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Counterflows in viscous electron-hole fluid
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In ultrapure conductors, the collective motion of charge carriers at relatively high temperatures may become
hydrodynamic such that electronic transport may be described similarly to a viscous flow. In confined geometries
(e.g., in ultrahigh quality nanostructures), the resulting flow is Poiseuille-like. When subjected to a strong external
magnetic field, the electric current in semimetals is pushed out of the bulk of the sample towards the edges.
Moreover, we show that the interplay between viscosity and fast recombination leads to the appearance of
counterflows. The edge currents possess a nontrivial spatial profile and consist of two stripelike regions: the
outer stripe carrying most of the current in the direction of the external electric field and the inner stripe with the
counterflow.
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Recently, signatures of the hydrodynamic behavior [1–3] of
charge carriers have been observed in ultrahigh-mobility GaAs
quantum wells [4–6], graphene [7–11], palladium cobaltate
[12], and the Weyl semimetal WP2 [13]. This phenomenon
occurs in the intermediate temperature regime where the
typical length scale of electron-electron interaction �ee is
much shorter than any other relevant scale in the problem
including those characterizing scattering off potential disorder
and electron-phonon scattering �ee � �dis, �ph. In this case, the
independent particle approximation is violated, the motion of
the charge carriers becomes collective, and transport properties
of the system are determined by interaction [14,15].

Viscous electronic fluids exhibit unusual transport proper-
ties [14,15] including superballistic transport [9,16,17], non-
local resistivity [7,10,11,18–22], and negative magnetoresis-
tance [13,23–25]. The latter effect may also occur in two-
component systems (e.g., semimetals or narrow-band semicon-
ductors) near the charge neutrality point [26]. In such systems,
response of the charge carriers to the external magnetic field
is nonuniversal depending on the interplay between inelastic-
scattering processes and sample geometry.

In the hydrodynamic regime, electronic transport can be
described with the help of the linearized hydrodynamic theory
[24–29] generalizing the standard Navier-Stokes equation [30].
The parameters of the theory, including the shear viscosity
coefficient ηxx and quasiparticle recombination time τR can
be derived, at least in principle, from the kinetic equation
approach (for a particular case of graphene, see Ref. [31]).
Due to viscous and recombination effects, the electric current
density in a finite-sized sample is nonuniform. In long samples
(where the length is much larger than the width L � W ),
viscous effects tend to form a Poiseuille-like flow. The actual
profile of the current density depends on the ratio of the

typical length scale describing the viscous effects, the so-called
Gurzhi length [26] �G(B ) and the sample width W . In the
limit where the Gurzhi length exceeds the width �G � W ,
the current density profile is parabolic, similar to the standard
viscous flow [30,32]. In the opposite case, the current density
profile resembles the catenary curve [26] where significant
inhomogeneities are localized at the sample edges. In both
cases, the electric charge is being transmitted mostly through
the bulk, avoiding the edges (this effect is the physical origin
of the superballistic transport found in Refs. [9,17]).

Two-component systems may possess an additional
inelastic-scattering process: the electron-hole recombination.
This process is known to create a boundary layer [33–35]
characterized by linear magnetotransport [36–38]. In general,
the recombination boundary layer coexists with the above
viscous boundary layer. In the hydrodynamic regime, the typ-
ical timescale describing the recombination processes is much
longer than the electron-electron relaxation time τR � τee.
Since the latter defines the Gurzhi length in the absence of
the magnetic field, this can be recast in the relation of the
corresponding length scales �R � �G(0). Both length scales
decrease with the applied magnetic field. The decrease in
the Gurzhi length follows from the field dependence of the
shear viscosity [24,25] and is governed by the electron-electron
scattering. In contrast, the effective length scale associated with
the recombination processes follows from the solution of the
hydrodynamic equations [26,33,34] and is governed by the
dominant elastic-scattering process. In the previous paper [26],
we have considered the limit of weak (or slow) recombination,
where τR is much longer than the elastic mean free path
and hence the recombination length is much longer than the
Gurzhi length for an arbitrary magnetic-field �R � �G. In this
limit, the system exhibits unconventional transport properties.
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FIG. 1. Schematic plot of the inhomogeneous electric current
density in the regime of fast recombination and a strong enough
magnetic field. The color map emphasizes the positive (i.e., parallel
to the external electric-field) current at the edge (red) contrasted to
the negative (i.e., opposite to the external electric-field) current in the
intermediate stripe (blue). The black curve illustrates the magnitude
of the current density at a given point along the sample. The dashed
line indicates the zero value of the current.

For typical parameter values, the magnetoresistance of a long
sample is a nonmonotonic function of the field: It is negative
in weak fields and then becomes positive and linear in strong
fields.

In this paper, we consider the opposite limit of relatively fast
recombination such that the recombination time τR is much
smaller than the elastic mean free path. We show that in this
case the electric current density is strongly inhomogeneous
and, in contrast to the standard Poiseuille flow, is mostly
concentrated at the sample edges. The structure of the edge
currents is most peculiar and consists of two regions, see Fig. 1.
Although the wider outer region carries the large current in
the direction of the applied electric field, the current in the
narrower inner region flows in the opposite direction. The
latter counterpropagating current is much smaller than the
former such that the total current is parallel to the electric field.
However, this system exhibits a most curious example where a
local current density is directed opposite to the external electric
field.

Although we are focusing on a specific model of a compen-
sated semimetal, the phenomenon of the counterflow is more
general. Similar effects have been suggested in the context of
the ac transport [39,40].

I. HYDRODYNAMICS OF COMPENSATED SEMIMETALS

The hydrodynamic model of a two-component conductor
with electron-hole recombination was discussed in Ref. [26].
Here we repeat the main points for completeness.

Recombination processes violate the particle number con-
servation for each individual constituent of the system. As a
result, the continuity equations have the form

∂δnα

∂t
+ ∇ · jα = −δne + δnh

2τR

, (1)

where α = e, h distinguishes the type of carrier, δnα are the
deviations of the carrier densities from their equilibrium values
n(0)

α , jα’s are the carrier currents, and τR is the electron-hole
recombination time.

In the hydrodynamic regime, charge transport can be de-
scribed by the generalized Navier-Stokes equation. Within
linear response, the equations for the two constituents of the
system have the form [26,41]

∂ jα

∂t
+ 〈v2〉

2
∇δnα − eαn(0)

α

m
E − ωα[ jα × ez]

= − jα

τ
− jα − jα′

2τeh

+ ηxx� jα. (2)

Here we consider the orthogonal magnetic-field B =Bez;
the electron and hole charges are eh = e > 0, ee = −e, and
the cyclotron frequencies are ωα = eαB/(mc) = ωceα/e; the
index α′ denotes the constituent other than α: α′ =e for α=h

and vice versa; τeh is the momentum relaxation time due to
electron-hole scattering; τ is the impurity scattering time; and
the averaging of the quasiparticle velocity v (for the parabolic
spectrum with the constant density of states ν0) is defined
as [42]

〈· · · 〉 = −
∫

dε
∂f (0)(ε)

∂ε
(· · · ),

where f (0)(ε) is the Fermi distribution function. Equation (2)
can be obtained by a straightforward integration of the kinetic
(Boltzmann) equation or, alternatively, by generalizing the
hydrodynamic Navier-Stokes equation to a system of charged
particles (e.g., plasma [41]). The precise form of the last
two terms on the right-hand side of Eq. (2) is specific to
the case of the parabolic spectrum where the quasiparticle
currents are proportional to the velocities (the viscous term
is written within linear response and hence is insensitive to
density fluctuations). Electronic temperature is assumed to
be uniform throughout the sample due to fast thermalization
with an external heat bath (e.g., phonons). We also assume the
temperature to be high enough allowing us to treat the magnetic
field as “classically strong,” but “nonquantizing.” The second
term on the right-hand side of Eq. (2) describes weak friction
between the electron and the hole subsystems (reminiscent of
the two-component plasma [41]). The choice of the parabolic
bands simplifies the algebra but is not essential; all qualitative
features of our results remain valid for an arbitrary spectrum
(respecting the rotational invariance [43]).

The field-dependent shear viscosity is given by [24,44]

ηxx = η0

1 + 4ω2
c τ

2
ee

, (3)

where η0 is the shear viscosity in the absence of the magnetic
field,

η0 = 〈v4〉τee

4〈v2〉 ∼ 〈v2〉τee. (4)

The off-diagonal (or Hall) viscosity is neglected in Eq. (2)
since the corresponding contribution is much smaller than the
Lorentz terms, see Ref. [26] for details.

The hydrodynamic theory is justified if the electron-electron
scattering time τee is the shortest (scattering-related) timescale
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in the problem (including the ballistic time defined by the
sample width),

τee � τ, τR, τeh, τW , τW ∼ W√
〈v2〉

. (5)

In this case, Eq. (2) describes the two (electron and hole)
fluids that are weakly coupled by electron-hole scattering
[16,28,33,34]. Unlike the single-component fluid considered
in Ref. [24], these two fluids cannot be considered as incom-
pressible. However, under the assumption (5) electron-hole
recombination dominates the viscous compressibility (related
to bulk viscosity) allowing us to exclude the latter from Eq. (2),
see Ref. [26] for details.

In this paper we restrict our consideration to charge
neutrality ne = nh where the total electric field is equal to
the applied field E = (E, 0). In the long sample geometry
L � W , all physical quantities are functions of the trans-
verse coordinate y only. Introducing the linear combina-
tions of the two currents P = j e + jh and j = jh − j e,
and requiring that no current flows out of the sides of the
sample jy (±W/2) = Py (±W/2) = 0, we find that the elec-
tric current is directed along the strip J = e j = e[j (y), 0],
whereas the total quasiparticle flow P = [0, P (y)] is
orthogonal.

Excluding the quasiparticle density δρ, we find the two
coupled differential equations describing the electric current

density and the lateral neutral quasiparticle flow,

�2
G(B )

d2j

dy2
− j + σ0E + ωcτ∗P = 0, (6a)

�2
R

d2P

dy2
− P − ωcτj = 0, (6b)

where field-dependent Gurzhi length [which is the shortest
collision-induced length scale in the macroscopic description
of the problem due to Eq. (5)],

�G(B ) = √
ηxxτ∗ =

√
η0τ∗

1 + (2ωcτee )2
(6c)

characterizes the viscous effects, whereas,

�R =
√(

ηxx + 1

2
〈v2〉τR

)
τ ≈

√
1

2
〈v2〉τRτ (6d)

describes the recombination [the latter equality follows from
Eq. (5)]. The quantity σ0 has the meaning of the zero-field
conductivity of an infinite sample given by

σ0 = eρ (0)τ∗
m

, τ∗ = ττeh

τ + τeh

. (7)

The mean free time τ∗ reflects the combined effect of the
disorder scattering and mutual electron-hole friction.

Equations (6) allow for a formal solution (assuming the
standard no-slip boundary conditions j (±W/2) = 0; for a
recent discussion of boundary conditions see Ref. [45]),

j = j0

λ+ − λ−

[(
1 − cosh

√
λ+y

cosh
√

λ+W/2

)[
�−2

G (B )
(
1 + ω2

c ττ∗
) − λ−

] −
(

1 − cosh
√

λ−y

cosh
√

λ−W/2

)
[�−2

G (B )(1 + ω2
c ττ∗) − λ+]

]
, (8a)

P = − ωcτj0

λ+ − λ−

[
λ+

(
1 − cosh

√
λ−y

cosh
√

λ−W/2

)
− λ−

(
1 − cosh

√
λ+y

cosh
√

λ+W/2

)]
. (8b)

The spatial variation of the currents is governed by the eigenvalues,

λ± = 1

2

[
�−2

G (B ) + �−2
R

] ±
√

1

4

[
�−2

G (B ) − �−2
R

]2 − �−2
G (B )�−2

R ω2
c ττ∗. (8c)

Using the eigenvalues (8c), we express the current densities
j (y) and P (y) as, where

j0 = σ0E

1 + ω2
c ττ∗

(8d)

is the uniform current density in an infinite sample.

II. COUNTERFLOW OF CHARGE CARRIERS IN STRONG
MAGNETIC FIELDS

In the presence of the magnetic field, the eigenvalues (8c)
may become complex. Indeed, using the relation,

�G(0) � �R, (9)

following from combining the assumption τee � τR [see
Eq. (5)] and the fact that τ > τ∗ [by definition (7)], we may

rewrite the eigenvalues (8c) as

λ± ≈ 1

2�2
G(B )

[1 ±
√

1 −4�2
G(B )�−2

R ω2
c ττ∗]. (10)

The behavior of the eigenvalues as functions of the magnetic
field is controlled by a parameter,

ξ = �2
G(0)

�2
R

ττ∗
τ 2
ee

∼ τ 2
∗

τRτee

. (11)

As long as ξ < 1, the eigenvalues λ± are real. In Ref. [26], we
have assumed a stronger inequality ξ � 1 and explored the
resulting magnetoresistance.

A. Oscillating currents

Here we are interested in the regime of relatively fast
recombination ξ > 1. In this case, there exists a particular value
of the magnetic-field B∗ where the expression under the square
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FIG. 2. Electric current density (8a) in the regime of fast recombination (14) and strong enough magnetic-fields B > B∗. Left panel:
evolution of the current density with increasing magnetic field. The three curves (blue, green, and red) correspond to ωcτee = 4, 10, 40,
respectively, calculated with the values �G(0)/�R = 0.25, W/�R = 0.25, and ττ∗/τ 2

ee = 300. Right panel: the fine structure of the edge
current in a strong magnetic field in the narrow range of values near zero. The numerical values correspond to the choices of
�G(0)/�R = 0.25, W/�R = 0.25, ττ∗/τ 2

ee = 1000, and ωcτee = 50. The vertical grid lines indicate the sample edges, and the horizontal dashed
line indicates the zero value j = 0.

root in Eq. (10) vanishes

ω∗
c = 1

2τee

√
ξ − 1

. (12)

For B > B∗, the eigenvalues (10) are complex,

λ±(B > B∗) = 1 ± iγ

2�2
G(B )

, (13a)

where

γ =
√

B2 − B2∗
B2∗

1

1 + 4ω2
c τ

2
ee

. (13b)

As a result, the currents (8a) and (8b) acquire an oscillating
contribution.

Most interestingly, in the electric current (8a) the oscillation
amplitude may exceed the uniform background j0 leading to
the appearance of a counterflow, i.e., a locally negative current
density, see Fig. 2. Here we plot the current density (8a) for a
case where the sample width is of the same order of magnitude
as the Gurzhi length W ∼ �G(0). In this case, the counterflow
first appears in the middle of the sample (see the blue curve in
the left panel of Fig. 2). As the field is increased, the Gurzhi
length �G(B ) decreases, and the current flow is being pushed
out towards the sample edges. If the width of the sample
is much larger than the Gurzhi length W � �G(0), then the
current is flowing mostly along the edges [26], and therefore
the counterflow appears in the edge region.

Further analysis is greatly simplified for very strong-fields
B � B∗ and in the regime of fast recombination,

ξ � 1 ⇔ τee � τR � τ 2
∗ /τee. (14)

However, in this case there exists an intermediate-field range
(absent for ξ � 1),

ω∗
c � ωc � τ−1

ee , (15)

such that the imaginary part γ exhibits two distinct types of
behavior,

γ ≈
{
B/B∗, ω∗

c τee � ωcτee � 1,√
ξ, ωcτee � 1.

In both cases the eigenvalues become purely imaginary,

λ±(B � B∗) = ±i�−2
c (B ). (16)

As a result, the spatial distribution of the currents is governed
by the single field-dependent length scale �c(B ),

�2
c (B ) = �2

G(B )√
ξ

{
(ωcτee )−1, ωcτee � 1,

2, ωcτee � 1,

∼ 〈v2〉
√

τRτ 3
ee

{
(ωcτee )−1, ωcτee � 1,

(ωcτee )−2, ωcτee � 1.
(17)

Substituting the imaginary eigenvalues (16) into the current
density (8a) we find the strongly damped oscillatory behavior
illustrated in Fig. 2. When the characteristic scale of the
oscillations is much smaller than the width of the system
�c � W , we may expand Eq. (8a) near the sample edges to
find the asymptotic expression,

j (y) ≈ σ0E
�2

c (B )

�2
G(B )

sin

(
W/2 − |y|√

2�c

)
e−(W/2−|y|)/(

√
2�c ).

(18)

At the same time, in the middle of the sample the current
density is equal to j0 (up to exponentially small corrections). In
strong magnetic fields, j0 is small (in absolutely pure samples,
it vanishes),

j0(B ) ≈ σ0E/
(
ω2

c ττ∗
) � σ0E, j (τ → ∞) = 0, (19)

such that the bulk current in strong enough magnetic fields
is almost zero on the scale of the figure. This behavior is
illustrated by the red curve in Fig. 2.

The right panel in Fig. 2 illustrates the peculiar structure of
the edge current. Although in the outermost region, the current
is positive, i.e., directed along the external electric field, there
is another inner region carrying negative current flowing in
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the direction opposite to the electric field. The existence of
this region stems from the oscillatory behavior (18). These
oscillations, however, are strongly damped by the exponential
decay that occurs on the scale that is exactly the oscillation
period (in a strong enough magnetic field). As a result, already
the first minimum of the expression (18) is strongly suppressed
leading to the smallness of the negative current seen in Fig. 2.
In principle, the bulk current is also oscillating as illustrated in
the right panel of Fig. 2.

B. Counterflow threshold

The eigenvalues (8c) remain real in the zero field and
become complex only for B > B∗. Hence, the counterflow is
a threshold phenomenon.

In weak fields the current density is positive everywhere in
the system. As the field is increased past B∗, the current density
develops oscillations. The magnitude of the oscillations grows
with the field, and at some particular field B0 > B∗, the current
density reaches zero at some point in the sample j (y0; B0) = 0
such that at stronger fields the counterflow is developed
around y0.

For not too wide samples with W ∼ �G the counter-
flow appears around y0 = 0, see Fig. 2. For wider samples
with W � �G the counterflow appears close to the edges
|y0| ∼ W/2. In the latter case, both B0 and y0 can be found
analytically in the limit (14). Substituting the eigenvalues (13)
into the current density (8a), we find near the edges, i.e., for
|y| ∼ W/2,

j = j0

γ
Im

[
(1 − e

√
1+iγ (|y|−W/2)/[

√
2�G(B )] )

×
(

1

2
+ ω2

c ττ∗ + i
γ

2

)]
.

This expression can be simplified as follows. For ξ � 1, one
finds from Eq. (12),

ω∗
c τee � 1 ⇒ �G(B ) ≈ �G(0), γ ≈

√
B2

B2∗
− 1.

Now, denoting

δ = |y| − W/2√
2�G(B )

,
√

1 + iγ = c1 + ic2,

we rewrite the current density in the form

j = j0

γ

[γ

2
(1 − e−c1δ cos c2δ) + ω2

c ττ∗e−c1δ sin c2δ
]
.

Since the first term is less than unity, this expression first
vanishes at the point c2δ = 3π/2. Substituting this into the
current, we find the equation for γ ,

γ = 2ω2
c ττ∗e−α, α = 3π

2

c1

c2
= 3π

2

1 +
√

1 + γ 2

γ
,

that can be rewritten as an equation for x = B0/B∗ > 1,

√
x2 − 1 = x2 �2

R

2�2
G(0)

e−(3π/2)
√

(x+1)/(x−1).

Since �R/�G(0) � 1, this equation does not admit large solu-
tions x � 1. For x − 1 � 1, the equation simplifies to

az = ez, a = �2
R

6π�2
G(0)

, z = 3π√
2(x − 1)

.

This equation has two solutions for a > e, out of which
we have to choose the solution z > 1 to be consistent with
the assumption x − 1 � 1. In general, the solutions of the
above transcendental equation cannot be expressed in terms
of elementary functions. The solution z > 1 is given by the
so-called Lambert W function,

z = −W−1(−1/a).

For large a, we can use the asymptotic expression,

z ≈ ln a + ln ln a + O(1),

and as a result,

B0 ≈ B∗

[
1 + 9π2

4(ln a + ln ln a)2

]
.

In the extreme case where ln a � 1, the threshold field B0 is
rather close to B∗. Otherwise, B0/B∗ ∼ O(1).

C. Stability analysis

The existence of regions with counterpropagating currents
implies the inhomogeneous distribution of the Joule heating
across the sample. Indeed, the work performed by the external
electric field is given by the standard expression j (y) · E,
which becomes negative if the direction of the current flow
is opposite to that of the field. However, given the smallness
of the negative currents, see Eq. (18) and Fig. 2, the overall
work of the external electric force is positive IE > 0. This
can be seen either by direct integration of the result (8a) or
by using Eqs. (6) to express the integrated inhomogeneous
current density in terms of the integral over the positive definite
quadratic form

IE =
∫ W/2

−W/2
dy j (y)E

= 1

σ0

∫ W/2

−W/2
dy

{
j 2(y) + �2

G(B )[j ′(y)]2
}

+ τ∗
σ0τ

∫ W/2

−W/2
dy

{
P 2(y) + �2

R[P ′(y)]2
}
, (20)

which demonstrates the positivity of the work IE irrespective
of the particular form of the solution j (y). Hence, the system
does not develop any instability (in contrast to the case of the
Ohmic regime with negative conductivity [46]). The fact that
in some part of the sample the local Joule heating appears to be
negative means that the heat exchange between the electronic
system and the thermal bath (e.g., phonons) is nonuniform.
Usually the excess energy due to Joule’s heat is being rapidly
absorbed by the bath (typically, much faster than any macro-
scopic process in the problem; this condition is necessary for
the existence of the steady state and applicability of the linear-
response theory). In the areas with the counterflow, however,
this process is reversed: Negative local Joule’s heat means that
the electronic system locally draws some energy from the bath.

125111-5



P. S. ALEKSEEV et al. PHYSICAL REVIEW B 98, 125111 (2018)

Overall, the energy balance between the electronic system and
the bath is positive, see Eq. (20), meaning that overall the
energy is mostly absorbed by the bath.

Similar arguments can be used to establish the stability
of the solution (8a) while allowing for charge fluctuations.
Following the standard procedure for stability analysis [30],
we introduce plane-wave solutions in the form

O(x, y; t ) → O(x, y)eiωt

for fluctuations of all currents and densities in Eqs. (1)
and (2) including the fluctuation of the charge-density
δn = n − n(0) (n = nh − ne ). These fluctuations induce an
electric field (the Vlasov field [47]). In the simplest case of
a gated two-dimensional (2D) sample in the limit of strong
screening [33], the induced field is proportional to the gradi-
ent of the charge-density fluctuation EV = −(4πed/ε)∇δn,
where d is the distance to the gate and ε is the dielectric
constant. The dependence on x is dictated by the geometry of
the problem and is given by eikxx . The eigenmode frequency
ω = ωl (kx ) has to be determined by solving Eqs. (1) and
(2) and can, in principle, be complex. Stability of a given
solution is determined by the sign of the imaginary part of the
frequency with stable solutions corresponding to Im ωl (kx ) ≥
0. Substituting the above ansatz into Eqs. (1) and (2), we follow
the same steps leading to Eqs. (6). As a result, we arrive at the
following equations for the amplitudes of the current densities:

iωP = −P/τ + ωc[ j × ez] + ηxx�P

+ 〈v2〉
2

1

iω + 1/τR

∇(∇ · P ), (21a)

iω j = − j/τ∗ + ωc[P × ez] + ηxx� j + s2

iω
∇(∇ · j ),

s2 = 〈v2〉
2

+ 4πe2

mε
ρ (0)d. (21b)

The quantities in Eqs. (21) are fluctuations around the time-
independent (steady-state) solution, and hence the external
electric field does not enter Eqs. (21). As a result, we have a
system of homogeneous linear equations which has nontrivial
solutions only if the determinant of the system is equal to zero.
The latter equation yields the allowed frequencies ωl (kx ). Our
goal, however, is more modest—we just need to establish the
sign of Im ωl (kx ). To that end, we multiply Eq. (21a) by P∗,
take a complex conjugate of Eq. (21b) and multiply by j , then
add the resulting equations and integrate over the area of the

sample. As a result we find the following relation:

iω

∫
dx dy|P |2 − iω∗

∫
dx dy| j |2

= − 1

τ

∫
dx dy|P |2 − 1

τ∗

∫
dx dy| j |2

+ ηxx

∫
dx dy( P∗�P + j � j∗)

+ 〈v2〉
2

1

iω + 1/τR

∫
dx dy P∗ · ∇(∇ · P )

− s2

iω

∫
dx dy j · ∇(∇ · j∗). (22)

The last three terms can now be integrated by parts with
the boundary terms vanishing due to the no-slip boundary
conditions, e.g.,∫

dx dy P∗ · ∇(∇ · P ) =
∫

dx dy|∇ · P |2.
After that the only complex quantity in the equation is the fre-
quency. Introducing its real and imaginary parts ω = ω1 + iω2,
we can separate the real part of the equation and find the
relation,

ω2

∫
dx dy

[
|P |2 + | j |2 + s2

ω2
1 + ω2

2

|∇ · j |2

+ 〈v2〉
2

|∇ · P |2
ω2

1 + (ω2 − 1/τR )2

]

= 1

τ

∫
dx dy|P |2 + 1

τ∗

∫
dx dy| j |2 + ηxx

×
∫

dx dy
∑

α=x,y

(|∇Pα|2 + |∇jα|2)

+ 〈v2〉
2τR

1

ω2
1 + (ω2 − 1/τR )2

∫
dx dy|∇ · P |2. (23)

Given that every single term in Eq. (23) is manifestly positive,
we conclude that for every possible solution of the linear
system (21),

ω2 = Im ωl (kx ) > 0, (24)

proving the stability of our theory. Note that this conclusion is
independent of the values of τ and τeh and remains valid even
in the limit τ, τeh → ∞.

III. MAGNETORESISTANCE

Integrating the current density (8a) over y, we find the total
current I and hence the sample resistance [26] R,

R = R0(λ+ − λ−)[
1 − 2 tanh(

√
λ+W/2)

W
√

λ+

][
�−2

G (B ) − λ−
1+ω2

c ττ∗

] − [
1 − 2 tanh(

√
λ−W/2)

W
√

λ−

][
�−2

G (B ) − λ+
1+ω2

c ττ∗

] ,

(25)

R0 = L

eσ0W
.

The general expression (25) for the sample resistance was
analyzed in Ref. [26] in the case of weak recombination with

the real eigenvalues (8c). Here we focus on the opposite case of
strong recombination, where λ± may take the complex values
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FIG. 3. Sample resistance (25) as a function of the magnetic
field. The numerical values correspond to the following choice of
parameters: �G(0)/�R = 0.2, W/�R = 0.2, and ττ∗/τ 2

ee = 1000. The
green dashed line indicates the negative parabolic magnetoresistance
in weak fields [26], see Eq. (26a). The blue dashed line shows the
positive linear magnetoresistance (26b).

(13). The result is illustrated in Figs. 3 and 4 where we show the
dependence of the sample resistance on the external magnetic
field.

A. Negative magnetoresistance

In Fig. 3 we illustrate the regime of negative magnetoresis-
tance similar to that discussed in Ref. [26]. In weak fields, the
eigenvalues (8c) remain real, and the resistance (25) decreases
parabolically [26]. For the choice of parameter values in Fig. 3,
i.e.,W ≤ �G(0), the parabolic field dependence is given by [26]

R(B → 0)/R(0) = 1 − 4ω2
c τ

2
ee. (26a)

This behavior is shown in Fig. 3 by the green dashed line.
In strong fields, the resistance grows linearly (i.e., the mag-

netoresistance is positive). Similar to the results of Ref. [26],

FIG. 4. Sample resistance (25) as a function of the magnetic
field for �G(0)/�R = 0.005, W/�R = 0.01, and ττ∗/τ 2

ee = 1010. The
dashed lines indicate the three asymptotic regimes: parabolic (green),
Eq. (27); linear (blue), Eq. (26b); and the power-law R ∼ B3/2, (black)
Eq. (28). The insets zoom into the range of weak (up) and intermediate
(down) fields.

we find {for ωcτee � max[1, �G(0)/(W
√

ξ )]}

R ≈ R0A

[
ωcτee − A

τ 2
ee

ττ∗

]
, (26b)

where

A = −i
Wγ

�G(0)
√

2

[
1√

1 + iγ
− 1√

1 − iγ

]−1

. (26c)

This behavior is shown in Fig. 3 by the blue dashed line. In the
limit (14), i.e., for γ → ∞, the coefficient A simplifies to

A(γ → ∞) ≈ Wξ 3/4

2�G(0)
. (26d)

B. Intermediate power-law regime

In Fig. 4 we illustrate the regime of positive magnetoresis-
tance focusing on the limit (14). In this case, in addition to the
parabolic and linear asymptotics (in weak and strong fields,
respectively) discussed in Ref. [26], we find an additional
regime appearing in the intermediate-field range (15).

For the parameter values used in Fig. 4�R � W > W0

{where W0 ≈ [48�2
R�G(0)τ 2

ee/(ττ∗)]1/3 is the width where
magnetoresistance changes sign}, the parabolic dependence
of the resistance in the weakest fields is [26]

R(B → 0)

R(0)
= 1 + A1ω

2
c τ

2
ee, A1 = W 2

12�2
R

ττ∗
τ 2
ee

. (27)

This behavior is shown in Fig. 4 by the green dashed line and is
a good approximation only in the very weak-fields B < B∗, see
the upper inset. In stronger fields the eigenvalues (8c) become
complex.

In the strongest fields, the resistance (25) recovers the linear
behavior (26b) shown in Fig. 4 by the blue dashed line.

In the intermediate-field range (15), the eigenvalues (8c)
are linear in B, see Eq. (17). Then, for wide enough samples
W � �c(B ), the field dependence of the resistance (25) is
dominated by the power law with the exponent 3/2,

R(B )

R0W
≈

√
�G(0)√
2�

3/2
R

(ττ∗)3/4ω3/2
c (28)

shown in Fig. 4 by the black dashed line. This behavior appears
only in the limit (14) of very strong recombination. For weaker
recombination ξ > 1, the field range (15) does not exist, the
eigenvalues (8c) do not develop the linear behavior, and as a
result the power-law R ∼ B3/2 does not appear.

IV. QUALITATIVE DISCUSSION

The nonuniform current distribution discussed in this paper
bears a certain similarity to the nonuniform spin density near a
surface of a three-dimensional semiconductor sample [48]. In
that case, the inhomogeneous spin density is created optically
at the surface and then propagates into the bulk of the sample by
means of carrier diffusion. The equations of the spin diffusion
in the magnetic field derived in Ref. [48] are similar to Eqs. (6)
if one neglects electron-hole and disorder scatterings. The
resulting spin density shows an inhomogeneity similar to that
in Eq. (18) exhibiting oscillating behavior near the surface that
decays into the bulk of the sample.
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FIG. 5. Individual electron (left) and hole (right) flows computed with the same choice of parameters as in Fig. 2:
�G(0)/�R = 0.25, W/�R = 0.25, and ττ∗/τ 2

ee = 300. The color map indicates the magnitude of the currents (according to the “hue” scheme:
low magnitude—red, high magnitude—violet) and the arrows—their direction. The top panels show data for ωcτee = 4 (same as the blue curve
in the left panel in Fig. 2); the bottom panels show data for ωcτee = 10 (same as the green curve in the left panel in Fig. 2).

Physically, the counterflow in compensated semimetals
appears due to the influence of the strong magnetic field on
the motion of charge carriers. A nonquantized magnetic field
tends to bend semiclassical trajectories away from the direction
of the applied electric field. In the context of an inviscid
two-component system (e.g., a nearly compensated semimetal)
this effect was discussed in Ref. [34]. Taking into account
viscous effects, we find that, away from the boundary, electrons
and holes follow nontrivial trajectories illustrated in Fig. 5.

In strong magnetic fields (bottom panels in Fig. 5), both
electrons and holes in the bulk of the sample are moving
across the sample such that the combined electric current nearly
vanishes, see Eq. (19), whereas the quasiparticle current P
is nearly uniform. This is consistent with earlier discussions
of the effect of a nonquantizing magnetic field on graphene
[35,42] or compensated semimetals [33,34,38] and should be
contrasted with the usual interpretation of the classical Hall
effect in single-component electronic systems. In the latter
case, the lateral electric current which would be induced by the
magnetic field in an infinite system is compensated by the Hall

voltage, and as a result, electrons move only in the direction of
the applied electric field. In a two-component system at charge
neutrality the Hall voltage is absent so that the electric currents
in the two constituent subsystems have to cancel each other.

In the edge region, the electron and hole currents experience
a rotation: Very close to the edge [within the distance on the
order of the Gurzhi length �G(B )], the charge carriers move
along the boundary, whereas in the next layer (controlled by
the quasiparticle recombination) the lateral component of the
currents appears. As a result, the current vectors exhibit an
intricate rotation pattern: First they overshoot the angle π/2
between the edge and the bulk flows but never reaching angle
π and eventually return to π/2. This relatively complex pattern
is, on one hand, required by vanishing quasiparticle current P
at the edge, but on the other hand, appears due to the presence
of the viscous layer. In an inviscid system [33,34], there is no
zero boundary condition on the tangential component of the
electric current, and hence the electron and hole currents rotate
smoothly with their angle relative to the boundary varying from
0 to π/2.
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In weaker fields, the above rotation pattern is incomplete
due to the overlap of the two boundary regions (i.e., �c ∼ W ).
In this case the pronounced bulk region with the transverse
moving charge carriers does not develop, see the top panels in
Fig. 5. As a result, the counterflow occupies not the edge, but
a central region of the sample.

The nonuniform (and rotating) flows of electrons and holes
are characterized by the nonvanishing ∇ × j e(h). This should
not be confused with the true vorticity in the sense of a
whirlpool (or eddy) formation [7,18]. In fact, already the
standard Poiseuille flow [30,32] possesses the nonvanishing
∇ × v (where v is the hydrodynamic velocity). However, the
Poiseuille flow is incompressible with ∇ · v = 0. As a result,
the transverse component of the velocity vanishes exactly vy =
0, and neither the true vorticity nor any other rotation of the
velocity vector may appear. If the fluid exhibiting the Poiseuille
flow is charged (e.g., in a plasma with heavy ions that provide
the effective positive background to the electronic fluid), then
the vanishing of the transverse velocity component is ensured
by the Hall voltage. Now, in the two-component system with
quasiparticle recombination, both the electron and the hole
fluids are compressible ∇ · j e(h) �= 0 with the total electric
current fulfilling ∇ · j = 0 (due to charge conservation). In
this case, the electron and hole currents exhibit the rotation
shown in Fig. 5, which is the ultimate reason for the oscillating
behavior (18).

V. SUMMARY

To summarize, we have considered the viscous electronic
flow in compensated semimetals with strong quasiparticle
recombination and in confined geometries. Although the sam-
ple resistance is qualitatively similar to the case of weak
recombination considered in Ref. [26], see Fig. 3, the current
density profile shows a qualitatively different behavior. The
current is flowing mostly (with exponential accuracy) along the
sample edges. At each edge, the current flow is nonuniform and
consists of two counterpropagating stripes, see Figs. 1 and 2.

Measurements of inhomogeneous current densities with
the help of the scanning gate microscopy have been recently
reported in Refs. [49,50]. We believe that such novel experi-
mental techniques can, in principle, be utilized to observe the
counterflows in viscous two-component electron-hole systems,
e.g., in narrow-band semiconductors, bilayer graphene, or
other similar systems. The counterflows reported in this paper
are not equivalent but bear certain similarities to the whirlpools
reported in Ref. [7], see also Refs. [10,11].

The appearance of the small local current density in the
direction opposite to that of the applied electric field does
not affect the global thermoelectric properties of the sample.
However, this is a direct indication of the inhomogeneous
distribution of the Joule heating across the sample. As the
effect of Joule heating is beyond linear response, a proper
theory of the thermoelectric phenomena in semimetals re-
quires a solution of the nonlinear hydrodynamic equations. A
particularly interesting issue is the behavior of the electronic
system that is only weakly coupled to the phonon bath. In that
case, local Joule’s heating may possibly be detectable using
the nanosuperconducting quantum interference device local
thermometry [51,52].
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