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Cavity-waveguide interplay in optical resonators and its role in optimal single-photon sources
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Interfacing solid-state emitters with photonic structures is a key strategy for developing highly efficient
photonic quantum technologies. Such structures are often organized into two distinct categories: nanocavities
and waveguides. However, any realistic nanocavity structure simultaneously has characteristics of both a cavity
and waveguide, which is particularly pronounced when the cavity is constructed using low-reflectivity mirrors
in a waveguide structure with good transverse light confinement. In this regime, standard cavity quantum optics
theory breaks down, as the waveguide character of the underlying dielectric is only weakly suppressed by the
cavity mirrors. By consistently treating the photonic density of states of the structure, we provide a microscopic
description of an emitter including the effects of phonon scattering over the full transition range from waveguide
to cavity. This generalized theory lets us identify an optimal regime of operation for single-photon sources in
optical nanostructures, where cavity and waveguide effects are concurrently exploited.
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Solid-state emitters in photonic nanostructures play an
important role in quantum optics and photonic quantum tech-
nologies [1–3], both as single-photon sources [4] and more
generally as light-matter interfaces [5,6]. Such nanostructures
can be divided into two generic classes: Nanocavities work
by enhancing spontaneous emission into a well-defined cavity
mode through the Purcell effect [7], while simultaneously
suppressing decoherence mechanisms [8–13]. Waveguides
exploit slow-light effects in photonic crystal line defects
[14–16] or screening effects in, e.g., nanowires [17,18], such
that spontaneous emission occurs preferentially into the de-
sired channel, thus achieving high efficiencies over a broad
frequency range. These two classes of structures are treated
very differently in standard quantum optics theory. Nanocav-
ities are often modeled using a standard Jaynes-Cummings
treatment, where the electric field in the cavity is quantized as
a single optical mode [19], while waveguides are modeled as
an unstructured reservoir with a continuum of optical modes
with little or no spectral variation [20]. This is a problem in
the regime of strongly dissipative cavities, where neither of
the two models provide a good physical description.

To illustrate this point, consider a cavity embedded in
a waveguide structure defined by mirrors with variable re-
flectivity [Fig. 1(a)]. If the reflectivity of the mirrors is
decreased, intuitively one would expect a smooth transition
between a strongly localized single-mode cavity, to a stan-
dard broadband photonic waveguide, with an intermediate
regime at low Q factors, where the optical density of states
simultaneously exhibits characteristics of both a waveguide
and cavity [21–25]. However, the Jaynes-Cummings model
does not demonstrate this behavior, failing to describe the
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properties of emitters in either a waveguide or bulk medium
for vanishing Q factors.

In this paper, we present a quantum optical model that cap-
tures the transition between a high-Q cavity and a waveguide,
allowing consistent treatment of waveguides, lossy resonators,
and high-quality cavities. Our model constitutes a bridge
between highly accurate optical simulations of nanostruc-
tures [26] and microscopic quantum dynamical calculations.
This way, the quantum properties of generated light can be
calculated, while fully accounting for the electromagnetic
properties of the nanostructure. The generality of this the-
ory enables us to identify an optimal regime of operation
for quantum-dot single-photon sources, which simultaneously
harnesses the high efficiency of a waveguide and the phonon-
suppressing spectral structure of a cavity. This finding points
toward a new design strategy for single-photon sources that
surpasses the performance limitations of cavity and waveg-
uide designs alone [12]. The central concept of this design
strategy is to use a waveguiding dielectric structure with good
in-plane confinement and high β factor and implement mirrors
in this to form a cavity. Thereby, the quantum efficiency in the
low-Q regime is bounded from below by the β factor of the
waveguide.

Previous works have also treated the problem of an atomic
dipole positioned between two mirrors, interpolating between
weak and strong coupling by varying the reflectivity of the
cavity mirrors [27,28]. These analyses obtain exact delay dif-
ferential equations for the atomic population, fully accounting
for the microscopic structure of the mirrors. In contrast, the
present paper introduces an analysis of a solid-state emitter in
a nanophotonic structure, where in particular the interaction
with phonons is taken into account, which is essential for
modeling realistic single-photon sources [11,12,29,30].

We shall consider a two-level emitter placed in a
waveguide with two mirrors forming a Fabry-Pérot cavity
[Fig. 1(a)]. We denote the ground and excited states of the
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FIG. 1. (a) Schematic of a two-level emitter in a waveguide struc-
ture with two mirrors forming a Fabry-Pérot cavity. (b)–(d) Optical
LDOS vs frequency, scaled with the free spectral range (FSR), at the
position of the emitter for mirrors with weak, intermediate, and high
reflectivity, respectively.

emitter by |g〉 and |e〉, respectively, separated by the transition
frequency ωX. The electromagnetic field can be described by
a set of modes with annihilation and creation operators, ak

and a
†
k , frequencies ωk , and emitter coupling strengths gk . The

Hamiltonian governing the entire system takes the form H =
HE + HF + HEF, where HE, HF, and HEF are the Hamilto-
nians governing the emitter, electromagnetic field, and their
interaction, respectively. In the rotating wave approximation,
they take the standard forms (h̄ = 1): HE = ωX|e〉〈e|, HF =∑

k ωka
†
kak , and HEF = ∑

k gka
†
kσ + H.c., with σ = |g〉〈e|.

The k indices labeling the optical modes can be divided
into two sets: The first set, B, contains all the modes with
a certain transverse field profile of interest, for example,
that of the fundamental waveguide mode; the second set, R,
accounts for nonguided radiation modes, and guided modes
with different transverse field profile if the structure is not
single moded. Each mode set has an associated local density
of states (LDOS),

LS (ω) = π
∑
k∈S

|gk|2δ(ω − ωk ), S = B,R. (1)

In the absence of mirrors in the waveguide, both densities can
be considered constant over a large frequency range, LS �
�0
S , where �0

S is the spontaneous emission rate of the emitter
into the mode set S [cf. Fig. 1(b)]. However, when mirrors
with amplitude reflectivities r1, r2 are added to the structure,
LB becomes [31]

LB(ω) = �0
BRe

{
[1 + r̃1(ω)][1 + r̃2(ω)]

1 − r̃1(ω)r̃2(ω)

}
, (2)

where �0
B is the emission rate into the waveguide in the ab-

sence of mirrors, which is highly dependent on the local field
strength and position of the emitter. The phase accumulated
during propagation in the cavity is given by the effective
complex reflectivity coefficient r̃j (ω) = rj e

i[φj

0 +Lβ(ω)], where
φ

j

0 is a mirror reflection phase, L is the cavity length, and we
assume a dispersion-less propagation factor, β(ω) = neffω/c,
where neff is the effective refractive index of the waveguide
mode. For simplicity, we have assumed that the emitter is
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FIG. 2. (a) Contributions to LDOS from waveguide, �B (solid),
and cavity, Lc (dashed), vs mirror reflectivity, r1 = r2 ≡ r . [(b), (c)]
Dependence of emitter-cavity coupling rate, g, and cavity decay
rate, κ , on mirror reflectivity for cavities with L = 1 μm (red) and
L = 4 μm (black). Other parameters: �0

B = 0.3 μeV, neff = 2.5.
The limiting values gmax and κmax are indicated in panels (b) and (c)
with dotted lines.

placed in the middle of the cavity. Further, since the mirror
reflection phase only amounts to a shift in resonance and the
position of the field antinodes in the cavity, they may be safely
neglected.

Importantly, for intermediate reflectivities, the LDOS fea-
tures a Lorentzian line shape offset by a constant back-
ground [31], as shown in Fig. 1(c), where (2) is plotted for
r1 = r2 = 0.2. The background contribution to the LDOS, �B,
stems from the waveguide nature of the dielectric structure,
while the Lorentzian peak is a signature of the cavity quasi-
mode, which becomes the dominant contribution to the LDOS
as r � 1 [cf. Fig. 1(d)]. To separate these two contributions
from each other, we approximate the LDOS, (2), as LB(ω) �
L̄B(ω) = �B + Lc

κ̃
κ̃2+ω̃2 , where we have introduced the di-

mensionless frequency ω̃ = Lneff (ω − ωc )/c and linewidth,
κ̃ = κ (Lneff/c). The LDOS weights �B and Lc determine the
contributions from background waveguide modes and the cav-
ity, respectively. In the Supplemental Material [32], we show
how the mirror reflectivities r1 and r2, and the bare waveguide
emission rate �0

B uniquely determine all three parameters
�B, Lc, and κ̃ . Furthermore, Lc, L, and neff determine the
emitter–cavity coupling strength, g = √

cLc/(4Lneff ).
In Fig. 2(a), the contribution to the LDOS from waveguide

background modes and the cavity quasimode is shown as
functions of the mirror reflectivity for a symmetric cavity
(r1 = r2 ≡ r). These depend solely on the mirror reflectivity
and show clearly how the system is gradually transformed
from a waveguide for r = 0, to a cavity with full suppres-
sion of the waveguide background as r → 1. Similarly, the
variation of the emitter-cavity coupling strength is shown
in Fig. 2(b). While g is normally assumed to depend only
on the cavity mode volume, V , we see here that g → 0 as
r → 0, since the cavity does not contribute to the LDOS
in this limit. As the reflectivity increases, g approaches the

value gmax =
√

�0
Bc/(2Lneff ) [dotted lines in Fig. 2(b)]. This
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is consistent with the conventional scaling of g as ∼1/
√

V ,
noting that �0

B ∼ 1/A with A being the transverse mode area.
Figure 2(c) shows how the cavity linewidth tends to zero as
the mirror reflectivity is increased. Importantly, the linewidth
does not diverge as r → 0, but rather converges to the value
κmax = κ̃maxc/(neffL) [dotted lines in Fig. 2(c)], proportional
to the inverse of the time it takes for light to propagate from
the middle of the cavity to one of the mirrors [15]. In the
supplement, we determine κ̃max � 2.9, independent of any
parameters of the system.

From these parameters, we are able to derive a quantum
optical master equation to describe the dynamical and optical
properties of the emitter (see Ref. [32] for details),

ρ̇(t ) = −i[g(â†σ + âσ †), ρ(t )] + (�B + �R)D[σ ] + κD[â],

(3)

where â (â†) is the annihilation (creation) operator for the
cavity mode and D[x] = xρ(t )x† − 1

2 {x†x, ρ(t )} is the Lind-
blad dissipator. In the vanishing mirror limit, r = 0, we have
g = 0, �B = �0

B, and the master equation reduces to the usual
waveguide case. Conversely, in the high-reflectivity limit,
r → 1, the waveguide contribution to the LDOS vanishes,
�B → 0, and the master equation describes an emitter coupled
to a cavity quasimode and a radiation bath.

If the waveguide structure is single moded, the emission
rate �R only accounts for emission into radiation modes out
of the waveguide structure, and it can be taken independent
of the mirror reflectivity, �R � �0

R. However, if the structure
is multimoded, �R also accounts for emission into waveguide
modes with different transverse field distribution than B. The
cavity mirrors also modulate the LDOS for these modes, such
that the total LDOS of the radiation reservoir, R, becomes

LR(ω) = �RM +
∑
m

�0
mRe

{[
1 + r̃m

1 (ω)
][

1 + r̃m
2 (ω)

]
1 − r̃m

1 (ω)r̃m
2 (ω)

}
,

(4)

where �RM is the emission rate into radiation modes and
the sum runs over all other mode families in the waveguide,
except for the B mode of interest. In the absence of cavity
mirrors, we have the spontaneous emission rate, �0

m, and
complex reflectivity, r̃m

j (ω) = rm
j ei[φj +Lβm(ω)], associated to

the mth mode, where βm is the corresponding propagation
constant. Presuming that the emitter is only resonant with
the mode of interest, we can assume weak coupling to the
remaining modes, such that the emitter decay into R is simply
described by the spontaneous emission rate �R = LR(ωX ).

We now apply our formalism to the case of a quantum
dot (QD) single-photon source in a dielectric waveguide
structure with mirrors, taking scattering with longitudinal
acoustic phonons into account. We take one cavity mirror to
be perfectly reflecting and the other to have a finite reflectivity,
r1 = 1, r2 ≡ r . Because of interference effects, the presence
of a perfectly reflecting mirror modulates the LDOS by a
sinusoidal variation with a period of the free spectral range,
Lneff/c, even in the limit r = 0. If the frequency range of
interest is appreciably smaller than this range, as is often
the case for a QD in a nanocavity, we find that the effect of
the perfect bottom mirror can be implemented by using the

renormalized rates, �0∗
B = 2�0

B and κ∗ = κ/2, where �0
B and

κ are calculated assuming a symmetric cavity as in Fig. 2.
This means that in the limit of a vanishing front mirror
reflectivity, the renormalized β factor in the presence of the
back mirror is β∗ = 2�0

B/(2�0
B + �R) = 2β/(β + 1). Here,

β = �0
B/(�0

B + �R) is the waveguide β factor in the absence
of both mirrors, not to be confused with the wave propagation
constant. Furthermore, we assume that the underlying waveg-
uide structure is single-moded such that �R = �RM can be
considered constant.

The total Hamiltonian of the system is given by H = HE +
HF + HEF + HP + HEP, with HP and HEP being the free
phonon and emitter-phonon Hamiltonians, given by [33,34]

HP =
∑

q

νqb
†
qbq, HEP = |e〉〈e|

∑
q

Mq(bq + b†q), (5)

where bq (b†q) is the annihilation (creation) operator for
the phonon mode with wave vector q, associated fre-
quency νq, and exciton coupling strength Mq. The phononic
spectral density is given by J (ν) = ∑

q M2
qδ(ν − νq) =

αν3 exp[−ν2/ν2
c ], where α is the exciton-phonon coupling

parameter and νc is the cutoff frequency [35]. To calculate
the dynamics and account for non-Markovian phonon relax-
ation, we make use of the polaron theory [12,35–39]. This
is done by first applying the unitary transformation T =
exp(|e〉〈e|S) to the Hamiltonian, H → Ĥ = T HT †, where
S = ∑

q ν−1
q Mq(b†q − bq). In this frame, an equation of mo-

tion for the reduced state of the QD that is nonperturbative
in the electron-phonon coupling strength may be derived (see
Ref. [32] for details). For completeness, we also include a
pure dephasing process [13] with rate γ , which accounts for
dephasing from charge noise [40], spin noise, and virtual
electron-phonon scattering [41,42].

The indistinguishability of photons emitted from the QD
into detected modes [12,43] can be calculated using tools from
optical theory [44,45], as discussed in the SI. This leads to

I = [2PB/�0
B]−2

∫ ∞

−∞
dωdω′|G∗(ω)G(ω′)S0(ω,ω′)|2, (6)

where G(ω) = [1 + r̃1(ω)]t2[1 − r̃1(ω)r̃2(ω)]−1 accounts for
the cavity filtering, PB = (�0

B/2)
∫ ∞
−∞ dω|G(ω)|2S0(ω,ω)

is the total power in the B modes, and S0(ω,ω′) =∫ ∞
−∞ dtdt ′ei(ωt−ω′t ′ )〈σ †(t )σ (t ′)〉 is the two-color dipole spec-

trum. The two-color spectrum may be separated into two
contributions S0 = SZPL + SPSB, where SZPL describes emis-
sion into a sharp zero-phonon line (ZPL) from direct ex-
citon relaxation, and SPSB corresponds to a broad phonon
sideband (PSB) where a phonon and a photon are simulta-
neously emitted. Centrally, the Franck-Condon factor, B2, is
the fraction of photons emitted into the ZPL, if the electro-
magnetic LDOS is frequency independent [12]. Here, B =
Tr[B+e−HP/(kBT )]/Tr[e−HP/(kBT )], where T is the temperature
and kB is the Boltzmann constant. The efficiency is defined
as the ratio of energy emitted into the desired waveguide
mode and the total emitted energy. It is calculated as E =
PB/(PB + PR), where PR = �R

∫ ∞
−∞ dωS0(ω,ω).

As an example, we choose parameters consistent with a
vertical tapered nanocavity [31], where the high efficiency
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FIG. 3. (a) Efficiency and (b) indistinguishability of tapered
nanowire [31] single-photon source vs transmittivity of top mirror
for cavities with lengths L = 1

2 λX/neff (solid) and L = 15λX/neff

(dashed). The thin dotted line indicates β∗ = 0.974 in panel (a) and
B4 = 0.826 in panel (b). The spontaneous emission rate into the
mirrorless waveguide is �0

B = 1.1 μeV.

of a narrow photonic nanowire is combined with tapered
mirror sections to form a cavity. For such a structure, Fig. 3
shows the efficiency and indistinguishability as functions of
transmittivity of the finitely reflecting cavity mirror for iden-
tical waveguide structures with cavity lengths L = 1

2λX/neff

(solid) and L = 15λX/neff (dashed), where λX is the QD
transition wavelength, taken as 950 nm. For clarity, γ has
been set to 0.

In the weak emitter-cavity coupling regime, the cavity
resonance is broad compared to the ZPL but can still vary
appreciably over the PSB, meaning phonon-assisted QD re-
laxation is suppressed and the ZPL is Purcell enhanced.
In this parameter regime, we may generalize the results of
Ref. [12] to obtain analytical expressions taking into account
the waveguide-cavity interplay,

I = �tot

�tot + 2γtot

[
(�B + �cav)B2

(�B + �cav)B2 + 2�0
BF (1 − B2)

]2

,

(7)

E = (�cav + �B )B2 + 2�0
BF (1 − B2)

(�cav + �B )B2 + 2�0
BF (1 − B2) + �R

, (8)

where F = [
∫

dωSPSB(ω,ω)]−1 1
4

∫
dω|G(ω)|2SPSB(ω,ω) is

the fraction of the PSB not removed by filtering
imposed by the electromagnetic LDOS, γtot = γ +
2π (gB/κ )2J (2gB ) coth(gB/(kBT )) is a phonon-enhanced
pure dephasing rate, and �tot = �cav + �B + �R. In the
limit t = 1, (8) reduces to E = �0∗

B /(�0∗
B + �R), meaning

the efficiency converges toward β∗, as the front mirror is
gradually removed [black dotted line in Fig. 3(a)]. If the
waveguide mode contribution to the LDOS were ignored, the
efficiency would approach zero as r → 0 [12], which is only a
valid approximation when the underlying waveguide structure
has a vanishing β factor. This is the case for a conventional
micropillar structure [8–10], where the efficiency of the bare
dielectric pillar structure without the DBR mirrors is close
to zero. In the absence of pure dephasing, γ = 0, (7) gives
I → B4 [black dotted line in Fig. 3(b)] as t → 1, consistent
with Ref. [12].

Contrarily, in the strong emitter-cavity coupling regime,
g > κ , the cavity and exciton hybridize and form a polariton
pair. In this case, the phonons drive incoherent transitions
between the two polaritons, leading to a decreased photon
indistinguishability. To resolve this effect, quantization of
the cavity becomes crucial, and a semiclassical weak light-
matter coupling theory is insufficient. As seen in Fig. 3(b),
increasing the cavity length leads to a smaller g, which allows
further narrowing of the cavity line and thus suppression of
the phonon sideband without entering the strong coupling
regime, due to a larger cavity mode volume. Since the under-
lying waveguide structure has a high β factor, the efficiency
does not suffer noticeably from this. The efficiency starts
to decrease when κ becomes small enough that the photon
escapes the cavity by scattering to radiation modes via the
QD rather than dissipating through the mirror. Increasing
the cavity length will continue to improve the coherence of
emitted photons until the cavity-free spectral range becomes
comparable to the width of the PSB, which will then become
Purcell enhanced. For typical QDs, the PSB extends over a
few meV, and the cavity would need a length of approximately
50–100 μm for this effect to set in.

In conclusion, we have characterized the important role of
weakly suppressed waveguide modes in nanocavities. As a
demonstration of this, we have shown that long nanocavities
based on high β factor waveguides constitute a promising new
route to high-performance single-photon sources.
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