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Kekulé valence bond order in an extended Hubbard model on the honeycomb lattice
with possible applications to twisted bilayer graphene
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Using large-scale quantum Monte Carlo simulations, we exactly solve a model of fermions hopping on the
honeycomb lattice with cluster charge interactions, which has been proposed as an effective model with possible
application to twisted bilayer graphene near half-filling. We find an interaction driven semimetal to insulator
transition to an insulating phase consisting of a valence bond solid with Kekulé pattern. Finite size scaling
reveals that the phase transition of the semimetal to Kekulé valence bond solid phase is continuous and belongs
to chiral XY universality class.
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Correlation driven metal to insulator transition provides a
mechanism to generate insulators beyond the band picture.
One well known example is the undoped cuprates. Accord-
ing to band theory, it has a half-filled band and should be
a metal, but the strong interaction of localized d orbitals
makes it a Mott insulator with antiferromagnetic long range
order [1]. More interestingly, the doped cuprates shows un-
conventional superconductivity which cannot be explained by
traditional BCS theory [2]. The recently discovered twisted
bilayer graphene at small “magic” angle is a new system of
correlated insulator [3]. The twisted bilayer graphene forms
a moiré pattern, and flat band emerges at some magic twist
angles, according to theoretical calculations [4–8]. The recent
experiments on twisted bilayer graphene (TBG) near one of
the small magic angles found correlated insulator behavior
and unconventional superconductivity by gating [3,9].

To understand those exotic phases in TBG, the first task is
to know the nature of the insulating phase. In experiments [3],
the conductance data show that near charge neutrality the
bands may contain nodes as the conductance shows a “V”-
shaped dip. This is consistent with the moiré band picture
where there are Dirac points at the Brillouin zone (BZ) corner,
separating two sets of bands, each of which can accommodate
four electrons including spin [4–8]. The correlated insulating
phase occurs at half-filling of the electron or hole band, where
the occupation number per superlattice unit cell is ±2. In
addition, SdH oscillation measurements find Fermi pockets
near half-filling with an area given by the doped electron or
hole density, suggesting the existence of correlation induced
gaps.

With all these observations in mind, what is the proper
effective theory? As the charge center of the TBG forms
a triangular lattice, it is tempting to start from orbitals on
a triangular lattice [10–12]. However, this cannot produce
the Dirac nodes at the charge neutrality point mentioned
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above. Recently, it has been proposed that it is necessary to
construct a model on a honeycomb lattice with two orbitals
per site to account for the symmetry of the LDA band [13,14].
While there are subtle differences on possible obstructions to
the construction of localized Wannier orbitals, these papers
are in agreement that the honeycomb lattice is the proper
starting point for a tight-binding formulation. By making fur-
ther assumptions about the breaking of valley symmetry, Po
et al. [13] proposed the following Hamiltonian H = Ht + HU

to describe the subset of hole (or electron) bands:

Ht = −
∑

ij

∑

α

tij c
†
iαcjα + H.c., (1)

HU = U
∑

� (Q� − 2)2. (2)

The model consists of a single orbital with spin degeneracy
on the honeycomb lattice. Motivated by the fact that the
charge is concentrated on the triangular lattice formed by the
hexagonal plaquette, the interaction term punishes occupation
of the cluster charge Q� ≡ ∑

i∈� ni

3 (ni = ∑
α c

†
iαciα ) when

it deviates from two per plaquette. Note, in this definition,
the interaction strength is 2

3U for on site, 4
9U for nearest

neighbor (NN), and 2
9U for next NN (NNN) and third NN

(the interaction strength ratio from on site to third NN is
3:2:1:1). Besides the difference in the definition of the on site
U , it is possible that the additional NN, NNN, and third NN
repulsions add a mean field background and effectively reduce
the strength of the on site repulsion. This may explain why the
semimetal phase will turn out to be stable up to a larger value
of U/t compared with the standard Hubbard model. We shall
study this model using QMC for half-filling, i.e., two electrons
per unit cell, or a single electron per site. When U is small we
expect a semimetal with Dirac spectrum and we shall look
for the onset of an energy gap with increasing U . The cluster
charge interaction term distinguishes this model from the
conventional SU(2) Hubbard model on a honeycomb lattice
which has been intensively studied, and known to exhibit
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a continuous transition from a semimetal (SM) to an AB
sublattice antiferromagnetic insulator (AFMI) [15–17]. As we
shall see, the cluster charge model behaves very differently
and is therefore of intrinsic interest, even if its applicability to
twisted bilayer graphene remains to be established.

Model and method. We study the cluster charge model
on the honeycomb lattice using QMC. At half-filling (two
electrons per unit cell), the simulation is sign free as long
as hopping is limited to between opposite sublattices. In the
simulation, we will take first neighbor hopping t as energy
unit, and explore the phase diagram by varying cluster charge
interaction strength U/t and third neighbor hopping t3/t . For
the method, we use determinantal QMC [18–20], which is a
standard method to solve the interacting lattice model when
there is no sign problem. Particularly, to study the ground
state properties, the projection version of determinantal QMC
(PQMC) is chosen. PQMC starts with a trial wave function
|�T 〉 and the ground state wave function is obtained from
projection by the time evolution operator |�0〉 = e− �

2 H |�T 〉
as � goes to infinity. Physical observables can be calculated
as 〈Ô〉 = 〈�0|Ô|�0〉

〈�0|�0〉 , or more explicitly,

〈Ô〉 = 〈�T |e− �
2 HÔe− �

2 H |�T 〉
〈�T |e−�H |�T 〉 . (3)

The projection time is divided into M slices (� = M�τ ).
To treat the interaction part HI , we first perform a Trot-
ter decomposition to separate Ht and HU in exponen-
tial e−�τ H = e−�τ Ht e−�τ HU + O(�2

τ ). A further Hubbard-
Stratonovich (HS) transformation is performed on the interac-
tion part to get fermion bilinears coupled to discrete auxiliary
fields. After tracing out the free fermions degrees of freedom,
we can perform Monte Carlo sampling on the discrete auxil-
iary fields and measure the physical observables. We choose
the ground state wave function of half-filled noninteracting
systems (described by Ht ) as the trial wave function |�T 〉. In
the simulation, we set � = 2L if not specified. For imaginary
time slices, we set �τ = 0.1 for small U and t3, and �τ =
0.05 for large U or t3 (U/t > 30 or |t3/t | > 0.5). We have
tested that this setup is enough to get converged and error
controllable results. For the sign problem free of the model we
simulate, a concise argument is that as the model has particle-
hole symmetry, the particle-hole transformation on spin down
fermion effectively makes the positive U a negative one; then
we decouple the interaction part to the density channel by
HS transformation. Finally, the Monte Carlo weight can be
written as a square of determinant (spin up and down fermion
have the same determinant) of matrix only with real numbers,
which is always semipositive. More details of the PQMC
formulation and the absence of sign problem can be found
in the Supplemental Material [21].

Results. The U/t − t3/t ground state phase diagram at
half-filling is shown in Fig. 1. We found three phases in
total—they are semimetal (SM) phase, which is connected to
noninteracting case, the AFMI phase, which is connected to
the large U limit, and a Kekulé valence bond solid (KVBS)
phase, which is new. Thus, in contrast to the local Hubbard
model, an intermediate KVBS phase appears in a large part of
the phase diagram. Furthermore, surprisingly, the transition
between SM and KVBS is continuous. On the other hand, the
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FIG. 1. U/t − t3/t phase diagram of a spinful model with first
neighbor hopping t , third neighbor hopping t3, and cluster charge
interaction U on honeycomb lattice. SM denotes semimetal phase,
KVBS denotes Kekulé valence bond solid phase, and AFMI denotes
AB sublattice antiferromagnetic insulating phase. The transition
from SM to KVBS (red data points) is continuous and belongs to
chiral XY universality class. The transition from KVBS to AFMI
(black data points) is first order.

phase transition from KVBS to AFMI phase appears to be first
order.

The KVBS order is shown in the inset of Fig. 1. It breaks
the lattice translational symmetry, resulting in a

√
3 × √

3
enlarging of unit cell. The broken symmetry is Z3, corre-
sponding to the three ways to triple the unit cell size. Let us
define K = 1

3 b1 + 1
3 b2, where b1 and b2 are reciprocal lattice

vectors as shown in Fig. 2(c). K is the zone corner of the
original (large) BZ. The KVBS order is formed by coupling
electrons at K and −K, so the order parameter can be defined
as �2K = ∑

i,α ei2K·ri (c†i,αci+δ,α + H.c.). The phase of �2K
captures the Z3 symmetry breaking, which is related by 2π/3
rotation of the phase. This is demonstrated in Fig. 2(b) which
shows the histogram of the real and imaginary part of �2K.
In the KVBS phase, the histogram clusters into three regions
and they are connected by C3 rotation as shown in Fig. 2(b).
In the thermodynamic limit, one of the three branches will be
chosen and C3 (Z3) symmetry is broken.

In literature, the KVBS phase was studied in several SU(N )
quantum Heisenberg (-like) models and Hubbard models on
honeycomb lattice [22–26]. The KVBS order was even taken
as a mechanism to realize charge fractionalization with time
reversal symmetry in graphene [27]. The continuous transition
between SM and KVBS is intuitively unexpected because
a third order invariant of the KVBS order parameter can
be constructed and according to Landau mean field theory
the transition is predicted to be first order. However, if the
quantum fluctuations of gapless fermionic modes are consid-
ered, the continuous transition is made possible [24,25,28–
31]. More interestingly, at the SM to KVBS transition point,
both large-N renormalization group (RG) and functional RG
calculations [24,29,30] show that the C3 rotational symmetry
of the order parameter is enlarged to be a continuous one and
the transition belongs to the chiral XY universality class, as
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FIG. 2. (a) Histogram of KVBS order parameter at the SM to
KVBS phase transition point and (b) in the KVBS phase with L = 12
and t3/t = 0. (c) Dashed hexagon denotes first BZ of the honeycomb
lattice, so called large BZ in main text. Solid line hexagon denotes
the folded BZ by KVBS order, called the small BZ in the main text.
(d) KVBS mean field band structure in t3/t = −1.2 case with order
parameter �2K = 2. (e) Single particle gap for different momentum
points obtained from QMC at t3/t = 0 and (f) at t3/t = −1.2. Here
the single particle gap is obtained from the exponential decay of the
time-displaced Green’s function of the L = 12 systems and more
details are shown in the Supplemental Material [21].

opposed to the chiral-Heisenberg class for the SM to AFMI
transition [16,17,32,33]. The emergence of the U(1) symmetry
is also found in our SM to KVBS transition, and is shown in
Fig. 2(a).

In order to characterize the SM to KVBS transition, we
measured the correlation ratio of the KVBS order RB(U,L) =
1 − CB(2K+δq)

CB(2K) for different interaction U and system size

L, where CB(q) = 1
L4

∑
i,j eiq·(ri−rj )〈BiBj 〉 is the structure

factor of bond correlation with δ-direction bond Bi defined
as Bi = ∑

α (c†i,αci+δ,α + H.c.). In the above formula, δq is
the smallest momentum of the lattice, 〈· · · 〉 denotes Monte
Carlo average, and 2K is the Q vector of KVBS order, which
connects different valleys at K and −K. The correlation
ratio RB(U,L) is a renormalization invariant quantity of the
continuous SM to KVBS transition and it will cross at a point
Uc for different system size L. The crossing point Uc gives an
estimation of the location of the quantum critical point (QCP).
As there is an emergent continuous U(1) at the QCP [see
Fig. 2(a)], the critical behavior of the SM with chiral Dirac
fermions to KVBS phase transition might be described by
the chiral XY universality class [24,25,28–31,33]. To confirm
this conjecture, we perform a finite size scaling of the KVBS
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FIG. 3. (a) Correlation ratio of the bond correlation for t3/t =
0. The crossing point gives an estimate of the critical point Uc =
15.0(2). (b) Data collapse of bond structure factor at momentum 2K,
which is the absolute value squared of the KVBS order parameter.
The transition from SM to KVBS belongs to chiral XY universality
class. The data collapse gives ν = 1.05(5), η = 0.76(2).

structure factor near the QCP, and make a data collapse to find
the critical exponents. We assume Lorentz symmetry (z = 1)
here and expect CB(2K, U,L)Lz+η = fB((U/Uc − 1)L1/ν ).
The data collapse process is to find ν and η to make all data
points collapse at one single unknown curve described by
function fB, as shown in Fig. 3. We find ν = 1.05(5) and
η = 0.76(2), which are comparable with the QMC results on
different models [24,34].

We have also computed the lowest excitation energy for
a given momentum. The results are shown in Fig. 2(e). We
see that, as U increases, the state at K becomes gapped [35],
but the minimum gap remains at K. This suggests that with
doping the holes will form pockets at the K points. Since there
are two inequivalent K points in the large BZ this predicts that
with doping the area of the Fermi pocket should correspond to
that of two hole pockets, each with spin degeneracy. However,
this contradicts the SdH data on twisted graphene which are
consistent with a single doubly degenerate pocket [3,9]. If we
wish to retain the KVBS state, one option is to see if it is
possible to shift the minimum gap to �. We note that a mean
field band structure with KVBS order shows a lowest nonde-
generate band at the � point when t3/t < −1; see Fig. 2(d).
This motivates us to turn on a large and negative t3. We find
that the intermediate KVBS phase is quite robust. As shown
in the phase diagram, the third neighbor hopping t3 slowly
shrinks its region, but it still occupies quite a large region at
t3/t = −1.2. However, we find that the minimum gap remains
at the K point [see Fig. 2(f)]. The trend with further increase of
the magnitude of t3 is to exclude the KVBS phase, ending with
a single phase transition—from SM phase to AFMI. However,
as the magnitude of t3 increases, the system becomes more
like a

√
3 × √

3 enlarged lattice model with first neighbor
hopping, making the finite size effect more and more severe.
In order to study the phase transition properties of larger t3,
especially the way the SM to KVBS and KVBS to AFMI
transition meet together, larger system size is needed, which
is beyond computation resources we have currently, and we
leave it for a future study.

The transition from KVBS to AFMI phase here might be
a first order transition. The AFMI structure factor is defined
as CS(�) = 1

L4

∑
ij 〈(SA,i − SB,i )(SA,j − SB,j )〉, where SA/B,i
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FIG. 4. (a) Ratio between structure factor of AB staggered spin
correlation at momentum � and structure factor of bond correlation
at momentum 2K. The sharp jump is one evidence that KVBS to
AFMI transition here is first order. (b) Kinetic energy per site of the
system. Again the kink in the kinetic energy with tuning parameter
U is another evidence of first order transition.

is the spin operator of A/B site in unit cell i. As shown in
Fig. 4(a), the KVBS and AFMI structure factor ratio for dif-
ferent system size does not cross at a point, but with singular
jump, which is not consistent with a continuous KVBS to
AFMI transition, where KVBS and AFMI structure factor
ratio may be a renormalization invariant quantity because
of emergent SO(5) or SO(4) symmetry at the deconfined
quantum critical point [26,36,37]. The histogram of KVBS
order parameter near KVBS to AFMI transition also does
not show any signature of emergent continuous symmetry as
shown in the Supplemental Material [21]. In addition, the
kinetic energy per site also shows discontinuous behavior;
there is a kink as shown in Fig. 4(b), which is rather like a
first order behavior.

Discussion and conclusions. We solved the spinful fermion
model with cluster charge interaction on honeycomb lattice
by unbiased sign problem free QMC simulation. A U/t-t3/t

phase diagram is mapped out. In addition to the well known
SM and AFMI phase, we find a KVBS in the intermediate
region, which is new and unexpected. We found the transition
from SM to KVBS is continuous and belongs to the chiral
XY universality class. The critical exponents are calculated
with high precision, which can be used to benchmark many
analytical methods based on different approximations [29–
33,38].

Interestingly, this KVBS phase is also possible on isotrop-
ically strained graphene by allowing lattice relaxation [39],
and has already been realized in graphene grown epitaxially
on a copper substrate [40]. Regarding the TBG experiments,
the KVBS state is a promising candidate for the correlated in-
sulating phase found in the experiments. Further experiments
to search for lattice translational symmetry breaking of the
moiré pattern will be of great interest. While our results so far
do not explain the single doubly degenerate pocket seen in the
experiment, it remains possible that same sublattice hopping
may stabilize a single hole pocket at �. Unfortunately, such
models are extremely hard to study by QMC due to the
fermion sign problem.
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