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Calculation of the four-spin cyclic exchange in cuprates
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Starting from the three-band Hubbard model for the cuprates, we calculate analytically the four-spin cyclic
exchange in the limit of infinite on-site Coulomb repulsion and zero O-O hopping tpp using two methods: (i)
perturbation theory in tpd/�, where tpd is the Cu-O hopping and � the Cu-O charge transfer energy and (ii)
exact solution of a Cu4O4 plaquette. The latter method coincides with the first to order eight in tpd and permits
us to extend the results to tpd/� of order one. The results are relevant to recent experimental and theoretical
research that relate the splitting of certain spin excitations with � and the superconducting critical temperature.
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I. INTRODUCTION

Several works have studied the influence of the energy and
existence of apical oxygen (O) atoms on the superconducting
critical temperature Tc of the cuprates [1–3]. The absence
of apical O atoms and larger separation between their on-
site energy and that of the O atoms of the superconducting
CuO2 planes increases Tc. The absence of negatively charged
apical O ions also renders it less favorable to add holes to
the neighboring copper (Cu) ions reducing �, the energy
necessary to transfer a hole from the Cu atom to a nearest-
neighbor O atom in the CuO2 planes. In turn, decreasing
� is expected to increase considerably the four-spin cyclic
exchange J4c around the Cu4O4 square plaquettes, which
has an important effect in the magnon dispersion [4,5] and
magnetic Raman [6,7] and infrared [8] spectrum for insulating
cuprates. In particular, the magnon splitting at the Brillouin
zone boundary �EMBZB in simple spin models is proportional
to J4c [4]. Therefore, it is natural to expect that the magnitude
of J4c, measurable through �EMBZB, gives information on the
charge-transfer energy � and the expected Tc in the cuprates,
as shown by the recent work of Peng et al. [5]. The four-spin
cyclic exchange also plays an important role in spin ladder
cuprates [9–11]. It is also interesting to note that multiple
spin exchange plays an essential role in the thermodynamic
properties of solid 3He in bulk [12] and in films [13].

Experimental evidence of the symmetry of holes in
high-Tc superconductors [14,15], and first-principles
constrained-density-functional calculations [16,17], indicate
that the appropriate model to describe the electronic structure
of superconducting CuO2 planes is the three-band Hubbard
model [18,19], which contains the 3d orbitals of the Cu atoms
with x2 − y2 symmetry and the 2p orbitals of the O atoms
which point towards the Cu atoms. In terms of perturbation
theory in the Cu-O hopping tpd , the four-spin cyclic exchange
J4c (although of order eight) is the nontrivial physical term
of lowest order which does not involve double occupancy
of holes at Cu or O sites. Therefore one expects that it pays
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an important role for small Cu-O charge-transfer energy �.
However, to our knowledge, there is no calculation of J4c in
the three-band Hubbard model [18,19]. Instead, a calculation
is available in the one-band Hubbard model, where J4c is of
fourth order in the hopping integral t [20]. However, this result
cannot be extended to the cuprates. While efficient low-energy
reductions of the three-band to the one-band Hubbard model
exist which provide the values of t ∼ t2

pd and the one-band
on-site repulsion U [2,17,21,22], they include terms which
are at most of order t4

pd , and therefore some higher-order
processes are lost if the one-band result for J4c is used.

Recently, a numerical calculation of the magnon splitting
�EMBZB in a cluster of eight unit cells described by the
three-band Hubbard model has been reported [23]. It shows
that �EMBZB increases as � decreases as expected, and the
order of magnitude of the splitting agrees with that measured
in several compounds [5]. In any case, this is an expensive
calculation and if a simpler calculation of J4c were available,
this term could be introduced in spin models or successful
generalized t − J models [24–27], which have a much smaller
Hilbert space for the same cluster size and can be attacked
with other techniques [27–30].

In this work we report on two analytical results for the
four-spin cyclic exchange and the magnon splitting starting
from the three-band Hubbard model for infinite Cu (Ud ) and
O (Up) on-site Coulomb repulsions and zero O-O hopping
tpp: perturbation theory in the Cu-O hopping tpd up to order
eight and exact solution of a Cu4O4 plaquette. The latter is
equivalent to include all higher order perturbation terms that
are contained in this plaquette and leads to a considerable
improvement of the results for small �. For realistic and small
values of � (of the order of 3.6 eV or smaller [1,16,17]), the
assumption of infinite on-site repulsions is not essential. In
fact it has been shown that our results are insensitive to the
Coulomb repulsion at the Cu sites Ud [23], while perturbative
processes involving O on-site repulsion Up do not contribute
at order eight and involve large denominators at higher order.
The exact solution of the cluster permits us to extend the
validity of the results to smaller values of � > 2tpd . For
� < 2tpd other terms like the six-spin cyclic exchange affect
the magnon splitting.
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FIG. 1. (a) Basic plaquette to calculate the four-spin cyclic
exchange. (b) Equivalent linear chain with periodic boundary
conditions.

In Sec. II we describe the three-band Hubbard model. In
Sec. III we explain the origin of the four-spin cyclic exchange.
Section IV contains the result of perturbation theory in tpd/�

in lowest nontrivial order. In Sec. V we obtain the exact
spectrum of a Cu4O4 cluster from which a calculation of
the four-spin cyclic exchange beyond perturbation theory is
obtained and discuss the range of validity and limitations of
this calculation. Section VI contains a summary.

II. MODEL

Our starting Hamiltonian corresponds to the three-band
Hubbard model for cuprate superconductors [18,19]

H = �
∑
jσ

njσ −
∑
〈ij〉

tpd (p†
jσ diσ + H.c.)

+Ud

∑
i

ni↑ni↓ + Up

∑
j

nj↑nj↓. (1)

Here d
†
iσ creates a hole with spin sigma in the 3d orbital

of Cu at site i with symmetry x2 − y2. Similarly p
†
jσ cre-

ates a hole in the O orbital at site j which is directed to
the nearest-neighbor Cu atoms (they are usually called pσ

orbitals). The relevance of these orbitals over the rest is
justified by experimental evidence [14,15] and first-principles
calculations [16,17]. The hole number operators are niσ =
d
†
iσ diσ and njσ = p

†
jσpjσ . In this work we neglect the O-O

hopping tpp and take Ud,Up → ∞. The consequences of
these approximations are discussed in Sec. V.

III. FORM OF THE FOUR-SPIN CYCLIC EXCHANGE

The cyclic exchange acting on the four spins at the Cu sites
in a square plaquette as represented in Fig. 1 is

H4c = J4c

(
C4 + C−1

4

)
, (2)

where C4 is a cyclic permutation of the position of the
four spins (C4|σ1σ2σ3σ4〉 = |σ4σ1σ2σ3〉). The extension to the
whole lattice of Cu sites is straightforward [20]. Expressing
C4 as a product of transpositions one has

C4 + C−1
4 = P12P23P34 + P34P23P12. (3)

Noting that Pil = (1/2 + 2Si · Sl ) transposes the spins i and
l and performing the products of repeated Pauli matrices in
Eq. (3) one obtains after some algebra

H4c = J4c[4{(S1 · S2)(S3 · S4) + (S1 · S4)(S2 · S3)

− (S1 · S4)(S2 · S3)} +
∑
i<l

Si · Sl + 1/4]. (4)

In some papers only the four-spin term is included explicitly
(with the prefactor 4J4c denoted as Jring in Ref. [11] or
Jc in Refs. [4,5]), leaving the other terms as corrections to
nearest-neighbor and next-nearest-neighbor exchange. In the
one-band Hubbard model fourth-order perturbation theory
leads to J4c = 20t4/U , t being the hopping integral and U

the on-site Coulomb repulsion [20].

IV. PERTURBATION THEORY IN THE CU-O HOPPING

We split the Hamiltonian into the perturbation
Ht = −∑

〈ij〉 tpd (p†
jσ diσ + H.c.) and H0 = H − Ht . The

degenerate ground state of H0 consists of a hole occupying
each Cu site and has energy E0

f = 0. The processes of lowest
order in the Cu-O hopping tpd that contribute to H4c are
of order t8

pd and involve each of the plaquettes of the form
represented in Fig. 1. We can restrict the analysis to one
of them and label the sites as in Fig. 1. The perturbation
processes that mix a state |i〉 = d

†
1σ1

d
†
2σ2

d
†
3σ3

d
†
4σ4

|0〉
(with spin configuration |σ1σ2σ3σ4〉) with the final state
-|f 〉 = −d

†
2σ1

d
†
3σ2

d
†
4σ3

d
†
1σ4

|0〉 = d
†
1σ4

d
†
2σ1

d
†
3σ2

d
†
4σ3

|0〉 (with spin
configuration C4|i〉 = |σ4σ1σ2σ3〉) involves two hoppings of
each electron in the clockwise direction (Fig. 1). Adding all
contributions (or the analogous ones in the anticlockwise
direction) one can obtain J4c. From standard degenerate
perturbation theory one has

J4c = 〈i|Ht |e1〉
∏6

j=1〈ej |Ht |ej+1〉〈e7|Ht |f 〉∏7
j=1

(−E0
j

) , (5)

where |ej 〉, E0
j denote the seven intermediate eigenstates of

H0 and their energies. None of the intermediate states involve
double occupancy at an O site. Since we take Ud → +∞, we
neglect intermediate states with double occupancy at any Cu
site. With the help of a computer program we have obtained
the remaining 1088 processes and added the corresponding
contributions to Jc. The result is

J4c = 20
t8
pd

�7
. (6)

V. EXACT RESULTS FOR Cu4O4

The exact solution of the plaquette represented in Fig. 1
permits us to extend the perturbation result to the covalent re-
gion in which tpd is not much smaller than �. The procedure,
similar to that followed in other works [11,31], is to fit the
lowest energy levels of H with all those of H4c in the Cu4O4

cluster. It is equivalent to include all perturbation terms that
are contained in the cluster. Fortunately, as we shall show, the
form Eq. (2) [or the equivalent one Eq. (4)] still describes the
corresponding contribution to the effective Hamiltonian in a
wide range of values of �.
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The spectrum of H4c is easy to obtain. Starting from any
of the 16 states |e〉 = |σ1σ2σ3σ4〉, one constructs eigenstates
of C4

|k, e〉 = N

3∑
j=0

(e−ikC4)j |e〉, (7)

such that C4|k, e〉 = eik|k, e〉, where N is a normalization fac-
tor and k = mπ/2, where m is an integer with nonequivalent
values 0, ±1, 2. Using Eq. (2) the energies become

Ek = 2J4c cos k. (8)

They only depend on k. An analysis of the other quantum
numbers shows that the ground state, which has wave vector
k = π and energy Eπ = −2J4c, contains a singlet and a
triplet. The first excited states with k = ±π/2 and Ek = 0
are two triplets and the remaining six states with k = 0 and
E0 = 2J4c are the quadruplet and the other singlet.

To solve the fermion multiband model H in the cluster we
follow a simple extension of the elegant procedure of Caspers
and Ilske for the exact solution of the Hubbard chain with
infinite U [32]. Here we describe the main idea. The details
can be found in Ref. [32]. The Cu4O4 cluster is equivalent to
a linear chain with periodic boundary conditions (see Fig. 1).
Imagine for the moment that the Cu-O hopping between the
last atom in the chain and the first one is set to zero, leaving
a chain with open boundary conditions. Then the holes hop
between different atoms in the chain but the order of the
four spins (σ1σ2σ3σ4) is kept, since the infinite Coulomb
repulsion at each site does not allow us to exchange spins.
Furthermore, there is a one to one correspondence between
any state of the system and that obtained replacing the spin
configuration (σ1σ2σ3σ4) by (↑↑↑↑). The Hamiltonian matrix
in both spaces have the same form and since the problem in the
latter subspace is a spinless fermion problem, it can be solved
trivially, and the mapping provides a solution to the original
problem.

When the hopping between the first and the last atom is
restored, one is faced with the difficulty that when the hole
of the last atom hops to the first one, the spin configuration
(σ1σ2σ3σ4) is changed to (σ4σ1σ2σ3) = C4(σ1σ2σ3σ4), where
C4 is a cyclic permutation of the spin configuration (without
affecting the charge distribution) and in general, the above
one to one correspondence is lost. However, for any charge
configuration, one can construct eigenstates of C4 [similar to
Eq. (7)]. It is easy to realize that for these eigenstates, the
mapping to the spinless Hamiltonian is still possible but the
hopping from the last atom to the first one becomes multiplied
by eik , the eigenvalue of C4. Clearly the reverse process has a
factor e−ik. Then, the problem becomes equivalent to spinless
fermions under a magnetic flux. While the original argument
was developed for the Hubbard model, clearly it is still valid
if the on-site energies of the different sites differ.

For the solution of the equivalent spinless problem, it is
convenient to distribute the phase e±ik of the hopping term
equally in all the eight Cu-O links by a gauge transformation,
so that translation symmetry with periodic boundary condi-
tions is restored in the equivalent spinless model and the
hopping term takes the form Ht = −∑

iδ tpd (eikδ/4p
†
i+δdi +

H.c.), where δ = ±1/2 and p
†
i+1/2 (p†

i−1/2) creates a spinless
O hole half a lattice parameter at the right (left) of Cu site i.

The spinless problem is solved as usual in a basis of Cu
and O one-particle states with charge wave vector q = nπ/2
with n = 0, ±1, 2. There are eight different one-particle
eigenvalues, two for each q. Since the system has four holes,
one has to fill the four one-particle states of lowest energy to
obtain the low-energy spectrum that maps onto H4c. It turns
out that for all q only the lowest one-particle state is occupied.
The resulting many-body energies that map onto those of H4c

for each spin wave vector k become

EH
k = 2� −

2∑
n=−1

√(
�

2

)2

+ 4t2
pd cos2

(
nπ

4
+ k

8

)
. (9)

For small tpd this result can be expanded in powers of
tpd/�. Only even powers of tpd enter. Although it is not
apparent from Eq. (9), the terms of second, fourth, and sixth
order give a result independent of k, so that the first nontrivial
term is of order eight. Except for an irrelevant constant, this
expansion to order eight gives EH

k = Ek , where Ek is the
result obtained previously by perturbation theory [Eqs. (6) and
(8)]. Thus, as expected, for small tpd/�, Eq. (9) reproduces
the perturbative result up to order eight in tpd , but with much
less effort. Furthermore defining

J4c = EH
0 − EH

π

4
(10)

permits us to extend the validity of the low-energy Hamilto-
nian H4c to larger values of tpd/�.

Note that for a general Hamiltonian with spin SU(2) sym-
metry the 16 low-energy eigenstates for 4 Cu spins in a square
lattice are expected to be split in five different eigenvalues
(corresponding to either different wave vectors k or different
total spin), while the eigenstates of H4c split only in three
different energies according to the value of k. This property is
retained by the low-energy eigenstates of the full Hamiltonian
H in the Cu4O4 cluster, indicating that H4c continues to be a
good representation of this low-energy subspace. However, a
shortcoming of H4c in reproducing the eigenvalues of H for
large tpd/� is that in the latter the difference

D = (
EH

0 + EH
π

)/
2 − EH

π/2 (11)

is larger than zero while the corresponding difference vanishes
in H4c. However, D is very small for � > tpd (see dashed line
in Fig. 2). The first correction to D in powers of tpd [obtained
evaluating numerically Eq. (9)] is 6864t16

pd/�
15.

A magnitude of interest in recent works [5,23] is the
magnon splitting at the Brillouin zone boundary which for the
spin model is given by [4,5]

�EMBZB = 12

5
ZcJ4c, (12)

where Zc = 1.18 is a renormalization factor accounting for
quantum fluctuations [33]. This quantity using J4c given by
Eq. (10) is represented by the full line in Fig. 2 as a function
of �. The corresponding perturbative result using J4c given
by Eq. (6) (dotted line in Fig. 2) largely overestimates the
splitting for realistic values of � (smaller than 4tpd ). Taking
into account that estimated values of � (tpd ) are in the range
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FIG. 2. Magnon splitting (full black line) and perturbative result
(dotted red line) as a function of �. Also shown for comparison
(see text) are 0.706D (dashed blue line) and 0.706S6 (dashed-dotted
brown line).

1.3–3.6 (1.1–1.6) eV [16], our results for �EMBZB due to
J4c are approximately in the range 2–110 meV, which can be
compared with the values between 30 and 150 meV measured
in four parent compounds of high-Tc superconductors [5].
Our result is qualitatively similar to the splitting calculated
in small clusters described by the three-band Hubbard model
[Fig. 2(b) in Ref. [23]]. The result in that work is larger due to
the inclusion of the O-O hopping tpp which we have neglected
here. We believe that to a first approximation, the main effect
of tpp is similar to decrease � by 1.46|tpp|, as suggested by a
change of basis to O orbitals centered on Cu sites [24].

For small �, other perturbative processes of high order
in tpd/�, which are not contained in the Cu4O4 plaquette,
might become important. The dominant one is probably the
six-spin cyclic exchange, which can be calculated as above in

a Cu6O6 cluster. In Fig. 2 we also show the energy difference
given by Eq. (11) and the magnitude of the six-spin cyclic
exchange S6 = E0 − Eπ calculated as above in a Cu6O6 ring
rescaled by the factor f = Zc × 3/5 to evaluate their relative
magnitude compared to �EMBZB (neglecting S6, �EMBZB =
f (EH

0 − EH
π )). The conclusion of this comparison is that

while the effective Hamiltonian H4c represents accurately the
effects of the four-spin cyclic exchange for � > tpd , other
terms, like the six-spin cyclic exchange become important for
� < 2ttpd and affect �EMBZB.

VI. SUMMARY

In summary, for the three-band Hubbard model with infi-
nite Coulomb repulsions Ud and Up, O-O hopping tpp = 0,
and � � 2tpd , the magnon splitting at the Brillouin zone
boundary is accurately described by the analytical expressions
Eqs. (12), (10), and (9). Finite Coulomb repulsions are ex-
pected to have a very minor effect. Inclusion of tpp increases
the splitting. We expect that the main effect of increasing tpp

is equivalent to a decrease in �. For � < 2tpd , the six-spin
cyclic exchange (which can be calculated following the lines
of this work) also becomes important and affects the magnon
splitting, The analytical expressions permit a rapid estimation
of the magnon splitting (a lower bound for sizable tpp). Con-
versely, given a magnon splitting measured experimentally
one can infer the magnitude of �, and from it, one might have
a qualitative idea of the expected superconducting critical
temperature.
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