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Gaussian fluctuation corrections to a mean-field theory of complex hidden order in URu2Si2
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Hidden-order phase transition in the heavy-fermion superconductor URu2Si2 exhibits the mean-field-like
anomaly in temperature dependence of heat capacity. Motivated by this observation, here we explore the
impact of the complex order parameter fluctuations on the thermodynamic properties of the hidden-order
phase. Specifically, we employ the mean-field theory for the hidden order which describes the hidden-order
parameter by an average of the hexadecapole operator. We compute the Gaussian fluctuation corrections to the
mean-field theory equations including both the fluctuations due to “hidden order” as well as antiferromagnetic
order parameters. We find that the Gaussian fluctuations lead to the smearing of the second-order transition
rendering it to become the first-order one. The strength of the first-order transition is weakly dependent on the
strength of underlying antiferromagnetic exchange interactions.
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I. INTRODUCTION

Virtually every textbook on thermodynamics and statistical
physics includes the discussion of the first- and second-order
phase transitions. The latter are defined by the discontinuity
of the second derivative of free energy at some critical tem-
perature Tc. The defining feature of the second-order phase
transitions is that the low-temperature ordered phase has lower
symmetry than the high-temperature disordered one and one
can conveniently introduce the order parameter to describe
the transition [1]. Therefore, it is usually possible to associate
the physical observable (and the corresponding susceptibility)
with the order parameter by identifying what symmetry has
been broken by transitioning into the ordered phase: for
example, the time-reversal symmetry corresponds to a state
with finite magnetization while breaking of the global U (1)
gauge symmetry signals an onset of superconductivity.

Given the remarkable success in our understanding of the
phase transitions and advances in experimental techniques, a
relative ease with which one can identify the symmetry of
the low-temperature state is almost always taken for granted.
The intriguing exception to this state of affairs was furnished
by the observation of the second-order phase transition in
URu2Si2 at temperature Tc ≈ 17.5 K and zero pressure [2–4].
The phase below Tc is not antiferromagnetic order but some
unknown nonmagnetic, nonstructural order; it only becomes
antiferromagnetic order through a first-order phase transition
at larger pressure [5–8]. Different theoretical models have
been proposed to describe the “hidden”-ordered phase, e.g.,
spin-density wave [9–11], orbital currents [12], helicity order
[13], and multipole order [14–18]. Indeed, despite more than
30 years of intensive theoretical and experimental research,
the consensus on the nature of the broken symmetry state has
not been reached yet (for details on competing theories of
hidden order and recent experimental efforts we would like to
refer the reader to an excellent recent review paper by Mydosh
[19] and references therein).

Experimentally, one of the intriguing features of the
hidden-order phase transition is a sharp—mean-field-like—
discontinuity in the temperature dependence of the heat capac-
ity. If we were to entertain an idea that the hidden-order phase
transition is governed by the itinerant degrees of freedom, we
would find that the corresponding hidden-order susceptibil-
ity must become logarithmically divergent with temperature.
Then an analogy with the conventional superconductivity
immediately comes to mind for the superconducting transition
in elemental metals has also sharp jumps in the heat capacity
at the critical temperature and, consequently, the supercon-
ductivity is fairly accurately described by the BCS mean-field
theory [20]. In fact, Kos, Millis, and Larkin have demon-
strated that although the Gaussian fluctuation corrections to
the BCS mean-field equations due to the amplitude and phase
fluctuations are logarithmically diverging, the corresponding
divergences cancel each other out in the mean-field equations
[21], making the BCS mean-field approximation very accurate
(see also Ref. [22] for a related discussion). Interestingly,
most recently Hoyer and Schmalian have shown that similar
cancellation of the logarithms does not happen for the case of
the charge-density-wave transition (CDW) and spin-density-
wave (SDW) transition in one or three spatial dimensions,
which naturally renders the mean-field treatment of those
transitions uncontrolled [23]. The only exception is the SDW
transition in two dimensions with the perfectly nested Fermi
surface [23]. In view of these theoretical considerations along
with the recent experimental results [19], it seems perfectly
reasonable to us to think that the hidden-order transitions are
likely driven by the local and not itinerant degrees of freedom.

Recently, Haule and Kotliar (HK) have employed the
combination of the density functional theory together with
the dynamical mean-field theory to put forward a theory for
the hidden-order transition, which is governed by the local
5f orbital degrees of freedom [24]. The corresponding order
parameter is a complex function, whose real part accounts
for the hidden-order phase: it is determined by the average

2469-9950/2018/98(12)/125131(5) 125131-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.125131&domain=pdf&date_stamp=2018-09-17
https://doi.org/10.1103/PhysRevB.98.125131


PENGTAO SHEN AND MAXIM DZERO PHYSICAL REVIEW B 98, 125131 (2018)

of the hexadecapole operator and corresponds to an excitonic
mixing between the two lowest lying states originating from
the uranium 5f non-Kramers doublets which are split by
the crystalline electric fields. The imaginary part of the or-
der parameter accounts for an antiferromagnetic order which
emerges when the external pressure is applied. In their follow-
up paper [16], Haule and Kotliar have developed a Landau-
Ginzburg description of hidden-order state with the complex
order parameter.

Motived by these developments, in this paper we present
the results of our calculations of the Gaussian fluctuation
corrections to the mean-field theory equations of the complex
hidden-order parameter. We find that in the vicinity of the
hidden-order transition the Gaussian fluctuations of the real
and imaginary parts of the complex order parameter render
the transition to become first order: at the critical temperature
the absolute value of the order parameter changes abruptly
from zero to some finite value which is close to the mean-field
value calculated at T = 0. By calculating the dependence of
the critical temperature on the value of the antiferromagnetic
exchange interaction, we also find that the Gaussian fluctu-
ations have a generically substantial effect on the value of
the mean-field critical temperature: the critical temperature is
decreased approximately by a factor of two.

Our paper is organized as follows. In the next section we
introduce the microscopic model to describe the hidden-order
transition. Section III provides the summary for the mean-field
approximation of our model. The derivation of the Gaussian
fluctuation corrections to the mean-field equations are pre-
sented in Sec. IV. Finally, Sec. V is devoted to discussion of
our results and conclusions. Throughout the paper we use the
units h̄ = kB = 1.

II. MODEL

Following the discussion in Ref. [16], we consider a ura-
nium ion in 5f 2 valence configuration corresponding to a
state with the total angular momentum J = 4. As a result
of the crystalline electric fields, the ninefold degeneracy is
lifted. The first principles calculations [24] showed that the
two lowest lying states are non-Kramers doublets, which can
be written as a linear combination of the eigenvectors of the
angular momentum operator Ĵz:

|γ0〉 = i√
2

(|4〉 − | − 4〉),

|γ1〉 = cos φ√
2

(|4〉 + | − 4〉) + sin φ|0〉,
(1)

where φ is some parameter whose specific value will not
be important for our subsequent discussion. Since we are
considering only two states (1), it is convenient to represent
them using the fermionic creation operators |γa〉 = f̂

†
a |vac〉.

We write the model Hamiltonian Ĥ in terms of the fermionic
operators as follows:

Ĥ = −�z

∑
iab

f̂
†
iaσ

z
abf̂ib

− 1

2

∑
ij,ab

∑
α=x,y

uα
ij (f̂ †

iaσ
α
abf̂ib )(f̂ †

jcσ
α
cd f̂jd ). (2)

Here the summations are performed over the lattice sites
�ri and the fermionic states a, b = 0, 1, 2�z is the energy
splitting between the states |γ0〉 and |γ1〉, couplings ux

ij and
u

y

ij account for the interaction between the two-level sys-
tems, and σx , σy , and σ z are Pauli matrices. The exchange
coupling ux

ij drives the hidden-order transition with the or-

der parameter ψx (�ri ) = 〈f̂ †
i0f̂i1 + f̂

†
i1f̂i0〉, which is propor-

tional to the matrix element of the hexadecapole operator
(Ĵx Ĵy + Ĵy Ĵx )(Ĵ 2

x − Ĵ 2
y ), hence the name “hexadecapole or-

der.” Lastly, the exchange couplings u
y

ij account for the anti-
ferromagnetic correlations along the z axis and, in principle,
may lead to antiferromagnetic order described by the expecta-
tion value ψy (�ri ) = i〈f̂ †

i0f̂i1 − f̂
†
i1f̂i0〉 ∝ 〈1|Ĵz|0〉. Lastly, we

mention that in the case when external magnetic field is
applied, the model Hamiltonian would contain an extra term
HZ = −�y

∑
f̂

†
iaσ

y

abf̂ib.
For our subsequent analysis of the model (2), it will be con-

venient to use the path integral formulation. Since we are es-
sentially dealing with the spin-1/2 operators in the fermionic
representation, we can use the method by Popov and Fedotov
who developed the path integral formalism for spin systems
[25]. The constraint which excludes double occupation on
each site due to the Pauli principle,

∑
a f̂

†
iaf̂ia = 1, is taken

into account by introducing the complex chemical potential
μpf = −iπT /2. Thus the action for our problem reads

S =
∫ β

0
dτ

{∑
ia

f ia

(
∂

∂τ
− μpf

)
fia + H (f , f )

}
, (3)

where f ia (τ ) and fia (τ ) are mutually independent Grassmann
variables. The partition function is determined by

Z =
∫

D[f , f ]e−S. (4)

We proceed by performing the Hubbard-Stratonovich trans-
formation by introducing the local bosonic fields ��j (τ ),
which couple linearly to the fermionic fields �bi (τ ) =∑

ab f ia (τ )�σabfib(τ ):

e
1
2

∑
uα

ij biαbjα = 1

C

∫
D �� e− 1

2

∑
�α

i J α
ij �

α
i +∑ ��j ·�bj , (5)

where the summations are performed over repeated indices,
J α

ij = [uα]−1
ij and C = 4π2det[ux]det[uy]. The resulting ac-

tion becomes Gaussian for the fermionic fields. Performing
an integration over the fermionic fields yields

S[ ��] = 1

2

∫ β

0
dτ

∑
�α

i J α
ij�

α
i − Tr log Ĝ−1, (6)

where the matrix Ĝ−1 is defined by

Ĝ−1(�rj , τ ) = (∂τ − μpf)σ0 − �zσ
z + ��j (τ ) · �σ , (7)

where σ0 is a unit matrix. In the next section we will analyze
the action (6) using the mean-field theory.
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III. REVIEW OF THE MEAN-FIELD THEORY

The mean-field theory for the hidden order corresponds to
the saddle-point approximation to Eq. (6):

��j (τ ) = �ψ. (8)

At the saddle point the action is proportional to the free
energy. Minimizing the free energy with respect to ψx and
ψy yields the following mean-field equations:

1

2

∑
j

J x
ijψx = T

∑
νm

ψx(
νm + πT

2

)2 + �2
z + �ψ2

,

1

2

∑
j

J
y

ijψy = T
∑
νm

ψy(
νm + πT

2

)2 + �2
z + �ψ2

(9)

and the summation is carried over the fermionic Matsubara
frequencies νm = πT (2m + 1). For our purposes, it will suf-
fice to consider the case when the second mean-field equation
(9) has only trivial solution, ψy = 0. This implies that the
ground state has purely real (hexadecapole) order parameter,
ψx �= 0.

To make further progress, some assumptions about the
exchange couplings ux

ij must be made. Let us consider the
simplest case of nearest neighbor interactions

ux
ij = Uxδj,i±δ, (10)

where �ri±δ denotes the positions of the nearest neighbors.
Assuming the periodic boundary conditions, for the inverse
of the matrix J x

ij it obtains

∑
j

J x
ij = 1

2Ux

. (11)

Note that in this equation the summation extends over all
lattice sites.

Given (10), we can easily perform the summations over the
Matsubara frequencies, so the equation which determines the
temperature dependence of the order parameter reads

√
�2

z + ψ2
x

2Ux

= tanh
(
β

√
�2

z + ψ2
x

)
, (12)

where β = 1/T . For the critical temperature one finds

T (mf)
c = 2�z

log
( 2Ux+�z

2Ux−�z

) , (13)

which, given the choice (10), implies that the exchange cou-
pling constant must satisfy Ux > �z/2. At temperatures just
below the critical temperature for the order parameter we find

ψx (t ) ≈ 2�z

√
2βc�z√

sinh(2βc�z) − 2βc�z

√
t, (14)

where βc = 1/T (mf)
c and t = (T (mf)

c − T )/T (mf)
c 	 1. Finally,

for the free energy (normalized by the number of lattice sites)

we have

F0 = ψ2
x

4Ux

− T log
[
2 cosh

(√
�2

z + ψ2
x /T

)]
(15)

and the heat capacity is

Cmf(T ) = β2
(
�2

z + ψ2
x − T ψx

dψx

dT

)
cosh2

(
β
√

�2
z + ψ2

x

) . (16)

Expression (14) allows one to evaluate the jump of the heat
capacity at T = Tc:

�Cmf(Tc ) = 2(βc�z)3

cosh2(βc�z)[sinh(2βc�z) − 2βc�z]
. (17)

This result agrees with the corresponding expression in
Ref. [16]. It obviously allows one to obtain an estimate for the
value of the parameter �z as well as the value of the exchange
constant Ux .

IV. GAUSSIAN FLUCTUATION CORRECTIONS

The fluctuations of the order parameter ψx as well as
ψy will modify the mean-field equations above. To study
fluctuations we write

��j (τ ) = �ψ + �ηj (τ ). (18)

We insert this expression into (6) and then expand the re-
sulting actions in powers of �ηj (τ ). Since the linear in �ηj (τ )
term vanishes, so the first nonzero term in the action will be
quadratic in �η. Restricting the expansion to quadratic order,
for the action it formally obtains

S[ ��] = S0[ �ψ] + S2[�η]. (19)

Here the first term is (6) evaluated within the saddle-point
approximation, while the remaining term describes the effect
of fluctuations at the Gaussian level:

S2[�η] = 1

2

∫ β

0
dτ

∑
ij

ηia (τ )
[
J a

ij δab + �ab(τ )
]
ηjb(τ ),

(20)

where

�ab(iν) = T
∑
iω

Tr[Ĝ0(iω + iν)σ̂aĜ0(iω)σ̂b] (21)

and Ĝ0(τ ) can be obtained from (7) by replacing ��j with its
saddle-point value.

Since the action (19) is Gaussian, we can formally integrate
out the fluctuating fields �ηj . For the fluctuation correction to
the free energy we found

F2( �ψ ) = T Tr log
[
1̂ + Ĵ−1 · �̂

]
. (22)

Here the elements of matrix Ĵ−1 can be conveniently written
in momentum representation

Ĵ−1 =
(

Ux (p) 0
0 Uy (p)

)
(23)
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FIG. 1. Critical temperature Tc of the hidden-order transition
plotted in the units of the mean-field critical temperature T mf

c for
Nb = 6. The reduction in the values of Tc is due to Gaussian
fluctuations which increase with an increase in the value of antifer-
romagnetic exchange coupling Uy .

and the momentum dependence of both Ux (p) and Uy is
obtained from

Ua (p) = 1

Nb

∑
j

ua
0j e

ip·rj (24)

and Nb is equal to the number of the nearest neighbors. Note
that parameter 1/Nb serves as a control parameter of the the-
ory: when Nb → ∞ the contribution of Gaussian fluctuations
to the free energy vanishes. Finally, we remind the reader that
in the calculation of Uy (p) we have to take into account that
u

y

i,i±δ changes sign for the nearest neighbors along the z axis.
Calculation of the trace in (22) is straightforward:

F2( �ψ ) = 2T

∫
d3p

(2π )3
log

[
sinh

(
βRp

)
sinh

(
β
√

�2
z + ψ2

x

)
]
. (25)

Here the momentum integrals are performed over the first
Brillouin zone and function Rp is defined by

R2
p = �2

z + ψ2
x − Ux (p)�2

z tanh
(
β
√

�2
z + ψ2

x

)
√

�2
z + ψ2

x

−Uy (p)
√

�2
z + ψ2

x tanh
(
β

√
�2

z + ψ2
x

)
+ �2

zUx (p)Uy (p) tanh2
(
β
√

�2
z + ψ2

x

)
�2

z + ψ2
x

. (26)

From this expression it is clear that, despite the fact that in the
hidden-order state ψy = 0, the antiferromagnetic fluctuations
contribute the free energy.

The free energy is given by the sum of F0 and F2,
Eqs. (15) and (25), and we can determine the fluctuation

0 0.3 0.6 0.9 1.2

Order parameter, ψx / Tc
(mf)

-0.04

-0.02

0

0.02

0.04

Fr
ee

 e
ne

rg
y,

 F
 / 

k B
T c(m

f)

T < Tc
T = Tc
T > Tc

FIG. 2. Free energy dependence on the value of the order param-
eter calculated at various temperatures.

corrections to critical temperature and order parameter. Given
the momentum dependence of the functions Ux (p) and Uy (p),
the calculation of the momentum integrals will have to be
performed numerically. In Fig. 1 we present the calculation
of the critical temperature as a function of antiferromagnetic
exchange coupling Uy . Perhaps not very surprisingly we find
that the contribution of the Gaussian fluctuations grows with
an increase in Uy leading to an overall suppression of Tc.

In Fig. 2 we show the dependence of the free energy on
the order parameter ψx at various temperatures. The most
surprising result we find is that exactly at T = Tc the free
energy has double minimum. In Fig. 3 we show the tem-
perature dependence of the order parameter. In agreement
with the free energy calculation, we find that fluctuations
have a profound effect on the order parameter: they drive the
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FIG. 3. Temperature dependence of the order parameter ψx in
the presence of Gaussian fluctuations and at the mean-field level for
Nb = 6. Gaussian fluctuations lead to a sudden change of the order
parameter at Tc: the second-order mean-field transition becomes the
first-order transition.
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mean-field transition to become the first-order one. The
strength of the first-order transition is obviously determined
by Nb.

V. CONCLUSIONS

In this paper we have computed the Gaussian fluctua-
tion corrections to the mean-field theory of the hidden-order
transition with the complex order parameter. Under an as-
sumption of nearest neighbor interactions, we found that
Gaussian fluctuations drive the transition first order. It is
certainly possible that including the fluctuations beyond the
Gaussian approximation will make the transition weakly first
order or will lead to the cancellation of the Gaussian correc-
tion, rendering the transition second order as manifested by

experiments. However, our results clearly show that fully
consistent mean-field theory of the hidden-order transition
still awaits its development.
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