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Gapless Dirac fermions appear as quasiparticle excitations in various condensed-matter systems. They feature
quantum critical points with critical behavior in the 2+1-dimensional Gross-Neveu universality class. The precise
determination of their critical exponents defines a prime benchmark for complementary theoretical approaches,
such as lattice simulations, the renormalization group, and the conformal bootstrap. Despite promising recent
developments in each of these methods, however, no satisfactory consensus on the fermionic critical exponents
has been achieved, so far. Here, we perform a comprehensive analysis of the Ising Gross-Neveu universality
classes based on the recently achieved four-loop perturbative calculations. We combine the perturbative series
in 4 − ε spacetime dimensions with the one for the purely fermionic Gross-Neveu model in 2 + ε dimensions
by employing polynomial interpolation as well as two-sided Padé approximants. Further, we provide predictions
for the critical exponents exploring various resummation techniques following the strategies developed for the
three-dimensional scalar O(n) universality classes. We give an exhaustive appraisal of the current situation of
Gross-Neveu universality by comparison to other methods. For a large enough number of spinor components
N � 8 as well as for the case of emergent supersymmetry N = 1, we find our renormalization group estimates
to be in excellent agreement with the conformal bootstrap, building a strong case for the validity of these values.
For intermediate N as well as in comparison with recent Monte Carlo results, deviations are found and critically
discussed.
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I. INTRODUCTION

Gapless Dirac fermions with quasirelativistic dispersion
emerge as low-energy excitations in many different condensed-
matter systems, for example in graphene, d-wave superconduc-
tors, and surface states of topological insulators [1,2]. In par-
ticular, in two spatial dimensions, interacting Dirac fermions
feature quantum critical points [3–8]. A representative example
is given by the semimetal-to-insulator transition of interacting
electrons on graphene’s honeycomb lattice, where the ordered
state corresponds to a sublattice symmetry broken insulating
state with charge order [4,5,9]. Other examples for continuous
transitions of Dirac electrons can be constructed on suitable
lattice models, e.g., with magnetic, superconducting, and more
exotic transitions [10–20]. Near these quantum critical points,
universal critical behavior occurs as expressed in a collection
of simple power laws for physical quantities, such as the
order parameter, together with their critical exponents which
characterize the universality class [21–23].

Generally, the quantitatively precise determination of crit-
ical exponents at any continuous phase transition and, hence,
the identification of the corresponding universality class de-
fines a benchmark for complementary theoretical methods.
A pivotal role in this context is played by the universality
classes of the three-dimensional scalar O(n) models, which
represent the critical behavior for a broad range of continuous
phase transitions from different areas of physics. To describe
these universality classes various theoretical methods have
been applied, which culminated in an impressive agreement
across the different approaches ranging from field-theoretical
renormalization group (RG) studies [24,25] over Monte Carlo

simulations [26–28] to the conformal bootstrap [29]. While
the quest for precision calculations of the O(n) universality
classes has been going on for decades, it was only very
recently that the conformal bootstrap program produced esti-
mates for the critical exponents with an accuracy well beyond
the corresponding Monte Carlo simulations [29]. Motivated
by this development and due to additional insights into the
mathematical structure of Feyman diagrams, also the RG
was recently pushed to six-loop order for the scalar O(n)
models [25,30,31]. Together with appropriate resummation of
the resulting asymptotic series, the RG provides very accurate
results for the critical exponents in three dimensions, which are
in excellent agreement with the other methods [25]. Efforts to
push the boundary to even higher precision are ongoing [32],
but this line of research can already be considered as extremely
successful as it is unparalleled to achieve such convincing
quantitative agreement for highly nontrivial physical quantities
in statistical physics across different approaches.

Critical gapless Dirac fermions in 2+1 dimensions are not
captured by the Ising or O(n) universality classes. Instead, they
can effectively be described by chiral transitions appearing
in different variants of the three-dimensional Gross-Neveu or
Nambu-Jona-Lasinio models, defining the chiral universality
classes [5,33–35]. The Gross-Neveu [36] and Nambu-Jona-
Lasinio [37] models incorporate a high degree of symmetry,
which is emergent in the described physical systems at low
energies, including relativistic or chiral invariance [8]. They
avoid many complications which are typically present in most
interacting fermion models with lower degrees of symmetry,
e.g., due to a finite Fermi surface. Therefore, they are better
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accessible by theoretical approaches; i.e., they define a clean
starting point for the study of critical behavior in interacting
many-fermion models.

In view of the successful description of the critical behavior
of the three-dimensional O(n) models, it is tempting to believe
that a similar precision can also be achieved for the case
of the comparatively simple three-dimensional Gross-Neveu
models. Indeed, there has been promising progress in the
development of the various methods recently, suggesting that
the consensual precision determination of the Gross-Neveu
universality classes is within reach: (1) Numerical approaches
have found sign-problem-free formulations for the calculation
of various important quantum phase transitions of interacting
Dirac fermions on the lattice [9,11,12,16,18,38–42]. (2) The
conformal bootstrap has emerged as a numerical tool to
determine critical exponents for fermionic models [43–46].
(3) Nonperturbative field-theoretical methods such as the
functional renormalization group (FRG) have managed to
explore sophisticated truncation schemes [47–52]. (4) The
perturbative renormalization group (pRG) has seen substantial
advances in computational technology and the development of
suitable algorithms which facilitate the calculation of higher-
loop orders. By now, the pRG has been employed for up to
four-loop calculations for Gross-Neveu and similar models
in Refs. [53–55]. Despite these promising developments,
however, no satisfactory agreement across different theoretical
methods has been found for the fermionic universality classes,
yet.

In this work, we perform a thorough analysis of resumma-
tion and interpolation techniques within the perturbative renor-
malization group approach to extract quantitative renormaliza-
tion group predictions for the critical exponents. We show that
this strategy reconciles discrepancies between the conformal
bootstrap results from Ref. [46] and the pRG calculations,
but not with quantum Monte Carlo simulations. To that end,
we focus on the simplest version of the Gross-Neveu-Yukawa
models, i.e., the chiral Ising model [33], which in 2 < D < 4
lies in the same universality class as the purely fermionic
Gross-Neveu model [56,57]. Even this simplest model has
a number of interesting applications. Most prominently, for
N = 8, the theory describes the quantum critical point of the
semimetal-to-insulator transition of spin-1/2 electrons on the
graphene lattice. In the insulating phase sublattice symmetry is
broken and charge density wave (CDW) order occurs [5]. The
eight spinor components originate from the two sublattices of
the honeycomb lattice, the two inequivalent Dirac points in
the Brillouin zone, and two spin projections of the spin-1/2
electrons.

Another application of the Gross-Neveu model is the case of
N = 4. According to the counting of spinor components in the
graphene case, this corresponds to a model of spinless fermions
on the honeycomb lattice. Strong repulsive nearest-neighbor
interactions also drive the spinless system through a semimetal-
to-insulator transition [7]. This simplified version of graphene
is accessible to a broad range of different numerical meth-
ods with reduced computational cost and therefore has been
extensively studied previously [34,38–41,46,48,51,54,58]. For
N = 1, it has been argued that in D = 3 a minimal N = 1 su-
perconformal theory emerges from the Gross-Neveu-Yukawa
model at the quantum critical point which might be relevant at

the boundary of a topological phase [34,59]. In the following,
we study these particular cases in depth and provide improved
estimates for their critical exponents. We carefully compare
with other methods.

Outline

In the next section, we first introduce the Gross-Neveu
model, Sec. II A, and the Gross-Neveu-Yukawa model,
Sec. II B. We then briefly summarize the renormalization group
procedure in Sec. II C. For more details, we would like to refer
the reader to our recent publication, Ref. [54]. Further, we
introduce the notation for the renormalization group functions
in Sec. II D, where we also recall the fixed-point calculation
and the relation to the critical exponents, i.e., the correlation
length exponent and the anomalous dimensions. Then, in
Sec. III, we systematically study the Padé approximants of
the perturbation series for the critical exponents of the Gross-
Neveu-Yukawa model, i.e., the inverse correlation length
exponent and the boson and fermion anomalous dimensions.
Therefore, we first calculate the full range of estimates from the
Padé approximants in 2+1 dimensions as extracted from the
series in 4 − ε dimensions. Further, we append a study of the
two-sided Padé approximants by combining the 4 − ε series
with the one for the Gross-Neveu model in 2 + ε dimensions.
Section IV also explores an interpolation between 2 + ε

and 4 − ε dimensions, however, with a simpler polynomial
expansion and exhibits convergence with the two-sided Padé
approximants upon increasing the order of the underlying
power series. In Sec. V, we apply the more sophisticated Borel
resummation techniques, which were successfully employed in
the scalar O(n) models, and study their stability with respect
to the various resummation parameters. We discuss specific
applications to graphene, spinless fermions on the honeycomb
lattice, emergent supersymmetry, and the large-N situation.
We conclude in Sec. VI by discussing the possible origin of
the remaining discrepancies between the different theoretical
approaches and add suggestions for future studies. Further
technicalities are given in the Appendices.

II. MODELS AND METHOD

There are two different models that can be used to provide
estimates for the critical behavior of 2+1-dimensional Dirac
fermions, namely the Gross-Neveu (GN) model and the Gross-
Neveu-Yukawa (GNY) model. Both models exhibit continuous
chiral phase transitions of interacting Dirac fermions but with
different dimensionality, offering the opportunity to approach
the physically interesting case of D = 3 dimensions from two
sides. We will briefly introduce the two models in this section.
Further, we summarize the main aspects of the applied renor-
malization group procedure to obtain the full four-loop order
perturbative series. Since our focus lies on the determination
of critical exponents from previously derived renormalization
group functions, we keep this discussion short and refer to
Refs. [53,54] for more details.

A. Gross-Neveu model

The Gross-Neveu (GN) model [36] is a simple purely
fermionic quantum field theory of spin-1/2 Dirac fermions
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which interact via a four-fermion interaction. The Lagrangian
of the GN model reads

LGN = ψ̄i /∂ψi + 1
2g(ψ̄iψi )

2, (1)

and we work in D-dimensional Euclidean spacetime. The
field ψ = (ψi ) with i ∈ {1, . . . , Nf} denotes a N = dγ Nf

component spinor. Here, Nf is the number of fermion flavors
with dγ = 4 being the dimension of the Clifford algebra
of a single flavor of four-component Dirac fermions. We
use the notation /∂ = γμ∂μ with μ, ν ∈ {0, 1, . . . , D − 1} and
the conjugate of the Dirac field is given by ψ̄ = ψ†γ0. The
coupling constant g is dimensionless in D = 2 where the
model is perturbatively renormalizable. For D > 2, a large-N
expansion can be performed [60–64,64–68] and also expansion
around the lower critical dimension, i.e.,D = 2 + ε expansion,
has been studied; see, e.g., Refs. [34,47,53,69–71].

The Lagrangian in Eq. (1) is equipped with a discrete chiral
symmetry

ψ → γ5ψ, ψ̄ → −ψ̄γ5. (2)

Further, the model can be formulated with global O(N ) or
SU (N/2) symmetry. Notably, the O(N ) GN model has been
investigated, recently, in conformal field theory [45,46] and in
renormalization group calculations up to three-loop order [70].
For the SU (N/2) GN model, four-loop order renormalization
group calculations are available [53] from which the O(N )
renormalization group functions can be recovered at that order.

The GN model possesses several instructive features which
it shares with other models from different areas of physics,
including solid state physics and quantum chromodynamics.
Therefore, it serves as a laboratory to study ideas of more
complicated systems in a lucid but comprehensive manner.
Importantly, in 2 < D < 4 the GN model exhibits dynamical
breaking of discrete chiral symmetry upon which the fermions
acquire a finite mass in the true vacuum. This corresponds
to a continuous phase transition and at the corresponding
renormalization group fixed point, the theory is believed to
be an interacting conformal field theory.

B. Gross-Neveu-Yukawa model

Performing a Hubbard-Stratonovic transformation or par-
tial bosonization (PB), the GN model can be reformulated
introducing a single-component real scalar field φ and a
Yukawa interaction

LPB = ψ̄i /∂ψi + 1
2gφψ̄iψi − 1

2φ2. (3)

The corresponding functional integral now has to be carried
out over fermionic and bosonic fields. Accordingly, we define
the corresponding Yukawa theory also known as the Gross-
Neveu-Yukawa (GNY) model, reading

LGNY = ψ̄i (/∂ + √
yφ)ψi + 1

2φ(m2 − ∂2)φ + λφ4. (4)

Here, the real scalar field φ has a canonical kinetic term and
a quartic interaction with coupling constant λ. Further, the
fermions couple to the scalar with the Yukawa coupling

√
y.

Notably, the GNY model is perturbatively renormalizable in
D = 4 − ε dimensions.

The discrete chiral symmetry of the Gross-Neveu
model, cf. Eq. (2), is complemented by the corresponding

transformation property of the scalar degree of freedom; i.e.,
the complete discrete chiral transformation for the GNY model
reads

ψ → γ5ψ, ψ̄ → −ψ̄γ5, φ → −φ. (5)

This transformation leaves the GNY Lagrangian invariant and,
in particular, it prevents the presence of a finite cubic scalar
interaction term.

C. Renormalization group procedure

Both models, i.e., the GN model and the GNY model, were
analyzed by the perturbative renormalization group approach
employing dimensional regularization and the modified min-
imal subtraction scheme MS to four-loop order [53,54]. In
this section we will briefly review our RG analysis for the
Gross-Neveu-Yukawa model [54] in order to fix the notation.
For details of the renormalization group analysis of the Gross-
Neveu model we refer to Ref. [53].

The bare Lagrangian of the GNY model is defined based
on Eq. (4) upon replacing fields and couplings by their bare
counterparts x → x0 for x ∈ {ψ, φ, y, λ,m}. The renormal-
ized Lagrangian then reads

LGNY = Zψψ̄ /∂ψ − 1

2
Zφ (∂μφ)2 + Zφ2

m2

2
φ2 (6)

+ Zφψ̄ψ

√
yμε/2φψ̄ψ + Zφ4λμε (φφ)2,

where μ defines the energy scale which parametrizes the RG
flow of the couplings. Here, the wave function renormalization
constants Zψ and Zφ were defined, which relate the bare
and the renormalized Lagrangian upon the field rescaling
ψ0 = √

Zψψ and φ0 = √
Zφφ. The explicit dependence on

the renormalization scale μ in the Lagrangian reflects that,
after integration over D = 4 − ε dimensional spacetime, the
couplings are shifted to render them dimensionless. The renor-
malization constants for the mass term, the Yukawa coupling,
and the quartic coupling are introduced by

m2 = m2
0ZφZ−1

φ2 , (7)

y = y0μ
−εZ2

ψZφZ−2
φψ̄ψ

, (8)

λ = λ0μ
−εZ2

φZ−1
φ4 . (9)

These relations provide the RG scale dependence of the
renormalized quantities.

D. Renormalization group functions

From the renormalization constants we construct the RG
beta and gamma functions, which denote the corresponding
logarithmic derivatives of the renormalization constants, i.e.,

βx = dx

d ln μ
, for x ∈ {y, λ}, (10)

γx = d ln Zx

d ln μ
, for x ∈ {ψ, φ, φ2}. (11)

We employ rescaled couplings x/(8π2) → x for x ∈ {y, λ}.
The renormalization group functions for the GNY model then
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have the form

βx = −ε x +
L∑

k=1

β (kL)
x , with x ∈ {y, λ}, (12)

γx =
L∑

k=1

γ (kL)
x , with x ∈ {ψ, φ, φ2}. (13)

At one-loop order, they explicitly read

β (1L)
y = (3 + N/2)y2, (14)

β
(1L)
λ = 36λ2 + Nyλ − (N/4)y2, (15)

and

γ
(1L)
ψ = y

2
, γ

(1L)
φ = 2Ny, γ

(1L)
φ2 = −12λ. (16)

The full expressions for the RG beta and gamma functions of
the Gross-Neveu-Yukawa model up to four-loop order can be
found in our Ref. [54] and in Appendix A.

E. Fixed points and critical exponents

At a renormalization group fixed point the system becomes
scale invariant which can be related to the occurrence of
universal critical behavior near a continuous phase transition.
The beta functions allow the determination of the RG fixed
points order by order in ε. For example, using the one-loop
beta functions from Eqs. (14) and (15) one finds a physical and
stable non-Gaussian fixed point with the fixed point couplings

(y∗, λ∗) =
(

ε

3 + N/2
,

(3 − N/2 + s)ε

72(3 + N/2)

)
, (17)

where s = √
9 + N (33 + N/4). Accordingly, the RG fixed

point of the GN model in the coupling constant g can be
determined [53].

As for the universal critical exponents, we are interested in
the (inverse) correlation-length exponent ν−1 and the anoma-
lous dimensions of bosons and fermions ηφ and ηψ . The latter
ones are obtained by evaluating the renormalization group
functions γφ and γψ at the fixed point, i.e.,

ηφ = γφ (y∗, λ∗), ηψ = γψ (y∗, λ∗). (18)

The inverse correlation length exponent ν−1 can be extracted
from the relation

ν−1 = 2 − ηφ + ηφ2 , (19)

where, in agreement with the previous notation, we have
defined ηφ2 = γφ2 (y∗, λ∗).

The resulting epsilon expansion can be performed for a
general number of spinor components N to order O(ε4).
Schematically, the epsilon expansions for a critical exponent
to order L reads

f GN(Y)(ε) =
L∑

k=0

f
GN(Y)
k εk, (20)

where f represents a critical exponent, i.e., for the present
discussion f ∈ {ν−1, ηφ, ηψ }. As indicated, this also holds
accordingly for the 2 + ε expansion of the GN model. The

full expressions for expansions of the critical exponents of the
GNY model in D = 4 − ε can also be calculated analytically,
see the ancillary files of Ref. [54], and for the GN model in
2 + ε dimensions in Ref. [53].

Here, we explicitly display the series for N = 8, which we
study exhaustively in the following. The 4 − ε expansion of
the GNY model gives the critical exponents

1

ν
= 2 − 20ε

21
+ 325ε2

44 982
− (271 572 144ζ3 + 36 133 009)ε3

3 821 940 612

− (2 472 257 012 904π4 + 86 141 171 013 035)

4 175 164 363 361 040
ε4

+ 5(70 350 676ζ3 + 172 549 473ζ5)

20 065 188 213
ε4 + O(ε5), (21)

ηφ =4ε

7
+ 109ε2

882
+

(
1 170 245

26 449 416
− 144ζ3

2401

)
ε3

+
(

20 491 307 339

481 564 517 112
− 6π4

12 005

)
ε4

+ 4(390 883ζ3 + 413 100ζ5)

23 143 239
ε4 + O(ε5), (22)

ηψ = ε

14
− 71ε2

10 584
−

(
18ζ3

2401
+ 2 432 695

158 696 496

)
ε3

− (3 610 229 616π4 + 556 332 486 445)

57 787 742 053 440
ε4

+ (11 109 323ζ3 + 4 957 200ζ5)

555 437 736
ε4 + O(ε5). (23)

Here ζz is the Riemann zeta function. For other values of N ,
the critical exponents can be determined from the RG beta and
gamma functions listed in Appendix A or from Ref. [54]. The
2 + ε expansion of the GN model can be found in Ref. [53]
and has the critical exponents

1

ν
= ε − 1

6
ε2 − 5

72
ε3 + 81ζ3 + 35

216
ε4 + O(ε5), (24)

ηφ = 2 − 4

3
ε − 7

36
ε2 + 7

54
ε3 + 1092ζ3 + 91

5184
ε4 + O(ε5),

ηψ = 7

72
ε2 − 7

432
ε3 + 7

10368
ε4 + O(ε5). (25)

For general N , we have listed the critical exponents extracted
from Ref. [53] in Appendix B.

III. PADÉ APPROXIMANTS

We start our analysis of the Ising Gross-Neveu critical
exponents by studying Padé approximants of the exponents’
series expansions f (ε) = ∑L

k=0 fkε
k up to order L. The

corresponding Padé approximants are rational functions

[m/n] = a0 + a1ε + · · · + amεm

1 + b1ε + · · · + bnεn
, (26)

with L = m + n where the expansion coefficients
a0, . . . , am, b1, . . . , bn are uniquely given by the condition
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FIG. 1. Chiral Ising universality in D = 3. Overview plots for the correlation-length exponent ν−1 (left panel), the boson anomalous
dimension ηφ (middle panel), and the fermion anomalous dimension ηψ (right panel) for different numbers of spinor components N ∈ [1, 20].
For comparison, values from Monte Carlo (MC) calculations, the functional renormalization group (FRG), and the conformal bootstrap (cBS)
are also shown. For the large-N results, we applied Padé-Borel resummation.

that the series expansion of [m/n] match the original series

[m/n] −
L∑

k=0

fkε
k = O(εL+1). (27)

At a given order L, there are L + 1 different Padé approximants
and we note that it is not a priori clear which of them will
give the most faithful estimate. Importantly, Padé approxi-
mants can be used for finding approximations to functions
outside the radius of convergence R of their corresponding
power series. In particular, the case R = 0 is relevant in the
context of the perturbative RG [72,73]. Further, no assump-
tion about the large-order behavior of the series coefficients
is made.

We employ this method for the critical exponents from
the (4 − ε) expansion series of the GNY model at four-loop
order by evaluating all 4 + 1 Padé approximants at ε = 1,
i.e., for D = 2 + 1 dimensions. This provides a range of
estimates for the critical exponents, which we interpret as a
first rough window of confidence for their values. We show
the results of this analysis as a function of N in Fig. 1 as the
gray-shaded area. There, we have only taken into account Padé
approximants which show no poles in the range D ∈ (2, 4).
Since this criterion is not fulfilled by all approximants for
a given N , a sudden enlargement of the window may occur
upon changing N . Such an example can be seen for the
correlation length exponent ν−1 around N ≈ 7. In this case,
the pole of one of the approximants is pushed out of the
interval D ∈ (2, 4). In the following section, when we consider
two-sided Padé approximants, we will also show sequences of
Padé approximants to study more carefully the convergence
properties of the approximations.

For comparison, we also present the results of other methods
for different N in Fig. 1. The functional renormalization group
(FRG) [48,49,51] provides compatible estimates for ν−1 andηφ

over the whole range of N . On the other hand, the FRG values
for the fermionic anomalous dimension ηψ are systematically
below the range we find with Padé approximants. We remark
that the FRG calculations in Refs. [48,49,51] are based on the
derivative expansion scheme and more intricate momentum
dependencies might become important for the evaluation of
anomalous dimensions [74,75]. Comparison to the confor-
mal bootstrap results from Ref. [46] also shows very good

compatibility concerning the boson anomalous dimension.
Generally, the results for the fermion anomalous dimension
lie between the FRG estimates and the window given by the
Padé approximants. We show in the next two sections how this
discrepancy can be resolved. The conformal bootstrap results
for the correlation length exponents deviate strongly from the
other approaches, in particular, in the range 2 � N � 8. For
very small N , including the limit of the Ising universality
class and the emergent SUSY limit (N = 1), the estimates
agree well with the renormalization group approaches. We note
that within the conformal bootstrap method, the boson and
fermion anomalous dimensions are obtained from universal
bounds. The correlation length exponent estimate, however, is
based on the extremal functional approach where one assumes
that the theory exactly lives at the characteristic kink and
subsequent extrapolation of the spectrum [46]. Therefore,
it would be very interesting to obtain conformal bootstrap
estimates of the correlation length exponent directly from
universal bounds. From Monte Carlo simulations estimates for
the Ising Gross-Neveu universality class are available for the
cases N = 4 and N = 8. In particular, the case N = 4 was
intensely studied by Monte Carlo methods [38–41,76] and the
resulting estimates still varied with system size. In Fig. 1, we
show the latest estimates for the correlation length exponent
from Refs. [40,76] for comparison, which agree quite well
with the RG estimates, but not with the conformal bootstrap.
For the boson anomalous dimension, the latest estimate from
Ref. [40] is also in good agreement with the other approaches.
For the fermionic anomalous dimension, only a value at N = 8
is available [9], which with ηψ ≈ 0.38(1) is much larger than
the estimates from the complementary methods and therefore
does not appear in the range presented in Fig. 1. Also the N = 8
estimates from Refs. [9,77] for the correlation length exponent
and the boson anomalous dimension are not in agreement with
RG or the conformal bootstrap. In the left panel of Fig. 1,
we also show the recent results from Ref. [76] for the N = 8
correlation length exponent, which is much closer to our result
than the one from Ref. [9]. Finally, as another perturbative
method we also show the values from a large-N expansion
[47,78] for N � 4. Note that we have resummed these series
following Ref. [78] using the Padé-Borel method. The resulting
curves are for most N deep in the shaded area of the Padé
approximants.
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Two-sided Padé approximants

In Sec. II, we have introduced the Gross-Neveu model,
which is expanded in 2 + ε dimensions, and the Gross-Neveu-
Yukuwa model, expanded in D = 4 − ε dimensions. These
models are closely related through their symmetries and
symmetry-breaking patterns and universality therefore sug-
gests that they describe the same critical point [57]. Moreover,
the 2 + ε and the 4 − ε expansions can be compared to the
known results from 1/N expansions [60–64,64–68]. Indeed,
we have confirmed that the 4 − ε expansion is fully compatible
with the large-N expansion of the Gross-Neveu model order
by order, which represents a highly nontrivial check; see our
Refs. [54,58].

In the following, we combine the two expansion schemes,
which are defined near their respective critical dimensions, i.e.,
D = 2 and D = 4. To that end, we again employ a generic
Padé approximant, cf. Eq. (26), and this time, we fix its
coefficients such that its power series expansion near D = 2
and D = 4 agrees with both perturbative series, in 2 + ε and
4 − ε dimensions, respectively. Explicitly, we make the ansatz

2[m/n](D) = a0 + a1D + · · · + amDm

1 + b1D + · · · + bnDn
, (28)

and demand for the coefficients {ai} and {bj } to fit to the epsilon
expansions. This leads to the relations

2(k)
[m/n](2) = k!f GN

k , (29)

2(k)
[m/n](4) = (−1)kk!f GNY

k , (30)

with f
GN(Y)
k being the expansion coefficient of a critical

exponent at order k; cf. Eq. (20). In this way, the two-sided Padé
approximant 2[m/n](D) provides an interpolating function for
a critical exponent f (D) in 2 < D < 4.

We show the two-sided Padé approximants evaluated for
the inverse correlation length exponent and the boson and
fermion anomalous dimensions for the physically interesting
case N = 8 in Fig. 2. Moreover, we also show a sequence
of two-sided Padé approximants corresponding to increasing
order of the perturbative expansions which clearly shows signs
of convergence towards higher orders. The two-sided Padé
approximants can also have a pole in the interval D ∈ (2, 4)
depending on the choice of f and N . In Fig. 2, we therefore
show only the two-sided Padé approximants, which do not
have a pole in D ∈ (2, 4) for the example N = 8. We further

restrict our analysis to approximants which include the same
number of loop orders at both ends, i.e., at D = 2 and at
D = 4. We observe a very good stability of the estimates
from the two-sided Padé approximants for the three critical
exponents upon increasing the orders of the expansions. In
particular, this also holds for the fermion anomalous dimension
which vanishes in both limits, i.e., at D = 2 and D = 4, and
is finite only in between. Comparisons to other methods will
be presented in the next section after we have also analyzed
an alternative interpolation method. Finally, we remark that the
series expansions for the critical exponents of the Gross-Neveu
model have a pole at N = 2 and therefore an extraction of
estimates from the 2 + ε expansion close to or below N =
2 becomes problematic. Therefore, we find that two-sided
Padé approximants and other interpolation schemes cannot be
faithfully applied for small N . In fact, the effects of the pole at
N = 2 can already be observed at N = 4.

IV. POLYNOMIAL INTERPOLATION

A suitable interpolation between the two critical dimensions
can also be constructed by using a purely polynomial ansatz.
To that end, we use both epsilon expansions for the critical
exponents simultaneously and again set up an interpolating
function for the critical exponents in the interval D ∈ (2, 4).
More specifically, for an exponent f (D), we choose a poly-
nomial interpolation with polynomial Pi,j (D) of (i + j )th
degree, where i (j ) denotes the highest order of the epsilon
expansion in D = 2 + ε (D = 4 − ε) dimensions. We fix the
polynomial coefficients with the expansion near the lower
critical dimension and determine the first i + 1 terms from
the condition

Pi,j (D) =
i∑

k=0

f GN
k (D − 2)k +

i+j+1∑
k=i+1

ak (D − 2)k. (31)

The remaining (j + 1) higher-order terms with coefficients
ai+1, . . . , ai+j+1 are then determined from the requirement that
the j lowest derivatives of Pi,j (D) at D = 4 correspond to the
ε expansion of the GNY model by

P
(n)
i,j (4) = (−1)nn!f GNY

n , (32)

where P
(n)
i,j (4) denotes the nth derivative at D = 4. The

resulting polynomials are then by construction i-loop (j -loop)
exact near the lower (upper) critical dimension and provide a

FIG. 2. Order-by-order study of two-sided Padé approximants of the three critical exponents ν−1 (left panel), ηφ (middle panel), and ηψ (right
panel) between D ∈ (2, 4) at N = 8. We restrict ourselves to approximants, which include the same number of loop orders in the respective
critical dimensions D = 2 and D = 4. Further, we choose approximants with m ≈ n.
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FIG. 3. Order-by-order study of polynomial interpolation of the three critical exponents ν−1 (left panel), ηφ (middle panel), and ηψ (right
panel) between D ∈ (2, 4) at N = 8. We restrict ourselves to interpolations, which include the same number of loop orders in the respective
critical dimensions D = 2 and D = 4.

systematic estimate for the physically relevant case of three
dimensions.

We show the results of this interpolation procedure, i.e.,
Pi,i (D) for i ∈ {1, 2, 3, 4} for the inverse correlation length
exponent and the anomalous dimensions, for the case N = 8
in Fig. 3. Again, for the inverse correlation length exponent
and the boson anomalous dimension, we observe a very good
stability of the estimates from the interpolation procedure upon
increasing the orders of the two perturbative expansions. In
contrast to the two-sided Padé approximants, the estimates
for the fermion anomalous dimension are less stable but
still show signs of convergence when comparing polynomial
interpolations from one order to the next for higher and higher
orders.

In Fig. 4, we summarize our best results for the N = 8
estimates from the two-sided Padé approximants as well as
from the polynomial interpolation exhibiting the excellent
agreement between both interpolations in the whole range
D ∈ (2, 4). For comparison, we also show the estimates for the
critical exponents at D = 3 from other methods, namely from
the functional RG [51] and from the conformal bootstrap [46].
In particular, the conformal bootstrap estimates for the boson
and fermion anomalous dimensions, which have been deter-
mined from universal bounds, almost perfectly match with

our results. There is still a sizable difference in the estimates
of the inverse correlation length exponent, which needs to be
resolved in future studies. The available quantum Monte Carlo
results for N = 8 [9,76] show deviations from our RG results
as well as from the conformal bootstrap estimates for both the
anomalous dimensions and the correlation length exponent.
It is encouraging, though, that the more recent QMC results
from Ref. [76] seem to agree better than the earlier estimates
from Ref [9]. Unfortunately, in Ref. [76] only the correlation
length exponent is given and the situation for the anomalous
dimensions remains to be clarified. We remark that in the more
exhaustively studied case of N = 4, it has been found that
the QMC results can still be subject to some changes upon
increasing the lattice size [40].

We compile our results from the two different interpolation
techniques and the following resummations for D = 3 as a
function of N in Fig. 7. Generally, the two interpolation
procedures provide highly compatible results for N � 6 and
start to deviate from each other and the other methods for
N � 6. This is expected since the interpolation makes use
of the series expansion in 2 + ε which exhibits poles in
the critical exponents for N = 2; see Fig. 7. We conclude
that for N � 6 we cannot faithfully employ the interpolation
techniques rooted in a 2 + ε expansion. In the following

FIG. 4. Interpolation of the three critical exponents ν−1 (inverse correlation-length exponent, left panel), ηφ (boson anomalous dimension,
middle panel), and ηψ (fermion anomalous dimension, right panel) between D ∈ (2, 4) at N = 8. The shown interpolations polynomial (red
line) and two-sided Padé (dark-red dashed line) are fixed by the two epsilon expansions at D = 2 and D = 4 in the first four derivatives. As
a result, the asymptotic behavior is suppressed even far from these expansion points at the physical dimension D = 3 and plausible values
can be read off. It should also be noted that both complementary approaches for the interpolation are very close to each other and comparable
to conformal bootstrap (cBS) [46], lattice Monte Carlo [9], and functional renormalization group (FRG) [51] calculations. Also note that no
point for the fermionic anomalous dimension has been plotted for MC, since the point with ηψ ≈ 0.38(1) is far above the value range of the
comparable methods.
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section, we therefore explore Borel resummation for the 4 − ε

expansion to obtain improved estimates for the Gross-Neveu
universality classes at small N , in particular for smaller N

where interpolation between 2 + ε and 4 − ε is difficult.

V. BOREL RESUMMATION

A very accurate determination of critical exponents in
D = 3 from the (4 − ε) expansion was achieved for O(n)-
symmetric φ4 theories by using Borel resummation with
conformal mapping [21,72]; see, e.g., Ref. [25] for a recent
study at six-loop order. For this resummation technique, the
large-order behavior of an asymptotic series is considered,
which has been computed for scalar models in the minimal sub-
traction scheme [79,80]. Unfortunately, for the Yukawa models
considered here, the precise large-order behavior is not known.
However, even with the knowledge of the large-order behavior
as in the O(N )-symmetric scalar models, resummation is a
delicate issue. There, for example, the series written in terms
of the coupling constant in fixed dimensions D = 2, 3 is known
to be Borel summable [81,82], but the situation for the epsilon
expansion remains unsettled.

Borel summability is therefore often taken as an assumption
in the analysis of O(N )-symmetric scalar models [83] and
we will also do this here. In the following, we also make
the additional assumption that the asymptotic behavior of the
GNY model is qualitatively the same as the one from the scalar
models; i.e., the epsilon expansion for the critical exponents
follows a formal power series with factorially increasing
coefficients, i.e.,

fk ∼ (−a)k�(k + b + 1) ≈ (−a)kk!kb (33)

for large k. The Borel transform of such an asymptotic series
f with expansion coefficients fk is calculated as

Bb
f (ε) :=

∞∑
k=0

fk

�(k + b + 1)
εk =

∞∑
k=0

Bb
k εk. (34)

Consequently, the coefficients behave like Bb
k ∼ (−a)k for

large orders k and therefore follow a geometric series which can
be understood as a rational function with a pole at ε = −1/a,
i.e.,

Bb
f (ε) ∼

k large

∑
k

(−a)kεk = 1

1 + aε
. (35)

While the original series has a vanishing radius of convergence,
we note that the Borel transform is analytic in a circle with |ε| <

1/a. We now use the assumption that the considered series are
Borel summable, i.e., that we can analytically continue the
Borel transform to the positive real axis and that the Borel sum

f̃ (ε) :=
∫ ∞

0
dt tbe−tBb

f (εt ) (36)

is convergent and gives the correct value of f for ε = 1.
A perturbative expansion of the integral in Eq. (36) with

respect to ε restores the original asymptotic series. In par-
ticular, if only finitely many terms of the asymptotic series
are known, the corresponding finite Borel transform in the
Borel sum merely reproduces the initial series. This can be
circumvented by replacing the Borel transform in Eq. (36) by

a nonpolynomial function which has the same power series
coefficients as the Borel transform for all known terms and
ideally incorporates the large-order behavior of the series.
Therefore, in the next step, we analytically continue the Borel
transform with a conformal transformation to the real axis,
using

w(ε) =
√

1 + aε − 1√
1 + aε + 1

⇒ ε = 4

a

w

(1 − w)2
. (37)

This transformation preserves the origin and maps all points of
the relevant positive real ε axis in the unit circle, i.e., |w(ε)| < 1
for ε ∈ [0,∞). The cut of the negative real axis (−∞,−1/a)
of the Borel transform is mapped to the unit circle in the
variable w. The Borel transform in the new variable w can be
found by expanding Bb

f (ε(w)) in w, which renders the series
convergent in the full integration domain of the Borel sum.

We further introduce an adjustment parameter λ in the Borel
transform truncated at order L, cf. Refs. [25,83],

Bb
f (ε) ≈ Ba,b,λ

f (ε) :=
(

aε(w)

w

)λ L∑
k=0

B
b,λ
k wk. (38)

The coefficients B
b,λ
k are found by expanding the expression

[w/aε(w)]λBb
f (ε(w)) in a power series of w. While the Borel

transform in Eq. (34) for finite L will diverge, this behavior
is lost when introducing the conformal mapping variable as w

tends to one for large ε. The parametrization in Eq. (38) with
λ 
= 0 can be used to restore the actual large-ε behavior ∼ελ

of the Borel transform by adjusting λ. Since the asymptotic
behavior of f (ε) is unknown, we use λ to improve the
sensitivity properties of our resummation algorithm [83]; see
below.

Further improvement is introduced by a homographic trans-
formation with shifting variable q,

ε = hq (ε̃) := ε̃

1 + qε̃
⇒ ε̃ = h−1

q (ε) = ε

1 − qε
. (39)

The original series is expanded in ε̃ and in the last step before
the Borel sum transformed back by h−1

q . Thus, the resummed
series is determined by

f̃ (ε) ≈ f
a,b,λ,q

L (ε) :=
∫ ∞

0
dt tbe−tBa,b,λ

f ◦hq

(
h−1

q (ε)t
)
. (40)

The conformal mapping in the Borel transform produces
poles in the Borel sum Eq. (36). Using the homographic
transformation these poles are shifted away from the physical
dimension at ε = 1 into a region of the integral where their
diverging behavior is suppressed by exp(−t ). This improves
the stability of the numerical analysis and is essential to find
an “optimized” parameter set.

To summarize, we introduced a resummation scheme for
the asymptotic series f (ε) which incorporates four parameters
a, b, λ, and q in the resummed series f̃ (ε) in Eq. (40). The
resummed series would be independent of the choice of these
parameters, if all orders of the expansion were known, i.e., for
L → ∞. At finite L this suggests that, for an optimized choice
of resummation parameters, their variation should only induce
a mild variation of the resummed f̃ (ε). Consider, for exam-
ple, the inverse correlation length exponent 1/ν, resummed
according to Eq. (40). Individually changing the parameters
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FIG. 5. Chiral Ising universality for D = 3, N = 8. Sensitivity of the Borel resummed inverse correlation-length exponent ν−1 to a variation
of one of the three large-order parameters b, λ, and q. In the first row we show the change to variation of b and λ at the optimal q = 0.16,
i.e., at the global minimum of the error estimate E ≡ E4(31.5, 0.74, 0.16) ≈ 0.009. In this case we find plateaus with increasing spread in the
loop order. For comparison, we also show the same plots at q = 0.4 away from the optimum where these plateaus are lost. In the last plot we
present the variation with respect to q which has no plateaus at all and is only fixed by the intersection point. For a list of the minima of various
N configurations in the Borel resummation, see Table VI in Appendix C.

b, λ, and q leads to a variation of the resummed 1/ν, which we
show in Fig. 5 for different orders in the epsilon expansion. We
observe that for increasing order in epsilon, the dependence on
the resummation parameters generally decreases as expected.
Further, there are extended plateaus where the function 1/ν

of the resummation parameters becomes rather flat; i.e., the
resummed series becomes insensitive to a further variation in
the corresponding parameter.

In the plots we omitted the dependence on the parameter a,
cf. Eq. (33), which we fix to the value a = (3 + N/2)−1. This
is motivated by the observation that the factor (3 + N/2)−1

structurally appears in the RG beta functions, fixed point
values, and critical exponents at all available loop orders; see,
e.g., Eq. (17). This is reminiscent of the factor 3/(n + 8)
appearing in the study of the scalar O(n) models, which

determines a in the corresponding asymptotic behavior [84].
In our case, however, we do not have further justification to
use a specific value for a. We have explicitly checked the
stability of our results with respect to variations of a and we
find that choosing different a ∈ (0, 1] only very mildly affects
our results. For simplicity, we therefore proceed with the fixed
choice a = (3 + N/2)−1.

A. Resummation algorithm and error estimate

We now describe the employed resummation algorithm
closely following the strategy presented in Ref. [25] and then
apply it to the epsilon expansion of the GNY model. In order
to find an optimized set of resummation parameters, we need
a measure for the sensitivity of the summation to a parameter

125109-9



IHRIG, MIHAILA, AND SCHERER PHYSICAL REVIEW B 98, 125109 (2018)

change. To that end, we study the variation of a function F upon
changing one of its parameters x in a range x ∈ [x0, x0 + �],

Sx (F (x0)) := min
x∈[x0,x0+�]

(
max

x ′∈[x0,x0+�]
|F (x) − F (x ′)|). (41)

A function F (x) which only weakly varies within the plateau
of length � leads to a small value for Sx .

Considering the example of the inverse correlation length
1/ν in Fig. 5 again, now, we are able to quantify the sensitivity
by reading off the length � of the extended plateaus. At the
highest available order O(ε4), these have the spreads

�b ≈ 40, �λ ≈ 1, �q ≈ 0.02, (42)

which we will use in the following analysis for computing the
sensitivities in Eq. (41). We note that finding these plateaus
without prior knowledge of the resummation parameters can
be quite tedious since the parameter space is large. Here, we
have performed extensive scans and in Fig. 5, we already show
a range of parameters for b, λ, and q which is centered around
the optimized set to be determined as indicated in the caption.
We want to stress at this point that the parameter q is chosen
in such a way that the dependence on the parameters b and λ

exhibits extended flat plateaus. The dependence on q itself is
rather steep over the whole definition domain and we use it just
as an optimization tool for the numerical analysis [24]. This is
also the reason why the variation domain for q is very narrow.
Note that the variation with respect to q shows no plateaus and
the optimal q is fixed by the intersection point of the curves
corresponding to the different loop orders; see lower left panel
of Fig. 5.

We identify the optimal set of parameters following the
method introduce in Ref. [25], i.e., making use of both the
“principle of minimal sensitivity” and “principle of fastest con-
vergence.” As already extensively discussed in the literature,
the errors might be underestimated if the unknown higher-order
corrections are much larger than the last computed ones. Such

examples are known and only an explicit calculation can solve
this question.

The different variations are collected in an error esti-
mate [25],

E
b,λ,q

f,L := max
{∣∣f b,λ,q

L − f
b,λ,q

L−1

∣∣, ∣∣f b,λ,q

L − f
b,λ,q

L−2

∣∣}
+ max

{
Sb

(
f

b,λ,q

L

)
,Sb

(
f

b,λ,q

L−1

)}
+ Sλ

(
f

b,λ,q

L

) + Sq

(
f

b,λ,q

L

)
, (43)

and we select the parameters in such a way that this error
estimate is minimized. We also compare the sensitivities at
different orders L and search for a minimum in the dependence
on L.

Explicitly, we scan the parameter space in the range
(b, λ, q ) ∈ [0, 50] × [0, 2.5] × [0, 0.5] in steps of δb =
0.5, δλ = 0.02, δq = 0.02 and compute E

b,λ,q

f,L for each pa-
rameter set. We show the results of this scan for the inverse
correlation length exponent 1/ν in Fig. 6. The global minimum
E of this scan marks the apparently best set of resummation
parameters. However, this minimum is not always sharp and
there are other sets of parameters which are almost equally
likely. Therefore, we compute a weighted mean of all points
which lie below a relative error of Ei/E < 3. For the weights
we use wi = 1/E2

i and plot the result as a dashed line in the
parameter scans; see, e.g., the right panel of Fig. 6. From the
error estimate at the minimum we compile the error for the
resummation as 3E. The resulting error bars are consistent with
the spread of the critical exponents around the optimum. We
provide more detail and numerical data on the error estimates
in Appendix C.

B. Graphene case (N = 8)

One of the quantum critical points that can be described
by the Gross-Neveu-Yukawa model with N = 8 is the

FIG. 6. Chiral Ising universality in D = 3. Error estimates for the inverse correlation-length exponent ν−1 at N = 8. The error axis is
normalized to the smallest error in the parameters E ≡ E4(31.5, 0.74, 0.16) ≈ 0.009. The global minimum of this parameter space (left panel)
is located in an area around the value ν−1 ≈ 0.994, which we have zoomed in on in the right panel. The weighted mean of this subspace in
parameter space has ν−1 ≈ 0.993 (dashed line).
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TABLE I. Graphene case at N = 8. Comparison of the resummed
critical exponents obtained from the resummation algorithm (Sec. V)
with the results from the polynomial interpolation (Sec. IV), the
two-sided Padé approximations (Sec. III), and the results from other
theoretical methods.

N = 8 ν−1 ηφ ηψ

Sec. III 1.004 0.735 0.042
Sec. IV 0.982 0.731 0.043
Sec. V 0.993(27) 0.704(15) 0.043(12)
Large N [61,64,65,78] 0.952 0.743 0.044
Conformal bootstrap [46] 0.88 0.742 0.044
Functional RG [51] 0.994(2) 0.7765 0.0276
Monte Carlo [9] 1.20(1) 0.62(1) 0.38(1)
Monte Carlo [78] 1.00(4) 0.754(8)
Monte Carlo [76] 1.07(4)

semimetal-CDW transition of spin-1/2 electrons in
graphene [5]. With the Borel resummation described in Sec. V
applied to the 4 − ε expansion of the GNY model, we obtain
the critical exponents 1/ν ≈ 0.993(27), ηφ ≈ 0.704(15),
and ηψ ≈ 0.043(12). This compares very well with the
perturbative RG estimates which we obtained using the
combination of 2 + ε and 4 − ε expansions in terms of the
two-sided Padé approximants, Sec. III, and the polynomial
interpolation Sec. IV. In particular, for the fermion anomalous
dimension, the agreement is remarkable since, in this case,
the one-sided Padé estimates around each critical dimension,
individually, seem to significantly overestimate the value at
D = 3 even at order O(ε4) [53,54]. Some deviation between
our different resummation approaches at the �5% level can
be observed for the boson anomalous dimension, though.
We have compiled our results for N = 8 from the two-sided
Padé approximants, the polynomial interpolation, and the
Borel resummation in Table I. Here, to summarize all of the
considerations from Secs. III, IV, and V, we build the simple
average of the estimated critical exponents and transfer the
error from the Borel resummation

1

ν
≈ 0.99(3), ηφ ≈ 0.72(2), ηψ ≈ 0.043(1). (44)

In Table I, we also compare to other methods and refer to the
more detailed discussions of these results in Secs. III and IV.
We would like to emphasize, again, the excellent agreement of
our results for the boson and fermion anomalous dimensions
with the conformal bootstrap estimates [46]. The superior
agreement between two independent theoretical approaches
builds a strong case for these values. At the same time, the
available quantum Monte Carlo results for the anomalous
dimensions at N = 8 [9] show significant deviations from the
pRG and conformal bootstrap results, suggesting that the QMC
approach might still be affected by the finite system sizes.
Surprisingly, the earliest numerical lattice studies of the chiral
Ising universality class atN = 8 [78] agree best with our results
for the boson anomalous dimension.

We further note that there is still a sizable difference
in the estimates of the inverse correlation length exponent
between the different approaches which needs to be resolved
in future studies. In particular, it would be very interesting to

TABLE II. Spinless honeycomb fermions at N = 4. Comparison
of the resummed critical exponents obtained from the resummation
algorithm (Sec. V) with the results from the polynomial interpolation
(Sec. IV), the two-sided Padé approximations (Sec. III), and the results
from other theoretical methods. Slanted numbers mark estimates
which are already affected by the pole at N = 2.

N = 4 ν−1 ηφ ηψ

Sec. III 0.961 0.480 0.086
Sec. IV 1.040 0.397 0.140
Sec. V 1.114(33) 0.487(12) 0.102(12)
Large N [61,64,65] 0.938 0.509 0.1056
Conformal bootstrap [46] 0.76 0.544 0.084
Functional RG [51] 1.075(4) 0.5506 0.0654
Monte Carlo [40] 1.14(2) 0.54(6)
Monte Carlo [76] 1.096(34)
Monte Carlo [39] 1.30(5) 0.45(2)

obtain conformal bootstrap estimates of the correlations length
exponent directly from universal bounds.

C. Spinless fermions on the honeycomb (N = 4)

The universality class of the semimetal-CDW transition of
spinless fermions on the honeycomb lattice is described by the
N = 4 GN model [5,8]. Due to its simplicity and paradigmatic
role, it has been subject to many studies; see Ref. [85] for a
recent review. Within our pRG approach we have found that the
two-sided Padé approximants and the polynomial interpolation
presented in Secs. III and IV, respectively, are problematic,
because the critical exponents from the 2 + ε expansion exhibit
a pole at N = 2. Therefore, the dimensional interpolation
in D ∈ [2, 4] breaks down in the vicinity of N = 2 and we
find that this is already shown at N = 4. For completeness,
however, we also show the values for the critical exponents that
we obtain from these two interpolations in the first two rows of
Table II. The Borel resummation from Sec. V exclusively uses
the 4 − ε expansion which is not plagued by this pole structure
and, here, we obtain 1/ν ≈ 1.114(33), ηφ ≈ 0.487(12), and
ηψ ≈ 0.102(12).

For N = 4, the agreement of the boson and fermion
anomalous dimensions with the conformal bootstrap estimates
from Ref. [46] is not as good as in the case N = 8, where
we also had more reliable results based on the dimensional
interpolation in D ∈ [2, 4]. Still, within the error bars extracted
from the resummation procedure, the estimates deviate only
on the ∼10% level. We would like to mention that for the
anomalous dimensions, the case N = 4 turns out to show the
largest deviation from the conformal bootstrap results. For
other N, i.e., N = 1, 2 and N � 6, the agreement between
these two independent methods is much better; see below. It
will be interesting to see whether this can be fully resolved
by going to even higher loop orders. We would also like to
mention that there is a series of Monte Carlo estimates for the
boson anomalous dimension, i.e., ηφ = 0.303(7) [38], ηφ =
0.45(2) [39], ηφ = 0.275(25) [41], and ηφ = 0.54(6) [40].
The different results have been achieved using various Monte
Carlo methods and different system sizes. The last result
from Ref. [40] was obtained with the largest system size. It
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TABLE III. Emergent SUSY at N = 1. Comparison of the re-
summed critical exponents obtained from the resummation algorithm
(Sec. V) with the results from complementary methods: functional
renormalization group (FRG) and conformal bootstrap. Here, we have
determined the conformal bootstrap estimate of 1/ν from the scaling
relation Eq. (45).

N = 1 ν−1 ηφ ηψ

Sec. V 1.415(12) 0.1673(27) 0.1673(27)
Conformal bootstrap [46] 1.418 0.164 0.164
Functional RG [49] 1.395 0.167 0.167

seems to fit very well with the conformal bootstrap result and
within the ∼10% range also with our estimate. In view of the
better control we have for N = 8 it would therefore be very
interesting to explore this case with the same system sizes,
too, and to have improved data for the fermion anomalous
dimension for all cases.

The correlation-length exponent from the conformal boot-
strap, 1/ν = 0.76 [46], on the other hand, is very far away from
all the other approaches, in particular, also from the recent
Monte Carlo simulations, 1/ν = 1.14(2) [40], which agreed
well for the anomalous dimension with the Borel resummed
estimates from Sec. V. Here, we note that our Borel resummed
pRG estimate of 1/ν = 1.114(33) agrees very well with the
Monte Carlo result from Ref. [40] as well as with another
recent Monte Carlo estimate [76] where 1/ν = 1.096(34).
Unfortunately, the latter study does not provide data for the
anomalous dimensions.

D. Emergent supersymmetry (N = 1)

The emergent supersymmetry scenario [34,59] for the
case N = 1 features a supersymmetric scaling relation [86,87]
which connects the inverse correlation length exponent, di-
mensionality, and anomalous dimension,

ν−1 = (D − η)/2. (45)

Note that the anomalous dimensions of the boson and the
fermion are equal in the case η = ηψ = ηφ . Equation (45)
therefore allows for a number of nontrivial checks for the
estimates of the critical exponents. In previous works, cf.
Refs. [54,58], it has been shown that Eq. (45) holds exactly
order by order in the epsilon expansion up toO(ε4). Moreover,
the estimates for all critical exponents from simple Padé
approximants already showed very good agreement with the
conformal bootstrap [46] and the functional RG results [49].
Borel resummation yields the values 1/ν ≈ 1.415(12), ηφ ≈
0.1673(27), and ηψ ≈ 0.1673(27). Since the anomalous di-
mensions of the boson and fermion coincide order by order
in the epsilon expansion, also the Borel resummation provides
the same values for both exponents. Further, within the error
bars, the supersymmetric scaling relation, Eq. (45), is fulfilled
as expected. Here, we obtain excellent agreement among all
available theoretical approaches; see Table III. Using the scal-
ing relation in Eq. (45), we show that this agreement even holds
for the inverse correlation length which, for other N , shows
clear deviations. We also would like to mention that our results
continuously connect to the limit N → 0 where we recover

TABLE IV. Chiral universality at N = 2. Comparison of the re-
summed critical exponents obtained from the resummation algorithm
(Sec. V) with the results from complementary methods: functional
renormalization group (FRG) and conformal bootstrap (cBS).

N = 2 ν−1 ηφ ηψ

Sec. V 1.276(15) 0.2934(42) 0.1400(39)
Conformal bootstrap [46] 0.86 0.320 0.134
Functional RG [48] 1.229 0.372 0.131

critical exponents compatible with the three-dimensional Ising
model. We show this in Fig. 1 together with the data point from
the highly accurate conformal bootstrap results [29].

E. Other cases (N = 2 and N = 20)

In addition to these cases, we compare the two additional
choices N = 2 and N = 20. At N = 2 no interpolation to
the Gross-Neveu model in the 2 + ε expansion is possible
due to the pole in the critical exponents; cf. Appendix B.
Other methods which provide results in this case are the
conformal bootstrap and the functional RG and we compile
these results for comparison in Table IV. This fits into the
general picture that our anomalous dimensions agree very well
with the conformal bootstrap results, but the inverse correlation
length agrees better with the functional RG.

Finally, we study the case N = 20, cf. Table V, which
should already be well located in the large-N regime. It is
accessible by all the resummation approaches we introduced
in this paper and shows very good agreement between the two-
sided Padé approximants, the polynomial interpolation, and the
Borel resummation. Moreover, it agrees excellently with the
direct large-N results [78], the conformal bootstrap [46], and
also very well with functional RG, which we have carried out in
a simple approximation ourselves; see Appendix D. We expect
that this level of agreement generally holds in the large-N
regime. This could therefore be a very good benchmark case
for upcoming large-scale Monte Carlo calculations as the
large-N limit reduces uncertainties within the approximations
required for the renormalization group methods. We have
compiled an overview plot with all of our data for D = 3 and

TABLE V. Chiral universality at N = 20. Comparison of the re-
summed critical exponents obtained from the resummation algorithm
(Sec. V) with the results from the polynomial interpolation (Sec. III),
the two-sided Padé approximations (Sec. IV), and complementary
methods: functional renormalization group (FRG), conformal boot-
strap (cBS), Monte Carlo (MC), and large-N calculations.

N = 20 ν−1 ηφ ηψ

Sec. III 0.9840 0.893 0.0151
Sec. IV 0.9763 0.893 0.0150
Sec. V 0.9580(75) 0.893(9) 0.0120(48)
Large N [61,64,65] 0.970 0.894 0.0152
Conformal bootstrap [46] 0.97 0.888 0.016
FRG, Appendix D 0.980 0.911 0.011
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FIG. 7. Chiral Ising universality in D = 3. Overview plot of the three examined critical exponents as the correlation-length exponent ν−1

(left panel), the boson anomalous dimension ηφ (middle panel), and the fermion anomalous dimension ηψ (right panel) for different spinor
component numbers N ∈ [1, 20]. For comparison, the values from Monte Carlo (MC) calculations and the functional renormalization group
(FRG), as well as the conformal bootstrap (cBS), were also plotted. On top of that we applied a Padé-Borel resummation on the large-N
expansions as in Ref. [78].

comparisons for the range N ∈ [0, 20] in Fig. 7 which supports
this expectation.

VI. CONCLUSIONS

We studied the universality classes of chiral Ising or Gross-
Neveu(-Yukawa) models using the perturbative renormaliza-
tion group up to four-loop order. Employing various resum-
mation and interpolation techniques, in particular, dimensional
interpolations between two and four dimensions as well as
Borel resummation, we calculated estimates for the critical
exponents.

To describe the physically interesting case of interacting
electrons on graphene’s honeycomb lattice which undergo a
quantum phase transition towards an ordered charge density
wave state, we have focused on the N = 8 Gross-Neveu and
Gross-Neveu-Yukawa models. We have found that all of our
approaches to extract critical exponents in D = 2 + 1 within
the perturbative RG, i.e., the two-sided Padé approximants,
the polynomial interpolation, and also the Borel resummation,
converge order by order towards a stable and compatible set
of values, as compiled in Table I. This is true for all the
exponents that we have studied, i.e., the inverse correlation
length exponent and both anomalous dimensions.

While resummation techniques for this type of theory is
little explored and we cannot exclude unexpected behavior at
higher orders in the loop expansion, the stability of our results
still suggests they could be considered as very reasonable
estimates. Moreover, for the boson and fermion anomalous
dimensions at N = 8, we find excellent agreement of our
results with the universal bounds provided by the conformal
bootstrap method [46], which builds a strong case from inde-
pendent theoretical methods for the validity of these values.
The corresponding values from quantum Monte Carlo [9]
do not agree for the anomalous dimensions and it will be
very interesting to see whether this issue can be resolved in
the future, e.g., by increasing system sizes. In particular, the
fermion anomalous dimension is off by about an order of
magnitude in the QMC simulations [9]. Reconciliation with
the field-theoretical results may be achieved by going to larger
lattice sizes as suggested from similar calculations for the
case N = 4 [40]. We also note that there is still a significant
difference in the estimates for the inverse correlation length

exponent between the perturbative RG and the conformal
bootstrap. This difference is most pronounced for a range
in the number of spinor components, 2 � N � 8, while for
larger N it disappears and all the exponents agree very well.
Within the conformal bootstrap [46], in contrast to the anoma-
lous dimensions, the correlation length exponent estimate is
not obtained from universal bounds but from the extremal
functional approach. It would therefore be very interesting to
have conformal bootstrap estimates of the correlation length
exponent directly from universal bounds, too. We have also
found very good agreement with the conformal bootstrap
and the functional RG approach for the case of emergent
supersymmetry, N = 1. Here, deviations across the different
approaches are only found on the level of below 2%.

For the future, we identify two main directions for this
line of research. First, to fully establish convergence of the
critical exponents within the perturbative RG approaches,
loop calculations beyond fourth order are required. In view
of the recent developments in computational technology and
the mathematical insights into the structure of Feynman di-
agrams, this may be challenging but possible. Second, there
are a number of very interesting quantum critical points of
interacting Dirac fermions, which are not captured by the
chiral Ising universality class. For example, superconducting
or magnetic transitions of Dirac fermions exhibit critical
behavior which are described by a coupling to U (1) or a O(3)
order parameters, respectively. The corresponding universality
classes are known as the chiral XY and chiral Heisenberg
universality classes [33] and in perturbative RG are also known
for higher orders [54,55]. Moreover, for these and even more
exotic transitions, there are recent QMC data [10–12,16,18–
20], which would be interesting to compare to. It can also
be expected that more conformal bootstrap results will be
available, soon; see, e.g., Ref. [44]. As has been the case
for the chiral Ising universality class, the critical exponents
of the chiral XY and chiral Heisenberg universality classes
have not been satisfactorily settled, yet. For these models, a
thorough study of the critical exponents from resummation
and interpolation techniques is under way.

An alternative and promising approach for the quantitative
characterization of the 2+1-dimensional chiral universality
classes could also be the analysis of low-energy finite-size torus
spectra at quantum critical points; cf. Refs. [88,89].

125109-13



IHRIG, MIHAILA, AND SCHERER PHYSICAL REVIEW B 98, 125109 (2018)

Moreover, we note that it has recently been possible
to observe strongly correlated behavior and superconduc-
tivity in graphene-based systems, i.e., in twisted bilayer
graphene [90,91]. While it is currently not clear which mecha-
nism underlies these transitions, the chiral universality classes
may become relevant in this context, too. This, however, is still
subject to discussion [92–96] and further experimental data and
theoretical studies are required to settle the situation.
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APPENDIX A: GNY MODEL BETA AND
GAMMA FUNCTIONS

For the convenience of the reader, we give below the analytic
expressions for the RG functions that we used in the numerical
analysis. Here and in the following, we use Nf = N/dγ to
display the RG functions. For the Ising GNY model, the
beta function contributions to the Yukawa coupling explicitly
read [54]

β(1L)
y = (3 + 2Nf )y2, (A1)

β(2L)
y = 24yλ(λ − y) −

(
9

8
+ 6Nf

)
y3, (A2)

β(3L)
y = y

64
{1152(7 + 5Nf )y2λ + 192(91 − 30Nf )yλ2

+ [912ζ3 − 697 + 2Nf (67 + 112Nf + 432ζ3)]y3

− 13824λ3}. (A3)

Here ζz is the Riemann zeta function. The four-loop contri-
bution is listed below, together with all the other four-loop
contributions. Accordingly, the beta function for the quartic
scalar coupling are composed of

β
(1L)
λ = 36λ2 + 4Nfyλ − Nfy

2, (A4)

β
(2L)
λ = 4Nfy

3 + 7Nfy
2λ − 72Nfyλ2 − 816λ3, (A5)

β
(3L)
λ = 1

32
[6912(145 + 96ζ3)λ4 + 49536Nfyλ3

− 48Nf (72Nf − 361 − 648ζ3)y2λ2

+ 2Nf (1736Nf − 4395 − 1872ζ3)y3λ

+ Nf (5 − 628Nf − 384ζ3)y4]. (A6)

For the contributions to the RG gamma function corresponding
to wave function renormalization of the fermion derivative
term, we find

γ
(1L)
ψ = y

2
, (A7)

γ
(2L)
ψ = −y2

16
(12Nf + 1), (A8)

γ
(3L)
ψ = y3

128
[48ζ3 + 4Nf (47 − 12Nf ) − 15] + 6λy2 − 33λ2y

2
.

(A9)

The gamma function corresponding to the wave function
renormalization of the derivative term of the scalar order
parameter reads

γ
(1L)
φ = 2Nfy, (A10)

γ
(2L)
φ = 24λ2 − 5Nfy

2

2
, (A11)

γ
(3L)
φ = − 216λ3 + 1

32
Nfy

3(48ζ3 + 200Nf + 21)

+ 30λNfy
2 − 90λ2Nfy. (A12)

Finally, the scaling of the quadratic scalar operator is given by
the following contributions to the RG gamma function γφ2 ,

γ
(1L)
φ2 = −12λ, (A13)

γ
(2L)
φ2 = 144λ2 − 2Nfy(y − 12λ), (A14)

γ
(3L)
φ2 = 3

2Nfy
2λ(24Nf − 120ζ3 − 11) − 6264λ3

− 4Nfy
3(4Nf − 9 + 3ζ3) − 288Nfyλ2. (A15)

To complete the set of RG beta and gamma functions at the
available order, we now also display the four-loop contribu-
tions,

β(4L)
y = −5

2
ζ5(42Nf + 43)y5 + {32π4(2Nf + 3)(18Nf + 19) + 40Nf [8Nf (44Nf − 899) + 29721] + 457935}y5

7680

+ λ

8
[8Nf (12Nf − 683) − 2829]y4 − 1

2
λ2[4Nf (6Nf + 635) + 4455]y3 + 36λ3(8Nf − 455)y2

− 1

8
ζ3y

2{−41 472λ3 + [4Nf (125Nf + 331) − 5]y3 + 432λ(12Nf + 7)y2 − 864λ2(6Nf − 25)y} + 14040λ4y

+�3Nf (1 + 107ζ3 − 125ζ5)y5, (A16)
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β
(4L)
λ = 41472

(
−39ζ3 − 60ζ5 + π4

10
− 3499

96

)
λ5 + 1

240
λNfy

4{ − 60ζ3
(
912N2

f − 4156Nf − 4677
)

+ 1200ζ5(157 − 168Nf ) − 4π4(450Nf + 41) + 25[4Nf (337Nf + 3461) + 5847]
}

+ Nfy
5{480ζ3[12Nf (14Nf−15) + 277] + 2400ζ5(128Nf+65)+8π4(64Nf − 77)+160Nf (1289−386Nf )−67095}

1920

+ 1

80
λ2Nfy

3{835 200ζ5 + 1920ζ3[3Nf (4Nf − 61) + 19] + 72π4(24Nf + 31) − 40Nf (288Nf + 15 649) + 1 057 825}

+ 4

5
λ3Nfy

2[−86 400ζ5+540ζ3(4Nf−69)+7890Nf − 288π4 − 72 605] + 36

5
(−17 280ζ3 + 96π4 − 6775)λ4Nfy.

(A17)

The symbol �3 should be set to �3 = 1; see Ref. [58] for more details on the dimensional regularization scheme. The four-loop
contributions to the gamma functions read

γ
(4L)
ψ = y

393 216

[
134 479 872λ3 + y3

(
− 884 736ζ3 − 5

[
384(256ζ5 − 893) + 377 339π4

90

]

+ 16Nf

{
−164 352ζ3 + Nf [1536(16ζ3 − 3)Nf − 74 752] − 1536π4

5
+ 53 440

}
+ 303 611π4

18

)

− 288λy2

[
512(93 − 32ζ3) + 8

(
7424 + 927π4

4

)
Nf − 1

18
π4(33 372Nf + 7079) + 7079π4

18

]

+ 96λ2y(221 184ζ3 + 344 064Nf − 656 384)

]
, (A18)

γ
(4L)
φ = 14 040λ4 + 1

256
λNfy

3[768(16ζ3 − 83) − 19 456Nf ] + 1

32
λ2Nfy

2[256(81ζ3 − 91) − 384Nf ] + 288λ3Nfy

−
Nfy

4
{

377 856ζ3 + 15 360(8ζ5 − 29) + 4Nf

[
162 816ζ3 + 256(144ζ3 − 101)Nf + 1536π4

5 − 54 016
]

+ 1024π4
}

24 576
,

(A19)

γ
(4L)
φ2 = 1728

(
18ζ3 + 2π4

5
+ 187

)
λ4 + 3

2
λ2Nfy

2

[
5760ζ3 + 4(−48ζ3 − 176)Nf + 48π4

5
+ 3796

]

+ 1

64
Nfy

4

{
−5376ζ3 + 10 080ζ5 + 2Nf

[
320ζ3 + 4480ζ5 + 64(18ζ3 − 11)Nf + 48π4

5
− 5208

]
− 224π4

5
− 2846

}

− 3

16
λNfy

3

{
−5120ζ3 − 5760ζ5 + 4Nf

[
−672ζ3 + 64(2ζ3 − 1)Nf + 16π4

3
− 1618

]
+ 184π4

5
+ 12 989

}

+ 36(96ζ3 + 313)λ3Nfy. (A20)

APPENDIX B: GN CRITICAL EXPONENTS FROM
REFERENCE [53]

From the four-loop RG beta and gamma functions of the GN
model in Ref. [53] we have extracted the critical exponents as
a function of general N . They read

1

ν
= ε + 1

2 − N
ε2 − (N − 3)

2(N − 2)2
ε3

+ 6ζ3(11N − 34) + (N − 1)(N + 12)

4(N − 2)3
ε4 + O(ε5),

(B1)

ηφ = 2 − N

N − 2
ε + 1 − N

(N − 2)2
ε2 + (N − 1)N

2(N − 2)3
ε3

+ (N − 1){2ζ3[N (N + 7) − 42] − (N − 9)N + 5}
4(N − 2)4

ε4

+O(ε5), (B2)

ηψ = N − 1

2(N − 2)2
ε2 − (N − 6)(N − 1)

4(N − 2)3
ε3

+ (N − 1)[(N − 11)N + 25]

8(N − 2)4
ε4 + O(ε5). (B3)

We note that these critical exponents have a pole at N = 2,
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TABLE VI. In this table we have compiled the positions of the
minima E = E

b,λ,q

4 in the Borel resummation. While the minimum
has the value f̃ b,λ,q we use the points with a relative error of E/E � 3

to compute the weighted mean f̃ b,λ,q (last column) as explained in
the text.

b λ q E
b,λ,q

4 f̃ b,λ,q f̃ b,λ,q

N = 1
ν−1 5.0 0.76 0.06 0.004 1.414 1.415
ηφ 16.0 1.30 0.00 0.0009 0.1669 0.1673
ηψ 16.0 1.30 0.00 0.0009 0.1669 0.1673
N = 2
ν−1 11.0 0.74 0.12 0.005 1.274 1.276
ηφ 19.5 1.26 0.02 0.0014 0.2929 0.2934
ηψ 11.0 1.08 0.00 0.0013 0.1392 0.1400
N = 4
ν−1 20.5 0.74 0.16 0.010 1.112 1.114
ηφ 22.5 1.10 0.12 0.003 0.489 0.488
ηψ 11.0 1.90 0.00 0.0029 0.0957 0.0998
N = 8
ν−1 31.5 0.74 0.16 0.009 0.994 0.993
ηφ 27.5 1.00 0.18 0.005 0.706 0.704
ηψ 17.5 1.86 0.22 0.004 0.042 0.043
N = 20
ν−1 20.5 0.76 0.10 0.0025 0.9571 0.9580
ηφ 31.0 0.86 0.18 0.003 0.894 0.893
ηψ 28.5 1.88 0.18 0.0016 0.0111 0.0120

which is due to a factor of (N − 2) appearing in each loop
order of the RG functions; cf. Ref. [53].

APPENDIX C: ERROR ESTIMATE FOR RESUMMATION

As described in Sec. V for the Borel resummation we
performed extensive scans of parameter space (b, λ, q ) ∈
[0, 50] × [0, 2.5] × [0, 0.5] in steps of δb = 0.5, δλ = 0.02,
and δq = 0.02 and computed for each point (b, λ, q ) the error
estimate E

b,λ,q

f,L . In Table VI we list the minima E of these scans
and their position in the parameter space. The estimates for the
critical exponents are then computed from the weighted mean
of all points in parameter space which lie below a relative error
of Ei/E < 3, i.e.,

f =
∑

i∈{Ei/E<3} wif (bi, λi, qi )∑
i∈{Ei/E<3} wi

, (C1)

where wi = 1/E2
i denote the weights. Note also that for ηψ

at N = 8 we omitted all points with ηψ > 0.053 from the
weighted mean in order to extract a meaningful unbiased
result. We observe that values of the Borel parameter b and
the homographic shift q increase for intermediate N while the
adjusting large order parameter λ is rather stable. The error
estimate also increases for intermediate N and decreases for
very large values again, but is smallest in the SUSY case. For
the latter the Borel resummation method is able to determine
the value to two significant digits.

APPENDIX D: FRG AND DERIVATIVE EXPANSION

The FRG is a generalization of Wilson RG. It is based
on adding a scale-dependent regulator contribution to the
action, i.e., S �→ Sk ≡ S + ∫

p
1
2�(−p)Rk (p)�(p). Then, the

modified action Sk gives a scale-dependent partition function
Zk = ∫

�
D� exp(−Sk[�]), where � is a collective field

variable of a specific model. The central object of the FRG
is the effective average action �k , which is the Legendre
transform of lnZk . For a suitably chosen regulator Rk, �k

interpolates between the bare action S at the ultraviolet
cutoff (k = �) and the quantum effective action � in the
infrared (k → 0). Its RG flow is governed by the exact
equation [97,98]

∂k�k = 1
2 STr

[(
�

(2)
k + Rk

)−1
∂kRk

]
. (D1)

Here, �
(2)
k is the functional Hessian of �k with respect to �.

STr sums over all degrees of freedom with an additional
minus sign in the fermionic sector and also includes a loop
integration over momenta. To obtain an approximate solu-
tion of Eq. (D1) for the chiral Ising model, we make a
derivative expansion of �k and truncate beyond the leading
order,

�k =
∫

τ,�x

[
Zψψ̄ /∂ψ + gφψ̄ψ − Zφ

2
φ∂2φ + U (ρ)

]
. (D2)

This is local potential approximation (LPA) with the scale-
dependent effective potential U (ρ) which is a functional of
the field invariant ρ = 1

2φ2. We have further introduced the
scale-dependent wave function renormalizations Zψ and Zφ ,
which are related to the anomalous dimensions by η� =
−(∂tZ�)/Z�, with � ∈ {ψ, φ} and ∂t := k∂k . To determine
the fixed points and critical exponents within the FRG, we de-
fine dimensionless quantities, i.e., the dimensionless effective
potential u and the dimensionless Yukawa coupling ĝ. They are
given by u(ρ̂) = k−DU (ρ) and ĝ2 = kD−4g2/(ZφZ2

ψ ), with

ρ = kD−2Z−1
φ ρ̂.

The flow equations for u, ĝ2 and the anomalous di-
mensions ηφ and ηψ are obtained by substituting the
ansatz for �k into Eq. (D1) and applying suitable pro-
jection prescriptions. For the chiral Ising model the
LPA flow equations read [47,99,100] for the effective
potential

∂tu = −Du + (D − 2 + ηφ )ρ̂u′ − 4NvDlF(2ĝ2ρ̂ )

+ 2vD[lB(u′ + 2ρ̂u′′)],

and the Yukawa coupling,

∂t ĝ
2 = (D − 4 + ηφ + 2ηψ )ĝ2 + 8vDĝ4lFB

11 (2ĝ2ρ̂, u′).

We have used vD := 1/[2D+1πD/2�(D/2)] and primes denote
derivatives with respect to ρ̂. Also, we get two equations for
the anomalous dimensions, ηφ = 16vDĝ2

D
NmF

4 (2ĝ2ρ̂) and ηψ =
8vDĝ2

D
mF

12(2ĝ2ρ, u′). The threshold functions lB, lF, mF
4 , mF

12,
and lFB

11 depend on the choice of regulator [101–106]. We use
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linear cutoffs Rφ = Zφp2rφ and Rψ = Zψ /prψ of the form
rψ (q ) = ( k

q
− 1) �(k2 − q2) and rφ (q ) = ( k2

q2 − 1) �(k2 −
q2), where �(x) is the step function. Explicitly, the needed
threshold functions for u then read [98]

lB(ω) = 2

D

(
1 − ηφ

D + 2

)
1

1 + ω
,

lF(ω) = 2

D

(
1 − ηψ

D + 1

)
1

1 + ω
.

The threshold function for ĝ2 is given by

lFB
11 (ωψ,ωφ )

= 2

D

[(
1 − ηψ

D + 1

)
1

1 + ωψ

+
(

1 − ηφ

D + 2

)
1

1 + ωφ

]
1

(1 + ωψ )(1 + ωφ )
,

and for the anomalous dimensions we get

mF
4 (ω) = 1

(1 + ω)4
+ 1 − ηψ

D − 2

1

(1 + ω)3

−
(

1 − ηψ

2D − 4
+ 1

4

)
1

(1 + ω)2
,

mFB
12 (ωψ,ωφ ) =

(
1 − ηφ

D + 1

)
1

(1 + ωψ )(1 + ωφ )2
.

Further, we expand the potential u in powers of ρ̂ around
the origin, u(ρ̂) = ∑imax

i=1
λ̂i

i! ρ̂
i , which defines the couplings λ̂i .

The flow equations for the λ̂i are obtained by the rule ∂t λ̂i =
[ ∂i

∂ρ̂i ∂tu(ρ̂)]|ρ̂=0. Similarly, ∂t ĝ
2, ηφ , and ηψ are obtained.

For the explicit values given in Table V, we have set D =
3, N = 20 and we have chosen imax = 6. We have checked
that this provides converged fixed-point properties within the
polynomial expansion of the potential.

[1] O. Vafek and A. Vishwanath, Dirac fermions in solids: From
high-Tc cuprates and graphene to topological insulators and
Weyl semimetals, Annu. Rev. Condens. Matter Phys. 5, 83
(2014).

[2] T. Wehling, A. Black-Schaffer, and A. Balatsky, Dirac materi-
als, Adv. Phys. 63, 1 (2014).

[3] S. Sorella and E. Tosatti, Semi-metal-insulator transition of the
Hubbard model in the honeycomb lattice, Europhys. Lett. 19,
699 (1992).

[4] D. V. Khveshchenko, Ghost Excitonic Insulator Transition in
Layered Graphite, Phys. Rev. Lett. 87, 246802 (2001).

[5] I. F. Herbut, Interactions and Phase Transitions on Graphene’s
Honeycomb Lattice, Phys. Rev. Lett. 97, 146401 (2006).

[6] C. Honerkamp, Density Waves and Cooper Pairing on
the Honeycomb Lattice, Phys. Rev. Lett. 100, 146404
(2008).

[7] S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang,
Topological Mott Insulators, Phys. Rev. Lett. 100, 156401
(2008).
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