitals is omitted
and assumed to be −d/2 (d/2) for the bra (ket) state. The two
longitudinal integrals are

P
‖
pdσ = 〈pσ |σ |dσ 〉 (28)

P
‖
pdπ = 〈pπ±|σ |dπ±〉 (29)

and the three transverse integrals are

P ⊥
pπdσ = 〈pπ±|π±|dσ 〉 (30)

P ⊥
pσdπ = 〈pσ |π±|dπ±〉 (31)

P ⊥
pπdδ = 〈pπ±|π∓|dδ+〉

= ±〈pπ±|π±|dδ−〉. (32)

Here σ and π± denote the projections of r on the σ and π±
axes.

For the d-d integrals, there are only two transverse compo-
nents,

P ⊥
dσdπ = 〈dσ |π±|dπ±〉

= −〈dπ±|π±|dσ 〉 (33)

P ⊥
dπdδ = 〈dπ±|π∓|dδ+〉

= ±〈dπ± |π±|dδ−〉
= −〈dδ+ |π∓|dπ±〉
= ∓〈dδ− |π±|dπ±〉. (34)

From those expressions, we can then calculate the polarization
integrals in a fixed basis for d pointing in an arbitrary direc-
tion. Using the notation of Slater and Koster [40], we denote
the cosine angles of d as (l, m, n). For example we have

〈px |x|dxy〉 =
√

3l3mP
‖
pdσ + lm(1 − 2l2)P ‖

pdπ

+
√

3lm(1 − l2)P ⊥
pπdσ + lm(1 − 2l2)P ⊥

pσdπ

− lm(1 − l2)P ⊥
pπdδ. (35)

Other integrals are found in Table VIII in Appendix D. In
particular, for a bond along the z axis, the t2g-p integrals of
the KNB theory split into three different possible values:

〈px |z|dxz〉 = 〈py |z|dyz〉 = P
‖
pdπ

〈pz|y|dyz〉 = 〈pz|x|dxz〉 = P ⊥
pσdπ

〈px |y|dxy〉 = 〈py |x|dxy〉 = P ⊥
pπdδ. (36)

In the limit where d = ||d|| → 0, the three integrals of
Eq. (36) are identical and can be roughly calculated using
the orbitals of the hydrogenlike atom [16]. Moreover, the
d-d integrals vanish due to their behavior under inversion
symmetry. The integrals have been numerically calculated as
a function of the interatomic distance d using hydrogenlike
atomic orbitals. The results are shown in Fig. 3. The hydro-
genlike atomic orbitals of chromium (3d orbitals with Z =
24) and oxygen (2p orbitals with Z = 8), and of ruthenium
(4d orbitals with Z = 44) and chloride (3p orbitals with

FIG. 3. The different p-d (top) and d-d (bottom) polarization
integrals as a function of the atomic spacing d , in units of a0, the
Bohr radius. The cases of chromium and oxygen atoms (left) and
ruthenium and chloride atoms (right) are plotted using hydrogenlike
atomic orbitals.

Z = 17) have been used (left and right figures, respectively).
For a typical interatomic distance of 2Å ∼ 3.8a0 (a0 is the
Bohr radius), the p-d integrals are considerably smaller than
the zeroth order approximation used in the KNB theory by a
factor of ∼104−6.

It is important to note that in general, the hydrogenlike
atom model is not a good approximation. In particular, when
the system is close to the Mott transition, or close to a
molecular-insulating regime, the wave functions might be
spread over several sites with significant overlap. This is
especially true for the 4d or 5d compounds considered in
this paper. In such a case, the polarization integrals should
be larger (as are the tight-binding hopping integrals) and
first-principle methods should be used to evaluate the atomic
orbitals. Nevertheless, the symmetry considerations (the clas-
sification into different symmetry channels) still apply.

VI. MICROSCOPIC MECHANISMS

We are now looking explicitly at the mechanisms behind
the allowed couplings in terms of the microscopic lattice and
hopping polarization defined in Sec. V. For each allowed
coupling constants m1−5 in Eqs. (12), (14), (16), and (17), we
separate the contributions as

mi = aAi + Bi , (37)

where Ai and Bi are the coupling constants resulting from
the Plat and Phop, respectively. Here a is the lattice spacing
between two TM ions so that the contributions Ai are unitless,
while the contributions Bi have units of distance coming
from the polarization integrals. The results are summarized
in Table II and shown in Figs. 5 and 6 for the edge-sharing
geometry, and are summarized in Table III for the corner-
sharing geometry.
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TABLE II. Coupling constants defined in Eqs. (14) and (37) for
the edge-sharing geometry in the JH /U → 0 limit (and λ/U → 0
for A1). The CF is included through HCF but the displacement of the
ligands is neglected. The coefficients b4 and b5 are given in terms of
the polarization integrals in Eq. (52).

A1 = √
2 64

81 �(t1 + t2 − t3 − t4)(t1 + t2 + t3) JH

λU3

A2 = − t2
pdπ

�2
pd

√
2 16

81 � 2t1+t3
λU

A3 = 0

A4 = t2
pdπ

�2
pd

[
8
9

2t1+t3
U

+ 64
81 � t2+2t4

λU

]
A5 = 0

B1 = 0

B2 = b4

√
2 32

81 � 2t1+t3
λU

B3 = b5

√
2 32

81 � 2t1+t3
λU

B4 = −b4

[
16
9

2t1+t3
U

+ 128
81 � t2+2t4

λU

]
B5 = b5

[ − 16
9

2t1+t3
U

+ 32
81 � 2t1−4t2+t3−8t4

λU

]

A. Edge-sharing geometry

In the edge-sharing geometry, the five coupling constants
m1−5 in Eq. (14) are defined through

Peff = m1[û · (Si × Sj )]û

+ [m2(Si × Sj ) · v̂ + m4(Si × Sj ) · ŵ]v̂

+ [m5(Si × Sj ) · v̂ + m3(Si × Sj ) · ŵ]ŵ. (38)

1. Lattice polarization

In order to calculate the contribution from Plat in Eq. (21),
we consider the subsystem made of one bond depicted in
Fig. 1(b): two TM ions at sites i and j separated by aû, and
two ligands also separated by a distance a when φ = 90◦. All
the calculations done in this section are extended to the φ �=
90◦ case in Appendix A. In the subsystem,

∑
k δnk = 0 and

we can choose the origin at the center of the bond. Then, the
contribution from the TM ions is always in the û direction, and
the contribution from the ligands is perpendicular to it. With-
out trigonal distortion, the latter is exactly in the v̂ direction.

Without trigonal distortion, we see in Eq. (12) that from
symmetry considerations, m1 = 0. Hence, the contribution to
Plat along the bond coming from the TM ions vanishes due
to the high D2h symmetry of the bond. More intuitively, this

TABLE III. Coupling coefficients defined in Eqs. (17) and (37)
for the corner-sharing geometry in the JH /U → 0 limit. The CF
is included through HCF but the displacement of the ligands is
neglected.

A1 = 0

A2 = 0

B1 = −tpdπP ⊥
pπdσ

[
32
9

t

U
− 64

81 � t (U+6λ)
U2λ

]
B2 = tpdπP ⊥

pπdσ

[
32
9

t

U
+ 128

81 � t (U−3λ)
U2λ

]

can be understood from the original microscopic Hamiltonian
(1). With the trigonal CF � = 0, the on-site Hamiltonian is
O(3) rotationally invariant because we neglect the eg orbitals.
The bond symmetry is encoded in the hopping matrix, which
has three eigenvectors corresponding to the three C2 axes of
the D2h group: û, v̂, and ŵ. The on-site energy eigenstates
are grouped into three Kramers pairs (or three states with a
pseudospin variable). Because SOC is rotationally invariant,
the hopping is completely diagonal with respect to the pseu-
dospins. As the polarization only connects states with differ-
ent parities, the contribution from P(TM)

lat along the bond must
vanish. When � �= 0, the hopping is no longer diagonal with
respect to the pseudospins and a finite contribution is possible.

Additionally, in the specific case where (x̂ + ŷ + ẑ)/
√

3 is
an eigenvector of the hopping matrix (i.e., the CF Hamiltonian
and the hopping matrix are simultaneously diagonalizable),
the system recovers an accidental D2h symmetry and the
contribution vanishes. This happens exactly when t1 + t2 −
t3 − t4 = 0.

The contribution to m1 in Eq. (14) can be found numeri-
cally with exact diagonalization of the two-site system or with
perturbation theory. Using perturbation theory at second order
in Hhop, as explained in Sec. V, we find a contribution to m1,

P(TM)
lat, eff = A1[û · (Si × Sj )]aû. (39)

From Eq. (22),

A1[û · (Si × Sj )] = Pij − Pji, (40)

where

Pij = PHij

hop

Qj

(E0 − H0)2
Hji

hopP. (41)

Here, H0 = HSOC + HCF + Hint. Including the trigonal dis-
tortion, the calculation is too cumbersome to be performed
analytically, but we can treat HCF as an additional perturba-
tion. At the lowest order (second order in the hopping and
first order in �),

Pij =
[

− 2

3λ
P 1

2
Hij

hop

Qj

(E0 − H′
0)2

Hji

hopP 3
2
HCFP 1

2

+P 1
2
Hij

hop

Qj

(E0 − H′
0)2

HCF
Qj

E0 − H′
0

Hji

hopP 1
2

]
+ H.c., (42)

where P 1
2

and P 3
2

are the projection operators on the J = 1/2
states and the J = 3/2 states, respectively. In Eq. (42), H′

0 =
HSOC + Hint.

The full expression of A1 is large and given in Ap-
pendix E 1. It can be written as

A1 = �(t1 + t2 − t3 − t4)
JH

λ
× P

Q
, (43)

where the P and Q are polynomials given in Appendix E 1.
In the U 
 JH , λ limit, we find
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FIG. 4. Numerical evaluation of A1 in Eq. (39). Results using exact diagonalization (ED) (red line), perturbation theory (PT) exact in �

(blue line), and perturbation theory linear in � (green dashed line) are plotted in (a) and (b), for typical values of the physical parameters:
U = 2310 meV, JH = 320 meV, λ = 140 meV, and we set t1 = t3 = t4 = 0. It is plotted (a) as a function of t2 with � = −50 meV and (b) as
a function of � with t2 = 150 meV. (c) shows ED calculation of A1 as a function of � for different sets of values t1−4 taken from the literature
[45,55]. The values are indicated in meV units.

lim
JH /U → 0
λ/U → 0

A1 =
√

2
64

81
�(t1 + t2 − t3 − t4)

× (t1 + t2 + t3)
JH

λU 3
. (44)

Interestingly, the unitless constant A1 vanishes when JH = 0.
This can be seen in Fig. 5(a) as well. The ME coupling in
Eq. (39) was used in Ref. [34] to explain the subgap optical
conductivity of Kitaev materials.

The calculation of A1 was also performed using perturba-
tion exact in � and using exact diagonalization on a two-site
system. In Fig. 4, we plot A1 calculated with the three meth-
ods: exact diagonalization, perturbation theory (quadratic in
the hopping), and from Eq. (43) (quadratic in the hopping
and linear in the CF distortion). The physical parameters
were set to U = 2310 meV, JH = 320 meV, λ = 140 meV,
which correspond to typical values for α-RuCl3 [45,55]. In
Figs. 4(a) and 4(b), we set t1 = t3 = 0 and calculate A1 as a
function of t2 and �, respectively. For α-RuCl3, the trigonal
CF distortion � is typically somewhere between −15 meV
and −70 meV (not so small compared to λ). In Fig. 4(c), we
also consider finite values for t1, t3, and t4, and plot exact
diagonalization results for different sets of realistic values.
We find that for typical values of the hopping amplitudes,
the perturbation theory calculations very well reproduce the
exact diagonalization calculations. Moreover, the perturbation
theory linear in � is, in most cases, a surprisingly good
approximation up to relatively large values of � as long as
|�| < λ (which is usually the case in 4d and 5d materials due
to strong SOC). Interestingly, the behavior depends consider-
ably on the hopping integrals and their relative amplitudes. In
particular, the sign of A1 changes as |t3/t2| increases. Finally,
we properly observe in Figs. 4(b) and 4(c) that both SOC and
the trigonal CF are required in order have a finite P along the
bond. Indeed, A1 → 0 for � → ±∞, which is equivalent to
λ → 0.

The second contribution to Plat, from the ligands, is ob-
tained from Eq. (23) and is just the effective hopping matrix

elements arising from the TM-L-TM processes, but with
opposite sign for the two ligands so that the matrix is anti-
symmetric. Without trigonal distortion, it is oriented along v̂
so that

P(L)
lat = t2

pdπ

�2
pd

⎡
⎣c†i

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠cj + H.c.

⎤
⎦a

2
v̂. (45)

Equation (45) has the same form as the hopping polarization
terms considered in the next subsection. We already know
from symmetry that it eventually yields

P(L)
lat,eff = [A2v̂ · (Si × Sj ) + A4ŵ · (Si × Sj )]av̂

+ [A5v̂ · (Si × Sj ) + A3ŵ · (Si × Sj )]aŵ, (46)

where only A4 �= 0 without trigonal CF. Furthermore, it is safe
to neglect the displacement of the ligands along ŵ in which
case A5 = A3 = 0. The constants are explicitly calculated in
the next subsection.

In Fig. 5, we plot the coupling constants A1, A2, and A4,
calculated with exact diagonalization on a two-site cluster
without any approximations, as a function of JH , λ, and �

in Figs. 5(a), 5(b) and 5(c), respectively. Note that we cannot
decrease λ below a certain threshold in Fig. 5(b) because the
pseudospin-1/2 are not well defined for � < 0 when λ = 0
(the local ground state is fourfold degenerate).

2. Hopping polarization

The contribution from the microscopic operator (26) can
be decomposed in terms of the hopping operators

M̂u = 1√
2

c†i

⎛
⎝ 0 0 1

0 0 1
−1 −1 0

⎞
⎠cj + H.c.,

M̂v = 1√
2

c†i

⎛
⎝0 0 −1

0 0 1
1 −1 0

⎞
⎠cj + H.c., and
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FIG. 5. Numerical evaluation of A1, A2, and A4 in Eqs. (37) and (45) using exact diagonalization as a function of (a) JH , (b) λ, and (c) �.
The nonvarying physical parameters are chosen as U = 2310 meV, JH = 320 meV, λ = 140 meV, � = −50 meV, t1 = 50 meV, t2 = 160 meV,
t3 = −150 meV, and t4 = −20 meV, typical for α-RuCl3.

M̂w = c†i

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠cj + H.c., (47)

where M̂n acts in the same representations as (Si × Sj ) · n̂ for
n̂ = û, v̂, and ŵ. Thus, in the C2h bond symmetry,

Phop = [b1M̂u]û + [b2M̂v + b4M̂w]v̂ + [b5M̂v + b3M̂w]ŵ,

(48)

and only b4 and b5 survive when the displacement of the
ligands away from the D2h symmetry is neglected. When
computed in the ground state manifold of the Hamiltonian
without trigonal distortion, each M̂n creates a (Si × Sj ) · n̂
term due to the D2h symmetry. With the addition of HCF,
using the C2h character table V, we infer that the b2 and b4

terms mix and contribute to both B2 and B4. Similarly the b5

and b3 terms mix and contribute to both B5 and B3. Finally,
the b1 term contributes to B1. At first order in the hopping
Hamiltonian [see Eq. (24)] we have

M̂n,eff = PM̂n

1

E0 − H0
HhopP + H.c. (49)

Without trigonal distortion, Eq. (49) results in M̂n,eff =
Mn(Si × Sj ) · n̂ and thus B4 = b4Mw and B5 = b5Mv . We
observe that Hund’s coupling is responsible for the anisotropy
as Mu = Mv = Mw when JH /U → 0:

lim
JH /U→0

Mn = −16

9

2t1 + t3

U
≡ M. (50)

Unlike for Eq. (44), U 
 λ is not assumed. We see that
in the limit U 
 JH , the Mn’s are independent of λ. The
expressions for Mu, Mv , and Mw away from the JH /U → 0
limit are given in Appendix E 1.

With the inclusion of the trigonal distortion at first order,
we obtain additional terms. In the limiting case U 
 JH ,

lim
JH
U

→0
M̂u,eff =

[
M − 32

81
�

2t1 + 4t2 + t3 + 8t4

λU

]
(Si × Sj )u

lim
JH
U

→0
M̂v,eff =

[
M + 32

81
�

2t1 − 4t2 + t3 − 8t4

λU

]
(Si × Sj )v

+
[√

2
32

81
�

2t1 + t3

λU

]
(Si × Sj )w

lim
JH
U

→0
M̂w,eff =

[
M − 128

81
�

t2 + 2t4

λU

]
(Si × Sj )w

+
[√

2
32

81
�

2t1 + t3

λU

]
(Si × Sj )v. (51)

Equation (51) thus relates the coefficients b1−5, obtained from
the polarization integrals, to the coefficients Bi at first order in
Hhop and first order in �. We note that the relations in Eq. (51)
can be obtained without approximation numerically.

Finally, we express b1−5 in terms of the polarization inte-
grals of Sec. V using Eq. (27). Without distortion, the ligands
are in the x̂ and ŷ directions from the site i with an atomic
spacing d = a/

√
2 so that only b4 and b5 are finite,

b4 = −P ⊥
dπdδ −

√
2
P

‖
pdπ tpdπ

�pd

,

b5 = 1

4
(
√

6P ⊥
dσdπ −

√
2P ⊥

dπdδ ) +
√

2
P ⊥

pσdπ tpdπ

�pd

. (52)

Hence, even without the trigonal distortion, we recover the
KNB formula (b4 = −b5) only when the polarization integrals
are evaluated at zeroth order in d. In this case, the d-d inte-
grals vanish and P

‖
pdπ = P ⊥

pσdπ . The results are summarized
in Table II.

In Fig. 6, we plot the coupling constants B2−4, calculated
with exact diagonalization on a two-site cluster without any
approximations, as a function of JH , λ, and � in Figs. 6(a),
6(b) and 6(c), respectively. Note that we cannot decrease λ

below a certain threshold in Fig. 6(b) because the pseudospin
1/2 are not well defined for � < 0 when λ = 0 (the local
ground state is fourfold degenerate). For simplicity, we as-
sume b4 = −b5 and plotted the constants in units of b5. The
contributions Bi cannot be compared to the contributions Ai

in Eq. (37) unless we accurately calculate the integrals in b4

and b5, which we do not attempt here.
We see in both Figs. 5 and 6 that the KNB formula (which

corresponds to m4 = −m5 and m1−3 = 0) is not accurate at
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FIG. 6. Numerical evaluation of B2−4 in Eq. (37) using exact diagonalization as a function of (a) JH , (b) λ, and (c) �. The nonvarying
physical parameters are chosen as U = 2310 meV, JH = 320 meV, λ = 140 meV, � = −50 meV, t1 = 50 meV, t2 = 160 meV, t3 =
−150 meV, and t4 = −20 meV, typical for α-RuCl3. The coupling constants are plotted in units of b5 [see Eq. (52)] where we assumed
b4 = −b5 for simplicity.

all in the edge-sharing geometry, as m4 �= m5 and all m1−5

are finite in any parameter range. The expressions taking into
account the displacement of the ligands towards the bond
(φ �= 90◦) is given in Appendix A.

B. Corner-sharing geometry

In the corner-sharing geometry with ϕ = 180◦ [see
Fig. 1(a)], the calculations are considerably simpler. The ϕ �=
180◦ case is dealt with in Appendix B and is more complex
due to the lack of inversion symmetry.

1. Lattice polarization

We see from Eqs. (16) and (17) that polarization along
the bond vanishes. Because the only ligand is exactly at the
center of the bond, its contribution also vanishes. There-
fore, in contrast to the edge-sharing geometry, there is no
ME coupling originating from the lattice polarization when
ϕ = 180◦.

2. Hopping polarization

We define

N̂a = c†i Âacj + H.c., (53)

in terms of the antisymmetric off-diagonal matrices (Âa )bc =
εabc. Then, for an x bond, we find

Phop = [−tpdπP ⊥
pπdσ N̂z]ŷ + [tpdπP ⊥

pπdσ N̂y]ẑ. (54)

The expressions for other types of bonds are obtained by
performing the proper rotations.

Casting the above operators in the low-energy subspace
with perturbation theory at first order in t and � in the limit
U 
 JH , we obtain

lim
JH /U→0

N̂z,eff =
[

32

9

t

U
− 64

81
�

t (U + 6λ)

U 2λ

]
(Si × Sj )z

lim
JH /U→0

N̂y,eff =
[

32

9

t

U
+ 128

81
�

t (U − 3λ)

U 2λ

]
(Si × Sj )y. (55)

As for the edge-sharing geometry, JH is responsible for the
anisotropy when � = 0. The results are summarized in Ta-
ble III. The expressions away from the JH /U → 0 limit are
given in Appendix E 2.

We have thus obtained an expression for the two allowed
ME coupling constants of Eq. (17) as a function of the various
physical parameters and integrals in the ϕ = 180◦ geometry.
The deviation from the KNB formula originating from the CF
thus scales �/λ (for large U ) relatively to the KNB � = 0
contribution. We stress that the scaling is only accurate in the
λ 
 � limit.

VII. SUMMARY AND CONCLUSION

We developed a theory of the electric polarization in d5

Mott insulators from electronic mechanisms. In particular we
reconciled two approaches previously used to explain ME
behaviors. On one hand, there is the “hopping polarization,”
which corresponds to formalisms principally used in the
context of multiferroics, e.g., the KNB formula [16] and
other extensions [36], and relies on matrix elements such as
〈dxy |y|py〉. With an approach similar to Slater and Koster
[40], we expanded the theory by taking into account the
finite distance between ions and classified the different finite
polarization integrals according to their symmetry.

On the other hand, the “lattice polarization” is intrinsic to
the Hubbard model, merely defined by the positions of the
electrons on the lattice. Charge effects in single-band Mott
insulators due to such effects were first discussed in Ref. [26]
and lead to the explanation of the subgap optical conductivity
in different systems on lattices with triangular loops. In a
previous work, we noted that in multiorbital systems with
SOC, the same mechanism was possible at second order in the
hopping [34]. In the present paper, we thoroughly considered
the phenomenon and conclude that (i) in the �pd 
 U limit,
the contribution from the positions of the ligand is suppressed
by a factor of U/�pd compared to the contributions form the
TM ions, which itself vanishes if the trigonal distortion � →
0. Both contributions are relevant in the case of α-RuCl3 (see
Fig. 5). We also conclude that (ii) the edge-sharing geometry
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is crucial to obtain a finite polarization operator along the
TM-TM bond. In the corner-sharing geometry, even when
ϕ �= 180◦ (see Appendix B), the polarization along the bond
vanishes.

The relative contributions of the two mechanisms are de-
termined by comparing the polarization integral peff with a ·
teff/U between TM ions separated by a distance a. Together
with complementary first-principle methods to evaluate the
different physical parameters, in particular the polarization
integrals, the ME effects in d5 Mott insulators can be pre-
dicted from our results. In particular, in the edge-sharing
geometry the direction of the polarization changes whether
peff � a · teff/U , in which case A1 is finite (see Table II) and
P has a contribution along the bond, or peff 
 a · teff/U , in
which case P is perpendicular to the bond. In any case, we
generally find significant deviations from the KNB formula
in the edge-sharing geometry, as can be seen in Figs. 5
and 6.

We expect that the THz optical conductivity observed in
α-RuCl3 [29–33] can be better understood using our results
by calculating the dynamical response of the effective polar-
ization operator in the magnetic ground state manifold, which
has only been done in the pure Kitaev model [34].

From our results in the edge-sharing geometry of Kitaev
materials, the intensities of the regular magnetic dipole-
induced absorption and the electric dipole-induced absorp-
tion can be compared. Without calculating the correlation
functions, the ratio of the electric dipole contribution to the
magnetic dipole contribution can be estimated as (|m̂|/gλ̄)2,
where |m̂| is of the order of the spin-polarization coupling
constants {mi}, g is the effective Landé g factor, and λ̄ is
the Compton wavelength [34]. From the ‘lattice polariza-
tion’ contributions (see Table II and Fig. 5), we find that
the electric dipole-induced absorption is around 20 times
larger than the magnetic dipole-induced one. The ‘hopping
polarization’ contribution could be even larger but cannot
be estimated without calculating the integrals in Eq. (52).
Finally, the electric dipole-induced absorption is expected for
both in-plane and out-of-plane polarizations with similar
amplitudes.
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APPENDIX A: EDGE-SHARING GEOMETRY
WITH φ �= 90◦

Here, we consider the effect of the distortion corresponding
to the two ligands moving toward the center of the bond in the
±v̂ directions. As mentioned in Sec. III A, the displacement
of the ligands is along one of the C2 axis so that the processes
will only yield coupling consistent with the D2h symmetry
group. This lets us study the angle dependence away from the
ideal φ = 90◦ bond geometry.

The hopping integrals can be expressed via the Slater-
Koster integrals (tpdσ , tpdπ , tddσ , tddπ , and tddδ),

t1 = tddπ + tddδ

2
+ t2

pdπ

�pd

cos(φ)

t2 = −tddπ + tddδ

2
+ t2

pdπ

�pd

t3 = 3tddσ + tddδ

4
+ 3

2

t2
pdσ

�pd

cos3(φ)

+ (
√

3tpdσ − tpdπ )tpdπ

�pd

sin(φ) sin(2φ). (A1)

To be precise, we note that the integrals themselves also
depend on φ due to the change in the TM-L distance (or
alternatively in the TM-TM distance). We do not explicitly
consider this dependence [56].

1. Mechanism

a. Lattice polarization

The two ligands are separated by a distance ã = a cot(φ/2)
in the v̂ direction. The lattice polarization expression for the
ligands, Eq. (45) when φ = 90◦, becomes

P(L)
lat = t2

pdπ

�2
pd

sin(φ)

⎡
⎣c†i

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠cj + H.c.

⎤
⎦ ã

2
v̂. (A2)

Here the tpdπ integral also depends on φ if the TM-L distance
d = a/(2 cos(φ/2)) varies.

b. Lattice polarization

As in the φ = 90◦ situation, only b4 and b5 are nonzero
without the trigonal distortion. We find,

b4 = −P ⊥
dπdδ − 2 sin(φ/2)

tpdπ

�pd

× (P ‖
pdπ + cos(φ)(P ‖

pdπ − P ⊥
pπdδ ))

b5 = 1

4
(
√

6P ⊥
dσdπ −

√
2P ⊥

dπdδ ) + sin(φ/2)

2

1

�pd

× [cos(φ)(2
√

3P ⊥
pπdσ tpdπ + P ⊥

pπdδ (−2
√

3tpdσ + 6tpdπ ))

+ cos(2φ)(P ⊥
pσdπ − P ⊥

pπdδ )(
√

3tpdσ − 2tpdπ )

+P ⊥
pσdπ (

√
3tpdσ + 2tpdπ ) + P ⊥

pπdδ (−
√

3tpdσ + 2tpdπ )].

(A3)

With the addition of the trigonal distortion (displacement of
the ligands perpendicular to the plane), all b1−5 are finite
and the calculation is too cumbersome but can be done
numerically.

APPENDIX B: CORNER-SHARING GEOMETRY
WITH ϕ �= 180◦

In this appendix, we consider the more general corner-
shared geometry where a relative rotation along the ẑ axis
is allowed such that ϕ �= 180 [see Fig. 1(a)]. In this case,
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there is no inversion symmetry at the center of the bond.
The cubic orbitals are defined relatively to two sets of unit
vectors BA = {x̂A, ŷA, ẑ} and BB = {x̂B, ŷB, ẑ} separated by a
2α = π − ϕ rotation along the ẑ axis. We consider a uniform
tetragonal distortion �A = �B = �. A staggered tetragonal
distortion (corresponding to �A = −�B) is also plausible, as
shown in Ref. [57], but we do not consider it explicitly. For
an x bond, we define α > 0 for a displacement of the shared
ligand in the +ŷ direction.

a. Full octahedral symmetry with α �= 0

For α �= 0, the symmetry group of the bond is reduced to
C2v . Its character table is shown in Table VII. Importantly,
there is no inversion symmetry at the center of the bond. Thus,
the hopping can be antisymmetric and the polarization can
couple to symmetric two-spin operators. The full ME coupling
is then characterized by at most thirty coefficients instead of
nine.

The effective hopping matrices between the t2g orbitals of
site i and j are

T̂x (C2v ) =
⎛
⎝ t1 t4 0

−t4 t2 0
0 0 t3

⎞
⎠ and

T̂y (C2v ) =
⎛
⎝ t2 t4 0

−t4 t1 0
0 0 t3

⎞
⎠. (B1)

Considering only indirect p-d hopping and working in the BA

and BB bases, we have simply

T̂x =
⎛
⎝0 0 0

0 t2 0
0 0 t2 cos(2α)

⎞
⎠

BA,BB

and (B2)

T̂y =
⎛
⎝t2 0 0

0 0 0
0 0 t2 cos(2α)

⎞
⎠

BA,BB

. (B3)

The ME coupling (for an x bond) becomes

P =

⎛
⎜⎝

0 0 0

0 0 mA
1

0 mA
2 0

⎞
⎟⎠(Si × Sj )

+

⎛
⎜⎝

0 0 0 0

mD
0 mD

1 mD
2 mD

3

0 0 0 0

⎞
⎟⎠

⎛
⎜⎜⎜⎝

I

Sx
i Sx

j

S
y

i S
y

j

Sz
i S

z
j

⎞
⎟⎟⎟⎠

+

⎛
⎜⎝

0 0 m�
1

0 0 0

m�
2 0 0

⎞
⎟⎠

⎛
⎜⎝

S
y

i Sz
j + Sz

i S
y

j

Sx
i Sz

j + Sz
i S

x
j

Sx
i S

y

j + S
y

i Sx
j

⎞
⎟⎠. (B4)

Spin operators in the BA(B ) basis are obtained by the trans-
formation Si → eiαSz

Sie
−iαSz

(Sj → e−iαSz

Sj e
iαSz

). When
considering the two-spin operators, the change of basis
(B,B) → (BA,BB ) does not change the representation of
the operators, so that Eq. (B4) is valid with spin operators
written in either set of bases (the values of the coefficients

are nevertheless modified). From now on we work with the
B basis for P and in the BA and BB bases for Si and Sj ,
respectively.

b. Tetragonal distortion

For a uniform tetragonal distortion, the C2v symmetry
group is not affected by � and the form of m̂ does not change.

1. Mechanism

a. Lattice polarization

We see from Eq. (B4) that polarization along the bond is
only possible via m�

1 . However, as discussed in Sec. VI A, the
contribution from the TM ions must vanish when the hopping
is diagonal with respect to the pseudospins, which happens
when the 3 × 3 matrices defining the tetragonal CF and the
hopping commute. In the present case, due to the forms of
HCF and (B1), both matrices always commute even in the
lowest symmetry, so that P(TM)

lat = 0.
The ligand contribution corresponds exactly to the hopping

matrix (neglecting d-d direct hopping),

P(L)
lat,x = tan(α)[c†i T̂xcj + H.c.]

a

2
ŷ (B5)

P(L)
lat,y = − tan(α)[c†i T̂ycj + H.c.]

a

2
x̂. (B6)

We show in the next subsection that such microscopic op-
erators will, in turn, only produce a coupling with diagonal
two-spin operators Sα

i Sα
j in addition to a spin-independent

polarization (expected due to the lack of inversion symmetry).

b. Hopping polarization

For an x bond, we find

Phop = [
N̂x

S + N̂x
A

]
x̂ + [

N̂
y

S + N̂
y

A

]
ŷ + [

N̂z
S + N̂z

A

]
ẑ, (B7)

with

N̂a
S/A = c†i N̂ a

S/Acj + H.c., (B8)

where S and A stand for symmetric and antisymmetric, which
are both allowed when α �= 0 due to the lack of inversion

TABLE IV. Character table of D2h with twofold axis in the a, b,
and c directions. C2,α is a C2 rotation along the corresponding axis
(α = a, b, or c), σαβ is a reflection across the αβ plane, and the 〈ij〉
bond is in the a direction.

D2h E C2,a C2,b C2,c I σbc σac σab Functions

Ag 1 1 1 1 1 1 1 1

B1,g 1 1 −1 −1 1 1 −1 −1 Sa

B2,g 1 −1 1 −1 1 −1 1 −1 Sb

B3,g 1 −1 −1 1 1 −1 −1 1 Sc

Au 1 1 1 1 −1 −1 −1 −1 (Si × Sj )a

B1,u 1 1 −1 −1 −1 −1 1 1 a, i-j antisym.

B2,u 1 −1 1 −1 −1 1 −1 1 b, (Si × Sj )b

B3,u 1 −1 −1 1 −1 1 1 −1 c, (Si × Sj )c
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TABLE V. Character table of C2h with twofold axis in the a

direction. C2,a is the C2 rotation around â, σbc is the reflection
across the plane perpendicular to â, and the 〈ij〉 bond is along the
a direction.

C2h E C2,a I σbc Functions

Ag 1 1 1 1 Sa

Bg 1 −1 1 −1 Sb, Sc

Au 1 1 −1 −1 a, (Si × Sj )a , i-j antisym.

Bu 1 −1 −1 1 b, (Si × Sj )b

c, (Si × Sj )c

symmetry at the center of the bonds. Denoting the antisym-
metric and symmetric off-diagonal matrices by (Âa )bc = εabc

and (Ŝa )bc = |εabc|, respectively (ε is the Levi-Civita tensor),
we have

N̂ x
S = sin(α)tpdπP ⊥

pπdσ Ŝz, N̂ x
A = 0,

N̂ y

S = −2 sin(α)tpdπ

×
⎛
⎝0 0

0 P
‖
pdπ 0

0 0 P ⊥
pσdπ + (P ‖

pdπ + P ⊥
pσdπ ) cos(2α)

⎞
⎠,

N̂ y

A = − cos(α)tpdπP ⊥
pπdσ Âz,

N̂ z
S = − sin(2α)tpdπP ⊥

pσdπ Ŝx,

N̂ z
A = cos(2α)tpdπP ⊥

pπdσ Ây. (B9)

The expressions for a y bond are obtained by performing a
π/2 rotation around ẑ.

Casting the above operators in the low-energy subspace,
we obtained the effective polarization operator. First, even in
the C2v , we can read from the character tables that Âa,eff =
aa (Si × Sj )a and Ŝa,eff = sa|εabc|Sb

i S
c
j , respectively. For the

antisymmetric part, the results from perturbation theory in the

limit U 
 JH are

az = 32

9

t2 cos2(α)

U

+�
64

81

t2(−2U − 3λ + (U − 3λ) cos(2α))

U 2λ

ay = 32

9

t2 cos2(α)

U

+�
32

81

t2(−U − 6λ + (5U − 6λ) cos(2α))

U 2λ
. (B10)

As for the edge-sharing geometry, we observe that JH is
responsible for the anisotropy when � = 0. For the symmetric
part, the off-diagonal matrices give a contribution that is
proportional to JH . In the U 
 JH limit,

sz = 32

9

t2JH (1 − 2 cos(2α))

(2U + 3λ)2

−�
128

81

t2JH (2U − 9λ)(−1 + 2 cos(2α))

λ(2U + 3λ)2

sx = 64

9

t2JH cos2(α)

(2U + 3λ)2

−�
128

81

t2JH (U + 18λ + (U + 9λ) cos(2α))

λ(2U + 3λ)2
. (B11)

Finally, the diagonal terms in Eq. (B9) each give a constant
and three Sa

i Sa
j terms with a = x, y, and z. Moreover, in the

absence of JH , the contribution is isotropic. In the U 
 JH

and U 
 λ limit,⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠

→
[

16

9

t2 cos2(α)

U
+ �

32

81

t2(−2 + cos(2α))

λU

]
Si · Sj

+ 8

9

t2(−5 + cos(2α))

U
+ �

32

81

t2(4 + cos(2α))

λU
,

TABLE VI. Character table of D4h with â as the C4 axis. The 2C ′
2 rotations are around b̂ and ĉ, the 2C ′′

2 ones around b̂ ± ĉ, and 2σv,d are
the corresponding reflections. The 〈ij〉 bond is along â.

D4h E 2C4,a C2,a 2C ′
2 2C ′′

2 I 2S4 σbc 2σv 2σd Functions

A1,g 1 1 1 1 1 1 1 1 1 1
A2,g 1 1 1 −1 −1 1 1 1 −1 −1 Sa

B1,g 1 −1 1 1 −1 1 −1 1 1 −1

B2,g 1 −1 1 −1 1 1 −1 1 −1 1 bc

Eg 2 0 −2 0 0 2 0 −2 0 0 (Sb, Sc ), (ac, ab)

A1,u 1 1 1 1 1 −1 −1 −1 −1 −1

A2,u 1 1 1 −1 −1 −1 −1 −1 1 1 a, i-j antisym.

B1,u 1 −1 1 1 −1 −1 1 −1 −1 1 (Si × Sj )a

B2,u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0 (b, c),

((Si × Sj )b, (Si × Sj )c )
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TABLE VII. Character table of C2v . The 〈ij〉 bond is along the x̂
axis.

C2v E C2,y σxy σyz Functions

A1 1 1 1 1 y, (Si × Sj )z

A2 1 1 −1 −1 xz, Sy , (Si × Sj )x

B1 1 −1 1 −1 x, xy, Sy , i-j antisym.

B2 1 −1 −1 1 z, yz, Sy , (Si × Sj )y

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠

→
[

16

9

t2 cos2(α)

U
+ �

32

81

t2(1 + 4 cos(2α))

λU

]
Si · Sj

+ 8

9

t2(1 − 5 cos(2α))

U
+ �

32

81

t2(1 − 8 cos(2α))

λU
.

(B12)

We have thus obtained an expression for all the ME coupling
constants of Eq. (B4) as a function of the various physical
parameters and integrals.

APPENDIX C: CHARACTER TABLES

Here we show the character tables IV–VII and the different
functions corresponding to each irreducible representations
for the symmetry groups mentioned throughout the paper.

APPENDIX D: POLARIZATION INTEGRALS

In Table VIII we list the polarization integrals for a general
bond direction in a manner similar to that of Ref. [40]. The
entries not given can be found by cyclically permuting the
coordinates and direction cosines.

APPENDIX E: FULL EXPRESSIONS
OF THE COUPLING CONSTANTS

Here we give the full expressions calculated with perturba-
tion theory of the coupling constants Ai and Bi calculated in
Sec. VI. The expressions are thus exact in U , λ, and JH in the
limit of vanishing �.

1. Edge-sharing geometry

Except for A1, the nonvanishing coupling constants (A2,
A4, B2−5) can be found from the operators M̂u, M̂v , and M̂w

defined in Eq. (47). In the following, we give the explicit
expression of A1 obtained from Eq. (42) (linear in �), and
the expressions for M̂u, M̂v , and M̂w calculated with Eq. (49)
(here we only explicitly give the expressions without trigonal
distortion, i.e., � = 0 and t4 = 0). As mentioned in Eq. (43),

A1 =
√

2
64

81
�(t1 + t2 − t3 − t4)

JH

λ
× P

Q
. (E1)

Without trigonal distortion, from Eq. (49) we find M̂n,eff =
Mn(Si × Sj ) · n̂ with

Mn = −16

9

Rn

S
, (E2)

where n = u, v,w (and n̂ = û, v̂, and ŵ, respectively).

TABLE VIII. Polarization integrals in terms of two-center integrals for two ions separated by a vector d = ||d||(l, m, n). Only the p-t2g

and t2g-t2g integrals are considered.

〈px |x|dyz〉 = √
3l2mnP

‖
pdσ − 2l2mnP

‖
pdπ + √

3mn(1 − l2)P ⊥
pπdσ − 2l2mnP ⊥

pσdπ + mn(1 + l2)P ⊥
pπdδ

〈px |y|dyz〉 = √
3lm2nP

‖
pdσ − 2lm2nP

‖
pdπ − √

3lm2nP ⊥
pπdσ + ln(1 − 2m2)P ⊥

pσdπ − ln(1 − m2)P ⊥
pπdδ

〈px |z|dxy〉 = √
3lmn2P

‖
pdσ − 2lmn2P

‖
pdπ − √

3lmn2P ⊥
pπdσ + lm(1 − 2n2)P ⊥

pσdπ − lm(1 − n2)P ⊥
pπdδ

〈px |x|dxz〉 = √
3l3nP

‖
pdσ + ln(1 − 2l2)P ‖

pdπ + √
3ln(1 − l2)P ⊥

pπdσ + ln(1 − 2l2)P ⊥
pσdπ − ln(1 − l2)P ⊥

pπdδ

〈px |y|dxz〉 = √
3l2mnP

‖
pdσ + mn(1 − 2l2)P ‖

pdπ − √
3l2mnP ⊥

pπdσ − 2l2mnP ⊥
pσdπ − mn(1 − l2)P ⊥

pπdδ

〈px |z|dxz〉 = √
3l2n2P

‖
pdσ + n2(1 − 2l2)P ‖

pdπ − √
3l2n2P ⊥

pπdσ + l2(1 − 2n2)P ⊥
pσdπ + (1 − l2)(1 − n2)P ⊥

pπdδ

〈px |x|dxy〉 = √
3l3mP

‖
pdσ + lm(1 − 2l2)P ‖

pdπ + √
3lm(1 − l2)P ⊥

pπdσ + lm(1 − 2l2)P ⊥
pσdπ − lm(1 − l2)P ⊥

pπdδ

〈px |y|dxy〉 = √
3l2m2P

‖
pdσ + m2(1 − 2l2)P ‖

pdπ − √
3l2m2P ⊥

pπdσ + l2(1 − 2m2)P ⊥
pσdπ + (1 − l2)(1 − m2)P ⊥

pπdδ

〈px |z|dxy〉 = √
3l2mnP

‖
pdσ + mn(1 − 2l2)P ‖

pdπ − √
3l2mnP ⊥

pπdσ − l2mnP ⊥
pσdπ − mn(1 − l2)P ⊥

pπdδ

〈dyz|x|dyz〉 = 0

〈dyz|y|dyz〉 = 0

〈dyz|z|dyz〉 = 0

〈dyz|x|dxz〉 = √
3mn2P ⊥

dσdπ + m(1 − 3n2)P ⊥
dπdδ

〈dyz|y|dxz〉 = −√
3ln2P ⊥

dσdπ − l(1 − 3n2)P ⊥
dπdδ

〈dyz|z|dxz〉 = 0

〈dyz|x|dxy〉 = √
3m2nP ⊥

dσdπ + n(1 − 3m2)P ⊥
dπdδ

〈dyz|y|dxy〉 = 0

〈dyz|z|dxy〉 = −√
3lm2P ⊥

dσdπ − l(1 − 3m2)P ⊥
dπdδ
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The polynomials P , Q, Ru,v,w, and S are given by

P = 2(3λ + U )5(3λ + 2U )(8U 3(t1 + t2 + t3) + 3λU 2(11t1 + 7t2 + 9t3) + 9λ3(2t1 + t3) + 24λ2U (2t1 + t3))

− JH (3λ + U )2(448U 6(t1 + t2 + t3) + 112λU 5(53t1 + 45t2 + 49t3) + 2λ2U 4(15659t1 + 10719t2 + 13189t3)

+ 18λ3U 3(4717t1 + 2333t2 + 3525t3) + 72λ4U 2(1732t1 + 498t2 + 1115t3) + 27λ5U (3446t1 + 336t2 + 1891t3)

+ 13365λ6(2t1 + t3)) + 3J 2
H (3λ + U )(9λ6(10474t1 + 672t2 + 5573t3) + 736U 6(t1 + t2 + t3) + 4λU 5(2923t1 + 2271t2

+ 2597t3) + 8λ2U 4(8882t1 + 5412t2 + 7147t3) + 10λ3U 3(21673t1 + 9893t2 + 15783t3) + 2λ4U 2(176705t1 + 54033t2

+ 115369t3) + 15λ5U (19466t1 + 3192t2 + 11329t3)) − J 3
H (27λ6(54166t1 + 4640t2 + 29403t3) + 3008U 6(t1 + t2 + t3)

+ 48λU 5(1663t1 + 835t2 + 1249t3) + 300λ2U 4(2109t1 + 697t2 + 1403t3) + 2λ3U 3(1156429t1 + 268369t2 + 712399t3)

+ 6λ4U 2(723347t1 + 116579t2 + 419963t3) + 9λ5U (449042t1 + 48856t2 + 248949t3)) − J 4
H (−17λ5(71174t1 − 9816t2

+ 30679t3) + 10784U 5(t1 + t2 + t3) + 20λU 4(353t1 + 6237t2 + 3295t3) + 10λ2U 3(−41005t1 + 54207t2 + 6601t3)

− 4λ3U 2(423514t1 − 268196t2 + 77659t3) − 14λ4U (176362t1 − 63564t2 + 56399t3)) − 6J 5
H (2λ4(22394t1 − 45660t2

− 11633t3) − 6944U 4(t1 + t2 + t3) − 8λU 3(4555t1 + 8163t2 + 6359t3) − 3λ2U 2(14845t1 + 70569t2 + 42707t3)

+ 2λ3U (12386t1 − 132544t2 − 60079t3)) − 36J 6
H (4λ3(1238t1 + 560t2 + 899t3) + 776U 3(t1 + t2 + t3)

+ 3λU 2(1511t1 + 1707t2 + 1609t3) + 6λ2U (1342t1 + 1560t2 + 1451t3)) − 216J 7
H (λ2(233t1 + 2637t2 + 1435t3)

+ 344U 2(t1 + t2 + t3) + 2λU (395t1 + 999t2 + 697t3)) − 1296J 8
H (−λ(137t1 + 315t2 + 226t3) − 104U + (t1 + t2 + t3))

− 62208J 9
H (t1 + t2 + t3), (E3)

Q = (6JH − 3λ − 2U )2
(
6J 2

H + JH (4λ + U ) − U (3λ + U )
)2(

6J 2
H − JH (17λ + 8U ) + (3λ + U )(3λ + 2U )

)3
(E4)

Ru = (2t1 + t3)(3λ + U )2(3λ + 2U )2 − 2JH (3λ + U )(2U 2(13t1 + t2 + 7t3) + 2λU (53t1 + 3t2 + 28t3) + 51λ2(2t1 + t3))

+ J 2
H (λ2(634t1 + 48t2 + 341t3) + 8U 2(12t1 + 2t2 + 7t3) + 4λU (126t1 + 16t2 + 71t3)) − 12J 3

H (λ(12t1 − 2t2 + 5t3)

+U (3t1 − t2 + t3)) − 36J 4
H (2t2 + t3), (E5)

Rv = (2t1 + t3)(3λ + U )2(3λ + 2U )2 − 2JH (3λ + U )(2U 2(13t1 − t2 + 7t3) + 2λU (53t1 − 3t2 + 28t3) + 51λ2(2t1 + t3))

+ J 2
H (λ2(634t1 − 48t2 + 341t3) + 8U 2(12t1 − 2t2 + 7t3) + 4λU (126t1 − 16t2 + 71t3)) − 12J 3

H (λ(12t1 + 2t2 + 5t3)

+U (3t1 + t2 + t3)) − 36J 4
H (t3 − 2t2), (E6)

Rw = (2t1 + t3)(3λ + U )2(3λ + 2U )2 − 2JH (3λ + U )(51λ2(2t1 + t3) + 4U 2(7t1 + 3t3) + 2λU (56t1 + 25t3))

+ J 2
H (λ2(682t1 + 293t3) + 8U 2(14t1 + 5t3) + 4λU (142t1 + 55t3)) − 12J 3

H (λ(10t1 + 7t3) + 2U (t1 + t3))

− 36J 4
H (2t1 − t3), (E7)

S = (6JH − 3λ − 2U )
(
6J 2

H + JH (4λ + U ) − U (3λ + U )
)(

6J 2
H − JH (17λ + 8U ) + (3λ + U )(3λ + 2U )

)
. (E8)

2. Corner-sharing geometry

In the corner-sharing geometry, A1 = A2 = 0, and only the hopping polarization is nontrivial. It is calculated from the
hopping operators N̂y and N̂z defined in Eq. (53). Without tetragonal distortion (� = 0), using Eq. (49) we find N̂y,eff =
N(Si × Sj ) · ŷ and N̂z,eff = N(Si × Sj ) · ẑ, with N = 32

9 × P ′
Q′ and

P ′ = (9λ2 + 2U 2 + 9λU )2 − 2JH (3λ + U )(51λ2 + 13U 2 + 53λU ) + J 2
H (317λ2 + 48U 2 + 252λU ) − 18J 3

H (4λ + U ),
(E9)

Q′ = (6JH − 3λ − 2U )
(
6J 2

H + JH (4λ + U ) − U (3λ + U )
)(

6J 2
H − JH (17λ + 8U ) + (3λ + U )(3λ + 2U )

)
. (E10)
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