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We predict conductance oscillations in a quantum anomalous Hall two-dimensional strip having a supercon-
ducting region of length L, with a chiral Majorana mode. These oscillations require a finite transverse extension
of the strip L, of a few microns or less. Measuring the conductance periodicity with L, and a fixed bias, or
with bias and a fixed L,, yields the speed of the chiral Majorana mode. The physical mechanism behind the
oscillations is the interference between backscattered chiral modes from the second to first interface of the
normal-superconductor-normal double junction. The interferometer effect is enhanced by the presence of side

barriers.
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Majorana modes in condensed matter systems are ob-
jects of an intense research due to their peculiar exchange
statistics that could allow implementing a robust quantum
computer [1]. A breakthrough in the field was the observa-
tion of zero-bias anomalies in semiconductor nanowires with
proximity-induced superconductivity [2]. Although an intense
theoretical debate has followed the experiment, evidence
is now accumulating [3,4] that these quasi-one-dimensional
(1D) systems indeed host localized Majorana states on their
two ends, for a proper choice of all the system parameters (see
Refs. [5,6] for recent reviews).

Another breakthrough is the recent observation of a pecu-
liar conductance quantization, 0.5¢%/ k, in a quantum anoma-
lous Hall (QAH) two-dimensional (2D) (thin) strip, of 2 x
1 mm [7]. A region of L, =~ 0.8 mm in the central part of the
strip is put in proximity of a superconductor bar, whose influ-
ence makes the central piece of the strip become a topological
system able to host a single chiral Majorana mode. The device
can then be seen as a generic normal-superconductor-normal
(NSN) double junction with tunable topological properties.
The hallmark of transport by a single chiral Majorana mode in
the central part is the observed halved quantized conductance,
since a Majorana fermion is half an electron and half a
hole [8-13].

The observed signal of a chiral Majorana mode in the
macroscopic device of Ref. [7] naturally leads to the question
of how is this result affected when the system dimensions
are reduced and quantum properties are enhanced. Can the
presence of a Majorana mode still be clearly identified in a
smaller strip? Are there additional smoking-gun signals? In
this Rapid Communication we provide theoretical evidence
predicting a positive answer to these questions. In a smaller
strip, with a lateral extension L, of a few microns or less, we
predict the existence of conductance oscillations as a function
of L, (the longitudinal extension of the superconducting
piece) and a fixed longitudinal bias. Alternatively, oscillations
are also present as a function of bias and a fixed value
of L,.
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We find that the period of the conductance oscillations is
related to the speed c of the chiral Majorana mode, as defined
from the linear dispersion relation E = chk with k the mode
wave number. More precisely, the oscillating part of the con-
ductance is &5G cos (2L, E/hic). Therefore, measuring the
distance AL, between two successive conductance maxima
in a fixed bias V (equivalent to a fixed energy E since E =
eV/2), it is ¢ = AL, E/mh. Analogously, in a device with
a fixed L,, the distance AFE between two successive bias
maxima yields ¢ = LyAE/mh. As anticipated, this result
implies the possibility of a purely electrical measurement of
the speed of a chiral Majorana mode and it thus provides an
additional hallmark of the presence of such peculiar modes.

A narrow strip (typically L, < 1 pum) is required for a
sizable oscillation amplitude §G, otherwise, it becomes neg-
ligible when L, increases. The amplitude is also weakly
dependent on the energy, yielding a slightly damped oscil-
lation with bias. The physical mechanism behind the pre-
dicted conductance oscillations is the interference of the two
backscattered chiral modes of the NSN double junction. An
initially reflected mode from the first interface (NS), assuming
left to right incidence, is superposed by the reflection from the
second interface (SN) that has traveled backwards a distance
L. A constructive interference yields an enhanced Andreev
reflection that, in turn, yields an enhanced device conduc-
tance. Since Majorana mode backscattering between the two
interfaces can be seen as a manifestation of the hybridization
of the two edge modes of the strip, a finite (small) L, is
required for its manifestation as a sizable effect.

Chiral mode backscattering in the presence of Majorana
modes was already considered in Ref. [9], but only between
interfaces and leads, not in between interfaces, which only oc-
curs in the quantum limit for smaller L. We stress that, as dis-
cussed in Ref. [9], we assume a grounded superconductor con-
figuration and that conductance is measured with an applied
symmetrical bias on both sides. Very recent works [14,15]
have considered biased superconductor configurations, fo-
cusing on the dependence of the quasiparticle-reversal
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transmissions with the chemical potential. Quasiparticle re-
versal was also discussed with quantum spin Hall insulators
in Ref. [16]. Interferometry with Majorana beam splitters was
considered in Refs. [17-19], although a conceptual difference
with our work is that beam splitters constrain quasiparticles
to follow different trajectories while we consider a single
material strip. It is also worth stressing that the suggested
interference of this work requires traveling modes with a
well-defined k, such as chiral Majorana modes, since the
oscillations persist for arbitrary large values of L,. This is
an essential difference with hybridization of Majorana (local-
ized) end states in nanowires, lacking a well-defined k, that
has been shown to rapidly vanish as L, increases [20].
Model and parameter values. We consider a model of
a double-layer QAH strip with induced superconductiv-
ity in the central region as in Ref. [7]. Using vectors
of Pauli matrices for the two-valued variables representing
usual spin @, electron-hole isospin 7, and layer-index pseu-
dospin A, in a Nambu spinorial representation that groups
the field operators in the top (#) and bottom (b) layers,

. b b T
(W, Wl =), (wp Wl e —w” O the
Hamiltonian reads

H = [mo +m1(p§ + pi)]tz)xx + Azo,
o
_ E(pxoy — PyO )T A, + Ap e + Ay, (1)

The physical origin of the different parameters has been
discussed in Refs. [7-13]. Let us only emphasize here that
the superconductivity parameters A, , are just the half sum
or half difference of the corresponding parameter in each
layer, A, ,, = (A1 £ Ay)/2, with A, vanishing in the left
and right normal regions and taking constant values for x €
[—L./2, L,/2] (see sketch in Fig. 1). The strip confinement
along the lateral coordinate (y) is obtained by assuming that
mg takes a large value for y & [—L,/2, L,/2], effectively
forcing the wave functions to vanish at the lateral edges.

It is important to consider realistic values for the Hamilto-
nian parameters. In our calculations we assume a unit system
set by 1 meV as the energy unit, 1 pm as the length unit, and a
mass unit 7 from the condition /i = m ;J/ > meV'/2 um, yield-
ing my = 7.6 x 10™>m,, where m, is the bare electron mass.
We have assumed o = 0.26 meV um, my = 1 meV, m; =
10’3m51, Ay} =1meV, and A, = 0.1 meV. The parameter
Az models an intrinsic magnetization of the material and is
varied to explore different phase regions, usually with Az <
2 meV. We take these values as reasonable estimates for QAH
insulators based on Cr-doped and V-doped (Bi, Sb),Se; or
(Bi, Sb),Te; magnetic thin films [11,12]. Nevertheless, the
results we discuss below are not sensitive to small variations
around these estimates.

Method. Our analysis is based on the numerical solution of
the Bogoliubov—de Gennes scattering equation HW = EW for
a given energy E, assuming an expansion of the wave function
in the complex band structure for each portion of the strip
where the parameters are constant. An effective matching in
2D at the two interfaces of the NSN double junction yields
all the scattering coefficients. The method is explained in
more detail in the Supplemental Material [21] and is based
on Refs. [22-29]. In particular, the conductance for a given
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FIG. 1. Upper: Sketch of the physical system. (a)-(c) Conduc-
tance as a function of the energy (bias) for (a) L, =1 um, (b)
2 um, and (c) 5 um. The three panels are for L, = 20 um and
Az = 1.5 meV. The insets in each panel show the 6 — Az phase
diagram, with § the k = 0 gap of the L, — oo system. The vertical
(red) line in each inset shows the correspondence with the energy
sweep of its panel.

energy E is determined as

2
G(E) = %[TN(E) + RA(E)], )

where Ty is the normal (electron-electron) transmission prob-
ability and R, is the Andreev (electron-hole) reflection prob-
ability. The superconductor is assumed grounded and the ap-
plied bias symmetrical since otherwise currents may emerge
from the superconductor and flow to the leads [9,30,31].

The resolution method describes both longitudinal and
transverse evanescent behavior, an essential point since we
are interested in the dependence with both L, and L,. In-
cluding large-enough sets of N &~ 100 complex-k waves for
each region describes longitudinal evanescent behavior while
a uniform y spatial grid with N, ~ 100 points is required
to describe the transverse behavior. In addition, a minimal
grid of only N, =5 points for each interface is required
for the matching. The computational cost is small and, quite
importantly, it is independent of L,, which is again essential
for the study of the L, dependence up to large values.
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FIG. 2. (a) L, dependence of the conductance for different val-
ues of the width L, as indicated by the number close to each line (in
microns). The results correspond to those in Fig. 1 for selected values
of the energy: 0.3 meV (L, =1 um), 0.09 meV (L, =2 um),
0.1 meV (L, =5 pum). (b)—(d) Energy bands for the corresponding
values of L,. The energy and wave number are indicated in each
panel with the same line color of (a).

Results. Figure 1 shows a characteristic evolution of bias-
dependent conductance G(E) as the strip width L, increases:
1 um [Fig. 1(a)], 2 um [Fig. 1(b)], and 5 um [Fig. 1(c)].
As expected, the wide strip shows a low-energy flat con-
ductance of 0.5¢2 /h that, when increasing E, evolves into
a complicated variation due to the successive activation of
higher-energy modes of the strip. The value of §, the k =0
gap energy, is shown for each mode as a function of Az in
the corresponding insets of Fig. 1. In the narrower strips of
Figs. 1(a) and 1(b) the flat 0.5¢>/h plateau transforms into a
clear oscillating pattern, with a larger amplitude at the onset
and gradually damping with increasing energies. This pattern
is clearly enhanced in the smaller L, strip [Fig. 1(a)]. A
sudden change of this pattern occurs when a second chiral
mode is activated, setting in a larger amplitude envelope
oscillation between zero and one conductance quantum in
Figs. 1(a) and 1(b).

The oscillating conductance in the regime of a single chiral
mode of a narrow strip is the main result of this Rapid
Communication. It is a sizable effect, easily reaching 40%—
50% conductance variations for energies near the activation
onset of Fig. 1(a). Next, we study the role of the longitudinal
distance L, on the oscillation. Figure 2 shows G(L,) corre-
sponding to selected transverse widths and energies of Fig. 1.
This figure provides a quantitative measure of the contribution

of longitudinal evanescent modes to the conductance. In all
cases G initially decreases from a value close to one, reaching
a sustained regime after a critical value of L, is exceeded.
In the narrower strips the asymptotic-L, regime again repro-
duces the oscillating pattern mentioned above.

The separation between successive conductance maxima
(minima) of the sustained oscillations of Fig. 2(a) can be
related to the speed of the chiral Majorana mode. This
connection is clear from a direct comparison between the
computed real band structure of the propagating modes shown
in Figs. 2(b)-2(d). The approximate Majorana mode is repre-
sented by the lowest band with an almost linear dependence
on wave number, E & chk, with ¢ ~ 0.26 meV um/h. As-
suming a conductance maximum requires an integer number
of half wavelengths fit in distance L,, we inferc = AL, E/m,
where AL, is the separation of two successive maxima. This
reproduces ¢ ~ 0.26 meV um/% for the L, =1 and 2 um
results of Fig. 2(a), respectively.

As explicitly shown above, measuring G(L,) allows an
electrical determination of the mode speed. The same conclu-
sion is obtained inferring ¢ from the separation energy A E be-
tween two successive maxima of the oscillation pattern G(E)
of Figs. 1(a) and 1(b). In this case, however, the oscillation is
not sustained for arbitrary large values, but one has to choose
E in the proper interval corresponding to the propagation of
a single chiral mode. There is a clear analogy between our
model system and a photon interferometer, similarly to other
condensed matter systems such as Aharonov-Bohm rings,
with the genuine difference that in a strip the interference
of chiral modes is governed by the interplay between strip
dimensions L, L, and the mechanism of Andreev backscat-
tering. Incidentally, in units of the photon speed in vacuum,
the chiral mode speed of Fig. 2 is ~1.3 x 1073.

‘We now elucidate from our calculations the physical mech-
anism behind the enhanced conductance when condition L, =
ni/2 is fulfilled, with n an integer and A the wavelength of the
chiral mode between the two interfaces. Figure 3 shows that
the conductance oscillation basically reflects the behavior of
the Andreev reflection probability R4, and the normal trans-
mission Ty is also oscillating but with a weaker amplitude
and a reduced wavelength. The contour plots displayed in
Figs. 3(b)-3(e) show the distribution of quasiparticle proba-
bility density corresponding to an incidence from the upper
left chiral mode. As expected, in the superconducting piece
of the strip, transmission proceeds predominantly attached to
the upper edge. A zoom of the lower edge reveals that in
Fig. 3(c) two full intervals between density maxima fit in L,
counting backwards from the lower right maximum, while in
Fig. 3(e) two and a half intervals can fit in. As the distance
between density maxima is A/2, this is the interference of
the backscattered chiral mode from the right interface that can
thus enhance or decrease the global Andreev reflection from
the left interface.

Edge chiral Majorana modes are robust against backscat-
tering induced by local disorder, in a similar way to the
quantum Hall effect. We have checked (see Supplemental
Material [21]) that the conductance oscillations of this work
are indeed robust with the presence of local fluctuations
dmg(x, y) in a portion of the strip modeling bulk disorder as
well as deviations from perfect straight edges. As a final result,
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FIG. 3. (a) Evolution with L, of normal and Andreev reflec-
tions and transmissions for a strip of L, =1 um and energy E =
0.25 meV. (b)—(e) Spatial distribution of probability density, in
um~2, corresponding to the conductance (b) maximum at L, =
7.5 pum and (d) minimum at L, = 9.3 um. (c¢) and (e) show the
densities in a 10x-zoomed scale for the highlighted regions.

we have considered the presence of side material barriers in
the longitudinal direction by assuming my = mg, = 2 meV
in regions of length L, to the left and right of the supercon-
ductor central island of the strip. As with the usual potential
barriers, the transparency of those side regions can be tuned
by changing mg, and/or L,. The presence of side barriers
tends to decouple leads and the central island, leading to
a more clear manifestation of the interferometer character
discussed above. Figure 4 shows how the oscillating pattern
of G(E) evolves to a sequence of spikes as the barriers

| —o010
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— 075 /\
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FIG. 4. G(E) in the presence of barriers to the left and right of
the strip superconductor region. The different curves correspond to
varying barrier lengths Ly, as indicated in microns. We take mg, =
2 meV in the barrier sections of the strip. Other parameters as in
Fig. 1(b).

become less and less transparent, each spike signaling the
condition of resonant backscattering of the chiral Majorana
mode. Thus, the configuration with side barriers suggests a
device operation with a clearer difference between its on and
off states.

Conclusion. In summary, our calculations suggest that a
quantum anomalous Hall thin strip with a central supercon-
ductor section could display conductance oscillations when
the strip transverse size L, is in the micrometer range and the
system is in a fully quantum coherent regime. As a function
of the superconductor region length L., the oscillations are
sustained up to arbitrary large values. We conclude that a
quantum mesoscopic strip behaves as an interferometer that
allows measuring the speed of the chiral Majorana mode. The
physical mechanism is the enhanced Andreev reflection due
to resonant backscattering of the chiral mode from the second
to the first interface. The presence of side barriers magnifies
the interferometer effect by yielding conductance spikes.

This work was funded by MINEICO (Spain), Grant No.
MAT2017-82639.
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