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Critical strange metal from fluctuating gauge fields in a solvable random model
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Building upon techniques employed in the construction of the Sachdev-Ye-Kitaev model, which is a solvable
(0 + 1)-dimensional model of a non-Fermi liquid, we develop a solvable infinite-ranged random-hopping model
of fermions coupled to fluctuating U (1) gauge fields. In a specific large-N limit, our model realizes a gapless non-
Fermi-liquid phase, which combines the effects of hopping and interaction terms. We derive the thermodynamic
properties of the non-Fermi-liquid phase realized by this model and the charge transport properties of an infinite-
dimensional version with spatial structure.
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I. INTRODUCTION

Numbers of models of strange metals have been been
constructed [1–11] by connecting together “quantum islands”
in which each island has random all-to-all interactions be-
tween the electrons, i.e., each island is a (0 + 1)-dimensional
Sachdev-Ye-Kitaev (SYK) model [12–15]. Some of these
models [1,5,9,10] exhibit “bad-metal” behavior above some
crossover temperature with a resistivity which increases lin-
early with temperature (T ) and has a magnitude (in two di-
mensions) which is larger than the quantum unit of resistance
h/e2. These models can be useful starting points for under-
standing a variety of experiments above moderate values of
T , and they predict [1,12] the frequency-independent density
fluctuation spectrum observed in recent electron-scattering
experiments [16]. However, some of the most interesting and
puzzling observations exhibit [17–19] linear-in-T resistivity
down to vanishingly small T with a resistivity which is much
smaller than h/e2. Kondo-like two-band SYK models have
been proposed for such behavior [9,10] in which a band of
itinerant electrons acquires marginal-Fermi-liquid behavior
[20] upon Kondo exchange scattering off localized electrons
in SYK islands. The holographic models of strange metals
have a structure very similar to these Kondo-SYK models
[21–23].

A possible shortcoming of the two-band SYK-Kondo mod-
els [9,10] is that density of itinerant carriers is small. In
other words, only the itinerant electrons carry current and
exhibit marginal-Fermi-liquid behavior, whereas the localized
electrons in SYK islands only act as a background “bath”
of incoherent electrons which dissipates current from the
itinerant electrons. This behavior does not appear to be in
accord with estimates of the magnitude of the linear-in-T
resistivity as T → 0 [19].

In this paper, we will propose and solve a SYK-like model
which exhibits strange metal resistivity as T → 0 and in
which the density of itinerant fermions is high. We will
examine a model of fermions coupled to an emergent dynamic
U (1) gauge field. We will show that a solvable SYK-like
large-N limit exists, in which the electrons are in N clusters

with M sites per cluster (M/N is fixed as the large-N limit
is taken): See Fig. 1. The dc conductivity of our model is
presented in Eq. (49), and the resistivity varies as T 2x as
T → 0 with the exponent x dependent only upon M/N and
the particle-hole asymmetry parameter E as shown in Eq. (23)
and Fig. 3. In the limit of small M/N, 2x ∼ 1 (see Fig. 3),
and then we have nearly linear-in-T resistivity.

The problem of a finite density of fermions coupled to
an emergent gauge field appears in many different physical
contexts. The most extensively studied case is that related
to compressible quantum Hall states in a half-filled Landau
level [24]. These studies begin with the assumption that the
fermions form a Fermi surface and Landau damping from
the fermions leads to an overdamped gauge propagator. The
effects of the gauge coupling and the disorder are then treated
perturbatively. The presence of disorder has a relatively mod-
est effect in inducing a diffusive form for the gauge propaga-
tor. In the present paper we will take a random all-to-all form
of the fermion propagator and show that this allows for an
exact treatment of the gauge fluctuations. The local criticality
exhibited by our model is expected to eventually crossover at
low enough T to more generic finite-dimensional behavior,
but there is no theory yet for such a fixed point with strong
disorder and interactions.

The physical context most appropriate for our proposed
connection to observations on the overdoped cuprates [17,19]
is the theory of an “algebraic charge liquid” (ACL) [25] of
spinless fermionic chargons coupled to an emergent gauge
field. Specifically, in a SU(2) gauge theory of optimal doping
quantum criticality [26–29], it has been proposed that there
could be an overdoped phase with a large density of fermionic
chargons coupled to a deconfined SU(2) gauge field. For
simplicity, this paper will consider the U (1) gauge field case,
although the properties of the SU(2) case are expected to be
very similar.

We will begin in Sec. II by defining the model and com-
puting its saddle-point equations in the large-N limit. The
properties of the single fermion Green’s function as a function
of frequency, temperature, and chemical potential will be
described in Sec. III. The thermodynamics will be described
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FIG. 1. A cartoon of our model. It consists of N clusters indexed
by i, j, . . ., each of which contains M sites indexed by α, β, . . ..
Random hopping occurs between all possible pairs of intracluster and
intercluster sites, but only intercluster hops are coupled to dynamic
U (1) gauge-fields Aij . The model is solved in the M,N → ∞ limit
with M/N fixed.

in Sec. IV, and we will describe a higher-dimensional gener-
alization which allows us to compute transport properties in
Sec. V.

The Appendix describes an extension of our model in
which the condensation of a charge-2 Higgs field leads to a
metallic phase in which the fermions carry Z2 gauge charges.
The Higgs condensate quenches the gauge-field fluctuations,
and the transport is therefore Fermi-liquid like. The Higgs
condensate also reduces the density of low-energy fermionic
excitations, and so we may view this transition as a model
[26–29] of optimal doping criticality from the overdoped
side (no Higgs condensate) to the underdoped side (Higgs
condensate present).

II. MODEL AND LARGE-N LIMIT

We study a model of N clusters, each with M flavors of
fermions with infinite-ranged random hopping between the
clusters that is coupled to fluctuating U (1) gauge fields. It is
given by

H = − 1

(MN )1/2

N∑
ij=1

M∑
αβ=1

[
t
αβ

ij eiAij f
†
iαfjβ + (MN )1/2μδ

αβ

ij f
†
iαfiα

]
,

〈〈
t
αβ

ij t
βα

ji

〉〉 = 〈〈∣∣tαβ

ij

∣∣2〉〉 = t2, Aji = −Aij . (1)

where N,M → ∞ and M/N is an O(1) quantity. The t
αβ

ij are complex Gaussian random variables, and 〈〈· · · 〉〉 denotes disorder
averaging; all disorder averages other than the ones explicitly shown above are zero. The clusters are indexed by i, and the sites
(flavors) within a cluster are indexed by α. A cartoon of our model is shown in Fig. 1.

As in the analysis of the SYK models [4,14], we average over realizations of disorder. Doing so formally requires introducing
replicas; however we assume, such as in the SYK models, that there is no replica-symmetry breaking, restricting to replica-
diagonal configurations and suppressing the then trivial sum over replicas. We introduce bilocal (in time) fields G and �,
obtaining the Euclidean action,

S =
∫

dτ

N∑
i=1

M∑
α=1

f
†
iα (τ )

[
∂τ + iA0

i (τ ) + μ
]
fiα (τ ) + t2 M

N

∫
dτ dτ ′

N∑
ij=1,i�j

ei[Aij (τ )−Aij (τ ′ )]Gj (τ − τ ′)Gi (τ
′ − τ )

−M

∫
dτ dτ ′

N∑
i=1

�i (τ − τ ′)

[
Gi (τ

′ − τ ) − 1

M

M∑
α=1

fiα (τ ′)f †
iα (τ )

]
. (2)

The partition function is given by Z = ∫
DfD

f †DADGD� e−S , and τ denotes Euclidean time.
Unbounded integrals denote integration over the full range of
the pertinent variable. Integrating out the Lagrange multipliers
�i followed by Gi restores the pure disorder-averaged action.
In the M → ∞ limit, the integrals over �i enforce the
definitions of Gi on each cluster i. The disorder-averaged
action is gauge invariant under the transformations,

Aij (τ ) → Aij (τ ) + θi (τ ) − θj (τ ),

fiα (τ ) → fiα (τ )eiθi (τ ), (3)

A0
i (τ ) → A0

i (τ ) − ∂τ θi (τ ),

with Gi (τ − τ ′) → Gi (τ − τ ′)ei[θi (τ )−θi (τ ′ )] and �i (τ −
τ ′) → �i (τ − τ ′)ei[θi (τ )−θi (τ ′ )]. The propagators of the scalar
potentials A0

i will be screened due to the finite density of
fermions [30]; fluctuations of the A0

i will be hence unable
to inflict any singular self-energy on the fermions at low
energies, and we will thus simply ignore A0

i .
Examining the disorder-averaged action, after integrating

out the fermions, does not immediately suggest a large-N
saddle point for Gi , but a simple large-N limit does turn out to
exist. The reason is that there are enough (M) sites per cluster
to self-average the cluster Green’s function Gi so that the
solution will have Gi that does not depend on i, even though
there are N clusters. This can be seen easily when the coupling
to the gauge fields is turned off. Then we know the standard
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result for the fully averaged Green’s function Gavg of the full
large-MN random matrix exactly, but can also express it as

Gavg(τ − τ ′) = 1

MN

N∑
i=1

M∑
α=1

〈fiα (τ )f †
iα (τ ′)〉

= 1

N

∑
i

Gi (τ − τ ′). (4)

Then, the second term of (2) may be written as

M
t2

2

∫
dτ dτ ′Gavg(τ − τ ′)

N∑
i=1

Gi (τ
′ − τ ). (5)

Since there are now appropriate prefactors of M everywhere
in all terms in S after integrating out the fermions, we can
take functional derivatives with respect to Gi and �i (remem-

bering that Gavg contains Gi) and write down the saddle-
point �i (τ − τ ′) = t2Gavg(τ − τ ′) and Gi (iωn) = 1/[iωn +
μ − �i (iωn)], which are independent of i, indicating that the
cluster-averaged (over M sites) Green’s function is the same
as the fully averaged (over MN sites and clusters) Green’s
function at large M,N . Another way to see this qualitatively
is that the distribution for G’s averaged over M sites is the
convolution of M distributions for the single-site G’s. For
Gaussians, this would imply that its variance is (1/M)-th
of that of the single-site distribution, which, although much
larger than the variance of the fully averaged G {which is
[1/(MN )]-th of that of the single-site distribution}, should
still be small as M → ∞.

Turning the gauge fields back on, we expand out the
exponentials to quadratic order (assuming that monopoles
are irrelevant, and there is no confinement transition, so the
compactness of the gauge fields is not important; we will
discuss this further at the end of Sec. IV) and obtain

S =
∫

dτ

N∑
i=1

M∑
α=1

f
†
iα (τ )

[
∂τ + iA0

i (τ ) + μ
]
fiα (τ )

+ t2 M

N

∫
dτ dτ ′

N∑
ij=1,i�j

[
1 + i[Aij (τ ) − Aij (τ ′)] − 1

2
A2

ij (τ ) − 1

2
A2

ij (τ ′) + Aij (τ )Aij (τ ′)
]

×Gj (τ − τ ′)Gi (τ
′ − τ ) − M

∫
dτ dτ ′

N∑
i=1

�i (τ − τ ′)

[
Gi (τ

′ − τ ) − 1

M

M∑
α=1

fiα (τ ′)f †
iα (τ )

]
. (6)

This expanded-out action is also gauge invariant under the previously mentioned transformation up to quadratic order in the
gauge fields and their shifts. The terms linear in Aij in the second line of the above vanish, and the A2

ij terms can be reorganized

S =
∫

dτ

N∑
i=1

M∑
α=1

f
†
iα (τ )

[
∂τ + iA0

i (τ ) + μ
]
fiα (τ ) + T

2

∑
�m

N∑
ij=1,i�j

Aij (i�m)[�ij (i�m) − �ij (i�m = 0)]Aij (−i�m)

+ t2 M

N

∫
dτ dτ ′

N∑
ij=1, i�j

Gj (τ − τ ′)Gi (τ
′ − τ ) − M

∫
dτ dτ ′

N∑
i=1

�i (τ − τ ′)

[
Gi (τ

′ − τ ) − 1

M

M∑
α=1

fiα (τ ′)f †
iα (τ )

]
, (7)

with

�ij (i�m) = 2t2 M

N

∫
dτ ei�mτGi (τ )Gj (−τ ). (8)

We proceed to integrate out the fermions and the gauge
fields. Normally, integrating out the gauge fields requires
gauge fixing in order to avoid overcounting redundant config-
urations. However, in the large-N limit here, we have O(N2)
gauge variables Aij but only O(N ) constraining variables
θi . The space of gauge-field configurations is then ∼RN2

,
whereas the space occupied by configurations redundant to a
single configuration, generated by shifting the O(N2) Aij ’s
by N θi’s is ∼RN . Therefore the space of unique gauge
configurations is ∼RN2

/RN , which at leading order in large
N is approximately RN2

. Thus, we can just naively integrate
out the Aij in the large-N limit, and the corrections from
gauge fixing will not affect the free energy and the saddle-
point values of G and � at leading order in the large-N limit.

After integrating out, we obtain

T S = −MT
∑
ωn

N∑
i=1

ln[iωn + μ − �i (iωn)]

+ T

2

∑
�m �=0

N∑
ij=1,i<j

ln[�ij (i�m) − �ij (i�m = 0)]

+ t2 M

N
T

∑
ωn

N∑
ij=1,i�j

Gj (iωn)Gi (iωn)

−MT
∑
ωn

N∑
i=1

�i (iωn)Gi (iωn). (9)
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FIG. 2. Diagrammatic representation of the fermion (�) and regularized gauge-field [�̃ = �(i�m) − �(i�m = 0)] self-energies for the
Dyson equation (10). The black lines are fermion propagators, the red lines are gauge-field propagators, and the dashed blue lines are
contractions of the Gaussian random variables t

αβ

ij coming from the disorder average. These are the only diagrams that contribute in the
large-M, N limit.

where, as mentioned earlier, we neglect the time components
of the gauge fields. Varying with respect to Gi (iωn) and
�i (iωn) produces a site-uniform saddle point described by
(after dropping site-dependent subscripts)

�(iωn) = t2G(iωn) + t2T
∑

�m �=0

G(iωn + i�m) − G(iωn)

�(i�m) − �(i�m = 0)
,

�(i�m) = 2t2T
M

N

∑
ωn

G(iωn)G(iωn + i�m), (10)

G(iωn) = 1

iωn + μ − �(iωn)
.

These equations can also be derived diagrammatically starting
from (2) in the large-M,N limit and expanding the exponen-
tial to quadratic order after disorder averaging (Fig. 2).

Note that the zero Matsubara frequency component of Aij

does not contribute to the action (7) or (9) even at T �= 0. The
gauge-field contribution to the fermion self-energy �(iωn) in
(10) thus does not involve the zero Matsubara frequency com-
ponent of the gauge-field propagator. This is because as far
as the fermions are concerned the zero Matsubara frequency
components are just static phase shifts of the t

αβ

ij and have
already been accounted for while disorder averaging. This
absence of the zero-frequency components has consequences
for the thermodynamic properties of the saddle-point solution,
and certain modifications have to be made to ensure that
the saddle-point is thermodynamically stable (see Sec. IV).
However, these modifications do not affect the saddle-point
solution to be detailed in the next section above some energy
scale which can be made arbitrarily small.

If we consider fluctuations [δGi (iωn), δ�i (iωn)] about the
saddle-point action that do not amount to simply changing a
gauge, the kernel of their action at quadratic order is given by
K̂ij = K̂ (1)δij + K̂ (2), where K̂ (1,2)’s are matrices in (δG, δ�)
and frequency space. Here K̂ (1) is of order M , coming from
the fermion determinant and �G terms of (9), and K̂ (2), which
comes from the other two terms is of order 1. Then, diagonal-
izing K̂ in i, j and (δG, δ�) space produces O(N ) fluctuation
eigenmodes with eigenvalues that are O(M ). Integrating over
these N modes yields a subleading O(N ) contribution to
the free energy, and each of these modes also has an O(M )
stiffness that suppresses its fluctuations. Hence, the saddle
point described by (10) is well defined.

III. SINGLE-PARTICLE PROPERTIES

A. Zero temperature

We solve for the fermion and gauge-field propagators
at T = 0. We set μ = 0 (corresponding to half-filling, see
Sec. III B for μ �= 0) and start with an ansatz for G in the
infrared (IR) at T = 0,

G(τ ) = −C
sgn(τ )

t1−x |τ |1−x
,

G(iωn) = −2iCtx−1 sin

(
πx

2

)
�(x)sgn(ωn)|ωn|−x,

0 < x <
1

2
, C > 0. (11)

We then obtain

�(i�m) − �(i�m = 0)

= −4(M/N )C2t2x sin(πx)�(2x − 1)|�m|1−2x. (12)

This is the fermion self-energy,

�(iωn) = iN
√

π22x−1 sin
(

πx
2

)
csc2(πx)

2MCx�(2x − 1)�
(

1
2 − x

)
× sgn(ωn)t1−x |ωn|x + t2G(iωn)

×
[

1 −
∫

d�m

2π

1

�(i�m) − �(i�m = 0)

]
. (13)

The integral over �m contains contributions from frequencies
outside the regime of validity of the IR solution and hence
requires a UV completion in order to be evaluated. We assume
that the UV completion is such that the term in square brackets
evaluates to zero, which we will justify below; the vanishing
of the square-bracketed term is also confirmed by our numer-
ical analysis of the UV complete theory below. Then, using
G(iωn) = −1/�(iωn), we find that we cannot determine C

(it cancels between the left-hand side and right-hand side of
the equation), but we can determine the universal exponent x

by solving

1/x − 2

1 + sec(πx)
= 2M

N
, (14)

with x vs 2M/N plotted in Fig. 3. The fact that we cannot
determine C purely from the IR properties indicates that it is
nonuniversal.
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FIG. 3. Plot of the exponent x giving the frequency scaling of the
IR fermion self-energy vs 2M/N at half-filling.

We now justify the vanishing of the term in square
brackets in (13): Suppose it did not exactly vanish, and∫

d�m/[�(i�m) − �(i�m = 0)] = 1 − ν, where ν 
 1.
Then, this leaves behind a term νt2G(iωn) in the expression
for �(iωn), which, scaling as sgn(ωn)|ωn|−x , is more relevant
at low energies than the other term in �(iωn). We can then
try to ignore the other term in the IR. The Dyson equation
becomes

�(iωn) = νt2G(iωn), G(iωn) = 1

iωn − �(iωn)
. (15)

This equation is solved in the IR by the random-matrix
solution G(iωn) = −i sgn(ωn)/(ν1/2t ). This solution
then modifies the gauge field propagator in the IR with
�new(i�m) − �new(i�m = 0) = (2/π )(M/N )(|�m|/ν). We
can then write using (10),

�(iωn) = −i(t/ν1/2)sgn(ωn)

+ iν1/2t

∫ �

−�

d�m

2π

sgn(ωn) − sgn(ωn + �m)

(2/π )(M/N )|�m| ,

(16)

where � is a “critical window” over which the IR solution is
valid. This then gives a singular self-energy,

�(iωn) = −i(t/ν1/2)sgn(ωn)

[
1 + Nν

2M
ln

( |ωn|
�

)]

→ −i(t/ν1/2)sgn(ωn)

( |ωn|
�

)Nν/2M

, (17)

We have thus recovered a power-law self-energy without
explicitly assuming ν = 0 to begin with. Repeated iterations
of (10) then converge the exponent of the power law to the
value defined by (14).

The Dyson equations (10) are not fully UV complete and
do not contain enough information to determine the gauge-
field propagator at high frequencies. In order to solve them
numerically, we need a UV-complete set of equations. We do
this by adding a “Maxwell” term to the gauge-field action,

S → S + 1

2g2

∫
dτ

N∑
ij=1, i�j

[
∂τAij (τ ) + A0

i (τ ) − A0
j (τ )

]2
,

(18)
with a gauge coupling g and the A0

i ’s may be ignored due to
the aforementioned screening. This then adds a term �2

m/g2 to
�(i�m) − �(i�m = 0) in (10). Note that (18) contains only
“electric” kinetic terms for the gauge fields and no “magnetic”
terms that are functions of the sums of gauge link variables
Aij around closed loops. We will discuss the effects of adding
magnetic terms in Sec. IV.

The numerical solution was then performed by starting
with free fermion and gauge-field Green’s functions,

G0(iωn) = 1

iωn + μ
, D0(i�m) = g2

�2
m

, (19)

and then iterating the Dyson equations (10) in the MATLAB

code GD.M [31]. We found that the t2G(iωn) term in �(iωn)
indeed cancels out as T → 0, and a power-law scaling of
G(iωn) is obtained in the IR with the exponent given by (14).
This cancellation of the t2G(iωn) term holds even for μ �= 0,
leading to the results in Sec. III B. A T = 0 numerical solution
of the real-time version of the Dyson equations (performed in
GDREALTIME0.M [32]) also yields the appropriate analytically
continued version of (11) for the retarded Green’s function in
the IR,

GR (ω) = −2iCtx−1 sin

(
πx

2

)
�(x)(−iω)−x. (20)

At the saddle point, we have the effective action for the
fluctuations of the Aij fields,

SA
SP = t2 M

N

∫
dτ dτ ′

N∑
ij=1, i�j

Aij (τ )

[
G(τ − τ ′)G(τ ′ − τ ) − δ(τ − τ ′)

∫
dτ ′′G(τ − τ ′′)G(τ ′′ − τ )

]
Aij (τ ′). (21)

Under the scaling τ → bτ , we have G(τ ) → bx−1G(τ )
from (11), which then implies Aij (τ ) → b−xAij (τ ) from
(21). Corrections to (21) coming from the expansion of
ei(Aij [τ )−Aij (τ ′ )] beyond quadratic order in (2) are of the form∫

dτ dτ ′cn>2[Aij (τ ) − Aij (τ ′)]n>2G(τ − τ ′)G(τ ′ − τ ). The
above scaling then implies that c(n>2) → b(n−2)xc(n>2), so
these terms are irrelevant, and their coefficients become small
in the IR as b → 0, allowing us to ignore them.

B. Deviations from half-filling

For μ �= 0, the IR Green’s function develops a spectral
asymmetry with G(−τ < 0) = −e−2πEG(τ > 0) at T = 0,

G(τ > 0) = − C(E )

t1−xτ 1−x
, G(τ < 0) = C(E )e−2πE

t1−x |τ |1−x
. (22)

The polarization �ij (τ ) and the gauge-field propagator
however remain symmetric about τ = 0. The real part of
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the self-energy satisfies Re[�(iωn → 0)] = μ, canceling the
chemical potential in the Green’s function. The t2G(iωn) term
in the self-energy �(iωn) still cancels out as before. However,
interestingly, the exponent x of the power-law scaling depends
on the asymmetry parameter E and is given by the solution to

(1/x − 2)[cosh(2πE ) − cos(πx)]

tan(πx) sin(πx)
= 2M

N
. (23)

This relation can be determined from the Dyson equation
(10) following Ref. [12] and gives x → 1/2 as E → ±∞
regardless of M/N .

As in the SYK models [4,14], the relationship between
E and μ is nonuniversal and depends on the values of UV

details. However, following Ref. [33], a universal relationship
between the asymmetry parameter and the filling can be
determined: The filling q0 can be written as

q0 = i

∫ ∞

−∞

dE

2π
GF (E)eiE0+

, (24)

where

GF (E) ≡
∫ ∞

−∞

dE1

2π

ρf (E1)

E1 − E − i0+sgn(E1)
(25)

is the Feynman Green’s function with ρf (E1) ≡
−2 Im[GR (E1)] the fermion spectral function. As in Ref. [33],
we have

q0 = 1

π
{arg[GR (0−)] − arg[GR (−∞)]} + iP

∫ ∞

−∞

dE

2π

∂EGR (E)

GR (E)
eiE0+ − iP

∫ ∞

−∞

dE

2π
GF (E)∂E�F (E)eiE0+

, (26)

where P denotes the Cauchy principal value. Obtaining the low-energy forms of GR (E) and hence ρf (E) from (22) and using
GR (E → ±∞) = 1/(E + i0+) this can then be written as

q0 = 1 + x

2
+ arg{−i sin[π (x/2 − iE )]e−iπx/2} − iP

∫ ∞

−∞

dE

2π
GF (E)∂E�F (E)eiE0+

. (27)

The remaining integral needs to be computed carefully using the Dyson equation (10) and the methods described in
Appendix A of Ref. [33]. We obtain

q0 = 1 + x

2
+ arg{−i sin[π (x/2 − iE )]e−iπx/2} − 2Nκ (x)�2(x) sin(2πx) sinh(2πE )

M�(2x − 1)
, (28)

where κ (x) = ∑6
i=1 Ii (x) with

I1 = −cot(πx)�(1 − x)�(2x)

16π2�(1 + x)
,

I2 = −csc(πx)�(2x)[γE + ψ (1 + x)]

16π2�(x)�(1 + x)
,

I3 = − eiπx

16π3

∫ −1

−∞
dY1

∫ 0

−∞
dY2

Y−x
1 (−Y2)2x−1

(Y1 + Y2)(1 + Y1 + Y2)
,

I4 = 1

16π3

∫ 0

−1
dY1(−Y1)−x (Y1 + 1)2x−1

(
− 2F1

(
1, 1 − 2x; 2 − 2x; Y1

Y1+1

)
2x − 1

− ln(Y1 + 1) + γE + ψ (1 − 2x)

)
,

I5 = −eiπxx�(1 − x)

16π3�(2 − x)

∫ 0

−∞
dY1

∫ 0

−∞
dY2

θ (−Y1 − Y2 − 1)

(Y1 + Y2)2
Y−x

1 (−Y2)2x−1
2F1

(
1, 1 − x; 2 − x; − 1

Y1 + Y2

)
,

I6 = − eiπxx

16π3(1 + x)

∫ 0

−∞
dY1

∫ 0

−∞
dY2θ (Y1 + Y2 + 1)Y−x

1 (−Y2)2x−1
2F1[1, 1 + x; 2 + x; −(Y1 + Y2)], (29)

where ψ is the digamma function, θ is the Heaviside step function, 2F1 is a hypergeometric function [34], and γE is the Euler-
Mascheroni constant. κ (x → 1/2) = −1/(16π ), and κ (x → 0) ∝ −1/x2 [see Fig. 4(b)]. Putting together (23), (28), and (30),
we see that q0 is a smooth function of E that decreases monotonically from 1 to 0 as E is swept from −∞ to ∞ [see Fig. 4(a)].
This dependence of q0 on E also agrees quantitatively with that obtained from the numerical solutions of (10) in which q0 is
given by q0 = G(τ = 0−) and e−2πE = Im[GR (ω = 0−)]/Im[GR (ω = 0+)].
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FIG. 4. (a) Plot of the filling q0 vs the asymmetry parameter E for 2M = N . (b) Plot of the function −κ (x ) defined in (29) vs the self-energy
exponent x.

C. Nonzero temperature

The regularized IR Dyson equations (10) can be written in the time domain using two-time notation as (see Ref. [14]),

−
∫

dτ3G(τ1, τ3)�̃(τ3, τ2) = δ(τ1, τ2),

�̃(τ1, τ2) = t2νG(τ1, τ2) + t2G(τ1, τ2)D(τ2, τ1),∫
dτ3D(τ1, τ3)�̃(τ3, τ2) = δ̃(τ1, τ2),

�̃(τ1, τ2) = 2t2 M

N

(
G(τ1, τ2)G(τ2, τ1) − δ(τ1, τ2)

∫
dτ3G(τ1, τ3)G(τ3, τ2)

)
, (30)

where

ν = 1 − lim
2→1

[D(τ1, τ2) + DUV(τ1, τ2)], (31)

and δ̃(τ1, τ2) = δ(τ1, τ2) − L−1
τ , where Lτ is the length of

the time domain (L−1
τ = T at a finite-temperature T ). The

chemical potential μ has been absorbed into � to regularize
it to �̃. We split the gauge-field propagator into an IR piece
D and a UV piece DUV. The UV piece is not determined by
(30) and is not sensitive to rescalings of τ . The reason that
δ̃ appears instead of just δ is because the action (7) does not
contain zero-frequency modes of Aij . As a result, D here does
not contain a zero-frequency mode either, and consequently,
the pertinent δ function should be modified to remove its
zero-frequency mode. On a time domain of infinite size (such
as at zero temperature), the zero-frequency mode occupies
a measure zero subspace, and then there is no difference
between δ̃ and δ.

Equations (30) are not invariant under a general set of
reparametrizations with τ = f (σ ) and an arbitrary function
h [14],

G(τ1, τ2) → h(σ1)/h(σ2)

[f ′(σ1)f ′(σ2)]a
G(σ1, σ2),

�̃(τ1, τ2) → h(σ1)/h(σ2)

[f ′(σ1)f ′(σ2)]1−a
�̃(σ1, σ2),

D(τ1, τ2) → [f ′(σ1)f ′(σ2)]2a−1D(σ1, σ2),

�̃(τ1, τ2) → [f ′(σ1)f ′(σ2)]−2a�̃(σ1, σ2), (32)

because of the second term in the expression for �̃ and
because ν and L−1

τ can be nonzero. However, they can still

be scale invariant under τ → bτ iff

G → b−2aG, �̃ → b2a−2�̃, D → b4a−2D,

�̃ → b−4a�̃, ν → b4a−2ν. (33)

Note that a is not determined by these equations, but we
choose 2a = 1 − x due to the particular power-law scaling of
Sec. III A that is selected when the UV-complete equations are
solved.

Now consider applying the scale transformation at a finite
temperature. Since τ ∈ [0, 1/T ), this also scales T → T/b,
leaving T τ invariant. Equation (30) is then compatible with a
scaling solution (reverting back to one-time notation) G(τ ) ∝
T 1−xFG(τT ) (and corresponding expressions for D, �̃, and
�̃) iff ν ∝ T 2x . To check that we indeed get this behavior of
ν, we use the definition (31) of ν, the fact that DUV is not
affected by rescalings of T at low T 
 �, and the scaling
form for D(τ ) ∝ T 2xFD (τT ) to obtain

ν(T ) − ν(0) = lim
T →0

lim
τ→0

[T 2xFD (τT )] − lim
τ→0

T 2xFD (τT ),

(34)

which gives ν(T ) ∝ T 2x when ν(0) = 0, which we already
established in Sec. III A. Thus, the low-energy Dyson equa-
tions in the gauge-field problem are fully consistent with a
scaling solution at low finite temperatures. Our numerical
solution confirms this [Fig. 5(a)], and we find ν(T ) ∼ T 2x

numerically at small T [Fig. 5(b)].
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FIG. 5. (a) Plot of the scaling form of the fermion self-energy C−1(0)t1−xF� (ωn/T , 0) ≡ −Im[�(iωn)]/T x vs ωn/(πT ) obtained by
numerical solution of the imaginary-time Dyson equations for different values of T . For all curves, t = g2 = 1, 2M = N , and μ = 0
[corresponding to x = 0.230 651 from (14)]. The curves collapse onto one another at low frequencies, confirming a universal low-energy
scaling form. The deviations from universality at higher frequencies and temperatures occur because of the finite size of the critical window
� over which the low-energy solution is valid. (b) Plot of the quantity ν(T )/T 2x vs T for the same values of parameters. This clearly shows
ν(T ) ∝ T 2x over a large range of temperatures.

The IR fermion Green’s function in the gauge-field case
does not have a conformally remapped form at T �= 0 as
Eqs. (30) are not invariant under (32) with τ = tan(πT σ )/T

but instead obeys

G(iωn, T ) = C(E )

t1−xT x
FG

(
ωn

T
, E

)
,

FG(y → 0, E ) ∝ y0, (35)

FG(y → ∞, E ) ∝ 1

yx
.

We can only compute the scaling function FG numerically.
The self-energy also satisfies a low-energy scaling form
Im[�(iωn)] = −C−1(E )t1−xT xF� (ωn/T , E ). However, the
scaling function F� again differs from the conformal scaling
function for the same exponent x {corresponding to the self-

TABLE I. Comparision of numerical values of ratios nab ≡
Im[�(iaπT )]/Im[�(ibπT )] in the gauge-field problem at different
temperatures with those derived from the conformal Green’s function
Gc(τ ) = −(Cπ 1−x/t1−x )[T/ sin(πT |τ |)]1−x . As T is reduced, these
ratios converge to universal values that differ significantly from the
conformal ones at low energies, which implies that the scaling func-
tion F� (or FG) is not the conformal one and that the local criticality
in the gauge-field model is different from the SYK universality class.
The values of other parameters used are the same as those used in
Fig. 5, but these universal low-energy ratios are insensitive to the
values of t and g2 as T → 0 within numerical tolerances.

Ratio T = 10−4 T = 10−5 T = 10−6 Conformal

n31 1.3680 1.3703 1.3709 1.2607
n53 1.1363 1.1382 1.1387 1.1224
n75 1.0845 1.0862 1.0865 1.0800
n97 1.0611 1.0626 1.0629 1.0594

energy �c(iωn) = −1/Gc(iωn) derived from the
conformal Green’s function Gc(τ ) = −(Cπ1−x/t1−x )[T/

sin(πT |τ |)]1−x} as can be seen by comparing universal
ratios, such as n31 ≡ Im[�(3iπT )]/Im[�(iπT )] with their
corresponding conformal values (see Table I).

IV. THERMODYNAMICS

In this section we describe the thermodynamic properties
of the saddle-point solution described in the previous two
sections at low temperatures. We specialize to the case of half-
filling with μ = 0. This allows for temperature derivatives of
the free energy at a constant fermion density of half-filling
to be the same as its temperature derivatives at constant zero
chemical potential, which are easier to evaluate. We do not
expect any of the qualitative features discussed here to be
modified away from half-filling.

The free energy can be written down from (9) evaluated at
the saddle point. It is

F = −T ln Z

= MNT
∑
ωn

ln

[
iωn

iωn − �i (iωn)

]
− MNT ln 2

+ t2 MN

2
T

∑
ωn

G2(iωn) − MNT
∑
ωn

�(iωn)G(iωn)

+ N2T

4

∑
�m �=0

ln[�(i�m) − �(i�m = 0)], (36)

where we added and subtracted the free fermion contri-
bution so that the frequency sum involving the logarithm
converges and we may evaluate it numerically. The term
on the second lime represents the gauge-field contribution.
Setting this aside for the moment, and numerically eval-
uating the fermion contribution using the saddle point of
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the UV complete action with the electric Maxwell term
(18), we obtain Ff /(MN ) ≈ −c0(M/N ) + T c1(M/N ) as
T → 0. This implies that the fermion contribution to the
specific-heat Cf = −T ∂2Ff /∂T 2 vanishes at low tempera-
tures and the fermions make a constant negative contribution

Sf = −∂Ff /∂T to the total entropy. Since the fermions and
gauge fields are highly entangled, we of course need to add
the gauge-field contribution to obtain the full physical free
energy and associated thermodynamic quantities. We can
write

FA = N2T

4

∑
�m �=0

ln

[
�(i�m) − �(i�m = 0)

�(i�m, T = 0) − �(i�m = 0, T = 0)

]
+ N2T

4

∑
�m �=0

ln [�(i�m, T = 0) − �(i�m = 0, T = 0)],

(37)

where we have added and subtracted a term that is evaluated using the zero-temperature functional form of � but evaluated at
the Matsubara frequencies corresponding to a particular temperature. Since �(i�m) − �(i�m = 0) obeys a quantum-critical
scaling form, the first term becomes F (1)

A /(MN ) = −NT
4M

∑
m�=0 ln[(2πm)1−2xFD (2πm)]. We find numerically that FD (2πm) =

1/(2πm)1−2x + O(1/m2) for m � 1 in the scaling limit so this sum converges at large m and leads to F (1)
A /(MN ) ∼ −T , which

does not contribute to the specific heat and provides a constant contribution to the entropy at low temperatures.
The second term of (37) can be computed by ζ -function regularization using the result (12),

F (2)
A

MN
= NT

4M

∑
m�=0

ln

[
−4

M

N
C2t2x sin(πx)�(2x − 1)|2πm|1−2xT 1−2x

]

= −NT

4M
ln

[
−4

M

N
C2t2x sin(πx)�(2x − 1)T 1−2x

]
. (38)

This produces the dominant contribution to the low-
temperature specific heat,

C
MN

≈ C (2)
A

MN
= −T

∂2F (2)
A

∂T 2
= (1 − 2x)N

4M
, (39)

which is positive and extensive. In the limit of M/N → ∞,
where x → 0 and the non-Fermi-liquid solution turns into a
noninteracting random-matrix solution, this large contribution
to the specific heat vanishes as it should, and in the opposite
limit of M/N → 0, where x → 1/2, it blows up as 1/

√
M/N

as can be seen by applying (14).
The free-energy contribution F (2)

A also leads to the
dominant contribution to the low-temperature entropy
S (2)

A /(MN ) = −∂F (2)
A /∂T ∝ (1 − 2x)[N/(4M )] ln T . This

is negative at low T , which indicates that our theory is incom-
plete: Extra degrees of freedom must be present in a physical
theory in order to offset this entropy. The reason this happens
is that our theory is missing all information about the zero-
frequency modes of the Aij . In any sensible electromagnetic
lattice gauge theory, these modes will contribute to physical
static magnetic-field configurations that cost energy: Exciting
a single link Aij will lead to nonzero magnetic fluxes through
all plaquettes containing that link, and a magnetic Maxwell
term acting on these fluxes will contribute to the action, even
if they are static. However such terms are not generated in
our theory by integrating out the fermions in the large-N,M

limits. In order to generate these terms we need to appeal to
some heavy degrees of freedom that couple to the gauge fields
in such a way that integrating out these degrees of freedom
will produce magnetic Maxwell terms.

Assuming this is the case, we write down the simplest
possible gauge and time-reversal invariant magnetic Maxwell
action that is appropriate for an all-to-all interacting theory

without any spatial structure. It is

SB = m2
B

2(N − 2)

∫
dτ

∑
�ijk

[Aij (τ ) + Ajk (τ ) + Aki (τ )]2,

(40)

where the sum runs over all possible unique triangles. The
kernel of this quadratic action has (N − 1)(N − 2)/2 degen-
erate eigenvectors with eigenvalue m2

B[1 + 2/(N − 2)] and
N − 1 degenerate eigenvectors with eigenvalue 0. The zero-
eigenvalued eigenvectors are all pure gauge and can each be
gauge transformed to the configuration Aij = 0; they corre-
spond to the state in which the flux through all triangles is zero
and thus do not contribute anything to the free energy. In the
large-N limit, the thermodynamic fraction of modes residing
on a single link Aij have negligible overlap with the zero-
eigenvalued eigenvectors. This permits the approximation,
exact in the infinite-N limit,

SB ≈ m2
B

2

∫
dτ

N∑
ij=1, i�j

A2
ij (τ ). (41)

We assume that m2
B is much smaller than

−4(M/N )C2 sin(πx)�(2x − 1)t2xT 1−2x . Then including
this term just adds

F (3)
A = N2

4
T ln m2

B (42)

to (36). This term does not contribute to the specific
heat but offsets the leading contribution to the
entropy to a large positive value S (2)+(3)

A /(MN ) =
[N/(4M )] ln[−4(M/N )C2 sin(πx)�(2x − 1)t2xT 1−2x/m2

B].
For −4(M/N )C2 sin(πx)�(2x − 1)t2xT 1−2x 
 m2

B , the
fermions effectively end up coupling to gapped bosonic
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modes. The low-energy Dyson equation then reads

�(iωn) = t2G(iωn)

⎡
⎣1 − T

∑
�m �=0

1

m2
B + �(i�m) − �(i�m = 0)

⎤
⎦ + t2T

∑
�m �=0

G(iωn + i�m)

m2
B + �(i�m) − �(i�m = 0)

,

�(i�m) = 2t2T
M

N

∑
ωn

G(iωn)G(iωn + i�m), (43)

G(iωn) = 1

iωn + μ − �(iωn)
.

The term in square brackets no longer cancels at T = 0 as
increasing the denominator of the boson propagator by adding
a mass makes its value smaller than the zero-mass case.
This leaves behind a νt2G(iωn) term in �(iωn), leading to a
renormalized random-matrix solution at the lowest energies.
The second term in the first line of (43) vanishes at small
external frequencies ωn as G(i�m) is odd in �m, and the
denominator is a constant at low frequencies (for the nonzero
chemical potential, this sum just produces a constant that
is absorbed by μ). These points can be easily verified by
numerically solving the UV-completed version of (43) using
the MATLAB code GD.M [31]. The lowest-energy state then has
a vanishing entropy and specific heat. Henceforth, we will
assume that we are only interested in energy scales larger than
the small m2

B , treating it as an IR regulator much smaller than
T and focus on the non-Fermi liquid.

We also checked numerically that the compressibility
MN ∂q0/∂μ|T , where q0 = G(τ = 0−) asymptotes to a
nonzero constant as T → 0. This justifies our rationale of
ignoring the time components A0

i of the gauge fields in the
IR as their propagators are screened by this compressibility.

Finally, from the point of view of the magnetic Maxwell
terms, the model behaves like a U (1) gauge theory in a large
[O(N )] number of dimensions. Possible magnetic monopoles
arising due to the compactness of the U (1) gauge group then
source nonzero fluxes through a large number of plaquettes,
leading to O(N ) increases in the free energy through the

magnetic Maxwell terms while not coupling to the fermions
by virtue of being a static background. Thus, the configuration
in which no monopoles exist should be a stable saddle point,
and monopole operators are irrelevant.

V. TRANSPORT

In order to consider transport properties of this model, we
need to make appropriate modifications. First, we need some
spatial structure. This can be achieved by defining the clusters
indexed by i, j to lie on the sites of an N -dimensional hyper-
cubic lattice with each cluster then having 2N neighbors. The
fermions hop between nearest-neighbor clusters, coupling to
gauge-fields Aij that live on the bonds of the lattice. Second,
for an external probe gauge field to drive a current, it must
couple to a different charge from the one that the internal
gauge-fields Aij couple to: If they coupled to the same charge,
then turning on the probe field only amounts to shifting the
values of Aij , and the path integral over Aij trivially absorbs
these shifts, rendering the partition function immune to the
probe field. If we view the fermions as chargons arising from
fractionalization in an ACL, we can divide the flavors indexed
by α, β into equal fractions of two species that couple to the
internal gauge field with opposite charges but which couple to
the external probe gauge field with equal charges, which is a
single-axis version of the SU(2) case discussed in Ref. [35].
Then, our modified version of (1) reads

H′ = − 1

(2MN )1/2

∑
〈ij〉

M∑
αβ=1

∑
ss ′=±

[
t
αβ

ij f
†
iαse

iAij σ
z

ss′ fjβs ′ + (2MN )1/2μδ
αβ

ij δss ′f
†
iαsfiαs

]
,

〈〈
t
αβ

ij t
βα

ji

〉〉 = 〈〈∣∣tαβ

ij

∣∣2〉〉 = t2. (44)

This has a U (1) gauge invariance under fiαs (τ ) → ∑
s ′=± eiθi (τ )σ z

ss′ fiαs ′ (τ ) and Aij (τ ) → Aij (τ ) + θi (τ ) − θj (τ ).
Performing the same manipulations as before, we obtain

S ′ =
∫

dτ
∑

i

M∑
α=1

∑
s=±

f
†
iαs (τ )

[
∂τ + isA0

i (τ ) + μ
]
fiαs (τ )

+ t2 M

2N

∫
dτ dτ ′ ∑

〈ij〉

∑
ss ′=±

[(
1 − 1

2
A2

ij (τ ) − 1

2
A2

ij (τ ′) + Aij (τ )Aij (τ ′)
)

δss ′ + i[Aij (τ ) − Aij (τ ′)]σ z
ss ′

]

×Gjs ′ (τ − τ ′)Gis (τ ′ − τ ) − M

∫
dτ dτ ′ ∑

i

∑
s=±

�is (τ − τ ′)

[
Gis (τ ′ − τ ) − 1

M

M∑
α=1

fiαs (τ ′)f †
iαs (τ )

]
, (45)
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as before, the time integrations kill the term proportional to σ z in the second line of the above. This action then leads to a
saddle-point symmetric in s described by (10) with the IR solution (11). Similar arguments for invariance under gauge fixing at
large N and stability of the saddle-point as before apply.

We now perturb the action (45) with a diagonal probe field so that Aij (τ )σ z
ss ′ → Aij (τ )σ z

ss ′ + �ij (τ )δss ′ where �ij (τ ) =
δj,i+x̂�(τ ), which corresponds to applying an electric-field E = −[d�(τ )/dτ ]x̂ in the x̂ direction. The perturbed action reads

S ′
� = −M

∑
i

∑
s=±

Tr ln[∂τ + μδ(τ, τ ′) − �is (τ, τ ′)]

+ t2 M

2N

∫
dτ dτ ′ ∑

〈ij〉

∑
ss ′=±

[(
1 − 1

2
[Aij (τ ) − Aij (τ ′)]2

)
δss ′ + i[Aij (τ ) − Aij (τ ′)]σ z

ss ′

]
Gjs ′ (τ, τ ′)Gis (τ ′, τ ) + t2 M

2N

×
∫

dτ dτ ′ ∑
〈ij〉

∑
s=±

[
i[�ij (τ ) − �ij (τ ′)] − 1

2
[�ij (τ ) − �ij (τ ′)]2

]
Gjs (τ, τ ′)Gis (τ ′, τ )

− t2 M

2N

∫
dτ dτ ′ ∑

〈ij〉

∑
ss ′=±

[Aij (τ ) − Aij (τ ′)][�ij (τ ) − �ij (τ ′)]σ z
ss ′Gjs ′ (τ, τ ′)Gis (τ ′, τ ), (46)

where we integrated out the fermions and neglected A0
i as before. With the perturbed partition function Z′

� =∫
DADGD� e−S ′

�[A,G,�], we then obtain the current-current correlator,

〈Jx (τ )Jx (τ ′)〉 = 1

Z′
�=0

δ2Z′
�

δ�(τ )δ�(τ ′)

∣∣∣∣
�=0

=
∫

DADGD�
e−S ′

�=0[A,G,�]

Z′
�=0

(
δS ′

�[A,G,�]

δ�(τ )

δS ′
�[A,G,�]

δ�(τ ′)
− δ2S ′

�[A,G,�]

δ�(τ )δ�(τ ′)

)∣∣∣∣
�=0

. (47)

The only term that survives after integrating out the fields (which makes G and � take their saddle-point values) is

〈Jx (τ )Jx (τ ′)〉 = −V t2 M

N

[
G(τ − τ ′)G(τ ′ − τ ) − δ(τ − τ ′)

∫
dτ ′′G(τ − τ ′′)G(τ ′′ − τ )

]
, (48)

where V is the system volume (number of sites in the hypercu-
bic lattice). The right-hand side of (48) automatically contains
the sum of the paramagnetic and diamagnetic terms.

This gives rise to the dc conductivity, employing the scal-
ing forms derived in Sec. III C,

σ dc
xx = − 1

V
lim

�m→0

〈JxJx〉(i�m)

�m

∼ M

N

(
t

T

)2x

, (49)

and the optical conductivity,

σxx (� � T ) = −2(M/N )C2 sin(πx)�(2x − 1)

(
it

�

)2x

.

(50)

As discussed in Sec. II, since the saddle-point value of G is
gauge independent at leading order in large N , this answer for
the conductivity is correctly gauge invariant at leading order in
large N . Since the critical solution (35) is in general valid only
for T 
 t , the dc conductivity (49) is never parametrically in
a bad-metallic regime of σ dc 
 1 within the energy window
of validity of the non-Fermi-liquid solution.

VI. DISCUSSION

We have constructed a model of a disordered non-Fermi-
liquid phase of fermions at a finite density coupled to gapless
fluctuating U (1) gauge fields in a solvable large-N limit. In
this non-Fermi-liquid phase, both the fermion and the photon
Green’s functions are gapless and decay as power laws of

time at long times. The power-law exponents are continuously
tunable within a finite range and, interestingly, depend upon
the filling fraction of the fermions.

A special feature of our model is that the non-Fermi-
liquid phase arises under the combined effect of hopping
and interaction terms, in contrast to the purely interacting
SYK models. In the SYK models, the addition of quadratic
hopping terms results in a weakly interacting Fermi-liquid
solution in the infrared [5]. However, unlike the SYK models,
in which the interaction between the fermions is instantaneous
in the large-N limit, the interaction between fermions in our
model is retarded, mediated by gapless bosonic modes with
singular propagators at low energies, leading to non-Fermi-
liquid behavior even in the presence of hopping terms [36].

Our model only possesses scale invariance in the infrared
and not the much more comprehensive time reparametrization
invariance of the SYK models. At nonzero temperatures, this
lack of time reparametrization symmetry in our model results
in different finite-temperature fermion Green’s functions from
the conformal ones that appear in the generalized set of
SYKq models with (1 < q/2 < 2)-body interactions [4,37].
Consequently, we do not expect our model to have as direct a
holographic connection to AdS2 gravity as the SYK models
or to display maximal chaos [13–15,23,37]. However, due
to the quantum-critical scaling of the Green’s functions, we
still expect the Lyapunov exponent for many-body quantum
chaos to be an O(1) number times kBT /h̄, similar to other
models of fermions strongly coupled to fluctuating gauge
fields [38].
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The dynamic photon modes cause our model to have a
much larger Hilbert space than the SYK models, which only
have fermions. This appears to allow for a finer spacing
of the low-lying many-body energy levels than in the SYK
models (which have a level spacing of ∼e−N [39]), leading
to parametrically larger values of entropy and specific heat at
low temperatures, that are dominated by contributions from
the photon modes.

We can view our model as a toy model of an ACL [25,35],
which is a candidate for the strange metal regime of the
cuprate superconductors. This is an effective theory in which
electrons are fractionalized into gapless fermionic chargons
which carry their charge (but not spin) and gapped bosonic
spinons that do not affect the low-energy fluctuations of the
chargons. By defining our model on an N -dimensional hy-
percubic lattice, we obtain non-Fermi-liquid charge transport
properties with a sublinear power-law-in-temperature resistiv-
ity. The exponent of the power law is continuously tunable as a
function of the filling and can approach linear-in-temperature
for certain parameter ranges. This non-Fermi liquid has a
“large Fermi surface,” i.e., all M flavors of fermions are
active and contribute to transport. This is in contrast to the
SYK/Kondo-lattice models of non-Fermi liquids proposed in
Refs. [9,10] where only the itinerant fermions contribute to
transport.

For future work, it would be interesting to see if some of the
strategies employed here can be extended to construct solv-
able models of fermions at finite densities and with quenched

disorder interacting with gauge fields in 2 + 1 dimensions.
Such models would of course be more realistic candidates for
describing the phase diagram of the cuprates. It would also
be interesting, if possible, to consider Higgs transitions out
of ACLs in such models into weakly interacting “pseudogap”
phases with a reduced number of active fermions [27,35]
along the lines of the analysis in the Appendix.
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APPENDIX: HIGGS TRANSITION FROM
THE U (1) ACL TO A Z2 ACL

We consider a Higgs transition that breaks the U (1) gauge
invariance down to Z2 in the ACL of Sec. V. This is expected
to be a toy model of the optimal doping transition in the
cuprates without a symmetry-breaking order parameter from
the overdoped to the underdoped side [26–29]. We modify the
fermion-gauge-field Hamiltonian to

H′′
1 = − 1

(2MN )1/2

∑
〈ij〉

M∑
αβ=1

∑
s=±

[
t
αβ

ijs f
†
iαse

isAij fjβs + (2MN )1/2μδ
αβ

ij f
†
iαsfiαs

]
,

〈〈
t
αβ

ijs t
βα

jis

〉〉 = 〈〈∣∣tαβ

ijs

∣∣2〉〉 = t2. (A1)

We have now broken the + ↔ − pseudospin symmetry since the hopping matrix elements t
αβ

ijs are uncorrelated between s = ±.

However, this symmetry is restored upon disorder average as the variances of the t
αβ

ijs are the same for s = ±. This will allow
us to easily write down saddle-point equations in the Higgsed phase as the four-Fermi term produced by disorder averaging will
not have decompositions in the 〈f †

+f−〉 channel that would prevent its decomposition exclusively into the Gi’s. As before, the
addition of Maxwell terms and time components for the gauge fields to H′′

1 is implied.
Now we add complex scalar Higgs fields Hi defined on each site i of the N -dimensional hypercube into the mix. These fields

are charge 2 under the U (1) gauge field with Hi → Hie
2iθi under the U (1) gauge transformation,

H′′
2 =

∑
i

[
Mr|Hi |2 + gH

(
Hi

M∑
α=1

f
†
iα+fiα− + H.c.

)]
− tH

2

∑
〈ij〉

[H ∗
i Hj e

2iAij + H.c.]. (A2)

The addition of coupling to time components of the gauge fields to H′′
2 is implied. The couplings of the Higgs fields to the

fermions are nonrandom, but a large-M,N saddle point can still be defined as was performed in Ref. [40], which had nonrandom
couplings to a superconducting order parameter. To see this, we disorder average the action of H′′

1 + H′′
2 and then expand the

exponentials to quadratic order as before (ignoring the screened time components of the gauge fields),

S ′′ =
∫

dτ
∑

i

M∑
α=1

[∑
s=±

f
†
iαs (τ )(∂τ + μ)fiαs (τ ) + gH [f †

iα+(τ )Hi (τ )fiα−(τ ) + H.c.]

]

+ t2 M

2N

∫
dτ dτ ′ ∑

〈ij〉

∑
s=±

[(
1 − 1

2
A2

ij (τ ) − 1

2
A2

ij (τ ′) + Aij (τ )Aij (τ ′)
)

+ is[Aij (τ ) − Aij (τ ′)]
]

×Gjs (τ, τ ′)Gis (τ ′, τ ) − M

∫
dτ dτ ′ ∑

i

∑
s=±

�is (τ, τ ′)

[
Gis (τ ′, τ ) − 1

M

M∑
α=1

fiαs (τ ′)f †
iαs (τ )

]

+M

∫
dτ

∑
i

[|∂τHi (τ )|2 + r|Hi (τ )|2] − tH

2

∫
dτ

∑
〈ij〉

{
H ∗

i (τ )
[
1 + 2iAij (τ ) − 2A2

ij (τ )
]
Hj (τ ) + H.c.

}
. (A3)
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We now integrate out the fermions and gauge fields,

S ′′ = −M
∑

i

Tr ln

(
∂τ + μδ(τ, τ ′) − �i+(τ, τ ′) gHHi (τ )δ(τ, τ ′)

gHH ∗
i (τ )δ(τ, τ ′) ∂τ + μδ(τ, τ ′) − �i−(τ, τ ′)

)

+M

∫
dτ

∑
i

[|∂τHi (τ )|2 + r|Hi (τ )|2] + 1

2

∑
〈ij〉

Tr ln

[
−∂2

τ

g2
+ �̃ij (τ, τ ′) + 2tH [H ∗

i (τ )Hj (τ ) + H.c.]δ(τ, τ ′)
]

− tH

2

∫
dτ

∑
〈ij〉

[H ∗
i (τ )Hj (τ ) + H.c.] + t2 M

2N

∫
dτ dτ ′ ∑

〈ij〉

∑
s=±

Gjs (τ, τ ′)Gis (τ ′, τ )

−M

∫
dτ dτ ′ ∑

i

∑
s=±

�is (τ, τ ′)Gis (τ ′, τ ),

�̃ij (τ, τ ′) = t2 M

N

∑
s=±

[
Gis (τ ′, τ )Gjs (τ, τ ′) − 1

2
δ(τ, τ ′)

∫
dτ ′′[Gis (τ, τ ′′)Gjs (τ ′′, τ ) + Gis (τ ′′, τ )Gjs (τ, τ ′′)]

]
. (A4)

where we threw out some terms that do not contribute to first-order variations at the saddle point we will obtain. In addition to the
saddle point for Gis and �is , this action also has a saddle point for Hi . Fluctuations of Hi about this saddle point are suppressed
by the large-M limit. The combined saddle-point equations obtained by varying Gis, �is , and Hi about an i, s-uniform solution
with constant |H (τ )| = |H | are

�(iωn) = t2G(iωn) + t2T

∫
d�m

2π

G(iωn + i�m) − G(iωn)

�2
m/g2 + �̃(i�m) + 4tH |H |2 ,

G(iωn) = iωn + μ − �(iωn)

[iωn + μ − �(iωn)]2 − g2
H |H |2 ,

H

[
r − N

M
tH +

∫
dωn

2π

g2
H

[iωn + μ − �(iωn)]2 − g2
H |H |2 + 2N

M

∫
d�m

2π

tH

�2
m/g2 + �̃(i�m) + 4tH |H |2

]
= 0,

�̃(i�m) = 2t2 M

N

∫
dωn

2π
G(iωn)[G(iωn + i�m) − G(iωn)]. (A5)

Saddle points for which H is static in time with a spatially uniform magnitude but spatially varying phase are gauge equivalent
to the uniform solution and yield the same fermion Green’s function. For r between NtH/M and

rc ≡ − N

M
tH −

∫
dωn

2π

g2
H

[iωn + μ − �(iωn)]2

∣∣∣∣
H=0

, (A6)

Eqs. (A5) have a solution with a Higgs condensate |H | �= 0
with |H | vanishing as r → rc. In this Higgsed phase, the only
remaining gauge redundancy is a Z2 gauge transformation
of f → −f . The condensate renders the low-energy

fluctuations of the gauge fields nonsingular, which causes
the low-energy fermion Green’s function and self-energy to
take on a random-matrix form G(iωn),�(iωn) ∼ i sgn(ωn)
for gH |H | 
 t . The reasoning behind this is the same as
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FIG. 6. (a) Plot of r as a function of |H | in the Higgsed phase, obtained from numerical solution of (A5) in the T → 0 limit. The orange
line fits the numerical data with r = rc + h2|H |2 + h3|H |3, so r − rc ∼ |H |2 as |H | → 0. The values of parameters used are t = tH = g2 =
gH = 1, 2M = N , and μ = 0. (b) Plot of the free energies per fermionic degree of freedom of the |H | �= 0 solution (orange) and H = 0
solution (blue) of (A5). The weak first-order behavior at very small |H | is due to a small finite T = 10−5 in the numerics and disappears as
T → 0. The values of other parameters used are the same as in (a).
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that for the solution of (43), and the random-matrix-like
solution at low energies can easily be verified by solving (A5)
numerically using the MATLAB code GDHIGGS.M [41]. Relative
to the non-Fermi-liquid U (1) ACL phase, the low-energy
fermion density of states ∼ Im[GR (ω)] is thus depleted, akin
to a pseudogap phase. Furthermore, the resistivity in the
Higgsed phase, following from (48), becomes Fermi-liquid
like with ρdc

xx ∼ ρ0 + ρ1T
2.

Figure 6 shows the onset of the Higgs condensate
with r − rc ∼ |H |2 as |H | → 0, indicating a continuous
transition with exponent ν = 1/2 as T → 0. Also shown
is the comparison of free energies of the |H | �= 0 so-
lution and the H = 0 solution of (A5) for values of r

that allow for the Higgsed phase; this shows that the
|H | �= 0 saddle point is indeed energetically favorable as
T → 0.
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