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Magnetization-direction tunable nodal-line and Weyl phases
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We propose a spinless symmetry-based three-band tight-binding model with the coexistence of nodal-line
and Weyl points, after considering spin-orbital coupling and different magnetization directions. It is confirmed
that the number of Weyl points and nodal lines can be tuned by the magnetization direction. The combination
of time-reversal symmetry and mirror reflection symmetry plays a crucial role in protecting the degeneracy of
nodal lines. Moreover, we put forward a different class of materials C4CrX3 (X = Ge and Si) which host such a
nontrivial semimetallic phase.
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Being topological materials with vanishing band gaps,
Weyl semimetals [1] and nodal-line semimetals [2] have been
intensively studied both theoretically [1–14] and experimen-
tally [15–20]. In general, for compounds with a nontrivial
topological nature, symmetry plays a crucial role, which
constrains the Hamiltonian and leads to so-called symmetry
protected topological orders [21]. The band dispersion of
the Weyl points and nodal lines in momentum space has a
twofold degeneracy, leading to nontrivial surface states, which
are Fermi arc [4] and drumhead states [22,23], respectively.
Nevertheless, as the quantum anomalous Hall insulators, no
particular symmetry is required for the occurrence of Weyl
points, where the breaking of either time-reversal symmetry
(TRS) or spatial inversion symmetry is in favor of giving
rise to Weyl points [11]. On the other hand, the occurrence
of a nodal line requires more symmetries than that of Weyl
points because the codimension of a nodal line is less than the
Weyl points [2]. In particular, magnetic topological semimet-
als are very interesting [24–27], including both ferromagnets
[20,28–32] and antiferromagnetic materials [33–35]. From
an application point of view, nontrivial topological states in
magnetic materials are of particular interest. The minimal
number (two) of Weyl fermions makes it easier to observe
negative longitudinal magnetoresistance [31,36], and also to
engineer quantum anomalous Hall thin films. It is noted
that the nontrivial topological electronic states are entangled
fundamentally with the magnetic degrees of freedom, leading
to tunable properties such as spin-orbit torque [34,37,38].

In this Rapid Communication, we investigate a lattice
model allowing for the coexistence of Weyl points and nodal
lines which can be further tailored by the magnetization
direction, and propose a possible realization in a class of
materials. Based on a symmetry analysis using a three-band
tight-binding lattice model, it is demonstrated that the number
of Weyl points and nodal lines can be manipulated by varying
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the magnetization direction via spin-orbit coupling (SOC). It
is further shown that such a model can be realized in C4CrX3

(X = Si and Ge) by explicit density functional theory (DFT)
calculations, where the topological properties are investigated
in detail. We expect that such an effective tailoring can be re-
alized in other magnetic materials with the same point group,
requiring further experimental and theoretical investigations.

We start with a simple lattice model with a D2d point
group symmetry (Fig. 1). There are two mirror reflection
planes, namely, the (110) and (110) planes, and three C2

rotation axes parallel to the x, y, z axis, as shown in Fig. 1.
It is supposed that the bands around the Fermi energy (EF )
originate from the d orbitals of the A atoms located at the
corners. From the character table of the D2d point group,
there are three one-dimensional irreducible representations
and one two-dimensional irreducible representation. For sim-
plicity, we use three d orbitals, dz2 , dx2−y2 , and dxy , as our
basis, corresponding to three one-dimensional irreducible rep-
resentations. Neglecting SOC first and considering only the
nearest-neighbor and next-nearest-neighbor hoppings, in the
basis of |ϕi〉 = {|dz2〉 , |dx2−y2〉 , |dxy〉}, the Hamiltonian can
be expressed as

Hij (k) =
∑

R

eik·Rtij (R),

tij (R) = 〈ϕi (R)|H |ϕj (r − R)〉 , (1)

where tij denotes the hopping integrals for neighboring sites
with displacement R which are obtained following Ref. [39],

tij (RRn) = Di (R)tij (Rn)[Dj (R)]†, (2)

with Di (R) the matrix of the ith irreducible representations.
The corresponding Hamiltonian matrix elements can be ex-
plicitly written as

Hdiag = ε + α(cos kx + cos ky ) + β cos kz + γ cos kx cos(ky )

+ δ(cos kx cos kz + cos ky cos kz),

H12 = α(cos kx − cos ky ) + δ(cos kx cos kz − cos ky cos kz),
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FIG. 1. (a) Sketch of the lattice model. The blue spheres are eight
equivalence A atoms forming a simple cubic structure, the red lines
denote three C2 rotation axes, and green planes represent two mirror
planes. (b) Band structure with and without SOC. (c) Schematic plot
of the evolution of the Weyl points and nodal lines with different
magnetization directions θ . The blue (red) points denote Weyl nodes
whose chirality is +1 (−1); notice that when θ �= π

2 (top view of the
three-dimensional plot), the Weyl points are no longer on the high
symmetry lines.

H13 = iβ sin kz + γ sin kx sin(ky )

+ iδ(cos kx sin kz + cos ky sin kz),

H23 = iδ(cos kx sin kz − cos ky sin kz),

Hij = H ∗
ji . (3)

Hij is the function of ε, α, β, γ , and δ which denotes the
hopping integrals tij tabulated in the Supplemental Material
[40], and ki (i = x, y, z) are the Cartesian components of the
k vector in the Brillouin zone. It is noted that the hopping
integrals for Fig. 1(b) are obtained by fitting the DFT band
structure of C4CrSi3. It is easy to find out that when kx = ky or
kx = −ky , i.e., k vectors on the mirror plane, the Hamiltonian
becomes block-diagonal. This is also true when (kx = π, kz =
0) or (ky = π, kz = 0), i.e., k vectors on the C2 rotation axes.
In such cases, it is observed that there exist nodal lines and
Weyl points in the corresponding planes and lines, which will
be discussed in detail.

Generally, combined with the TRS breaking, SOC will
lower symmetry further and hence can lift the degeneracy
in the electronic structure. In this case, specific symmetries
are required to protect the Weyl points and nodal lines. For
instance, Niu et al. have shown that mirror symmetry is crucial
for the existence of nodal lines in two-dimensional magnetic
systems [41]. In our three-dimensional model, this is also
true, i.e., the nodal line exists in the presence of SOC. More
interestingly, it is observed that the magnetization direction

can be used to tailor the topological properties. For a general
spin quantization direction m characterized by (θ, φ) where
θ (φ) denotes the polar (azimuthal) angle, the “spin-up” and
“spin-down” spinor can be written as

|↑〉m = e−i
φ

2 cos
θ

2
|↑〉 + ei

φ

2 sin
θ

2
|↓〉 ,

|↓〉m = −e−i
φ

2 sin
θ

2
|↑〉 + ei

φ

2 cos
θ

2
|↓〉 , (4)

where 0 � θ � π , 0 � φ < 2π , and |↑〉 and |↓〉 are the
eigenvectors of ŝz. The SOC term corresponding to a general
magnetization direction m in the basis of our lattice model
is [42]

HSOC = 1

2
iξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 cos θ 0 0 − sin θ

0 − cos θ 0 0 sin θ 0

0 0 0 0 0 0

0 0 − sin θ 0 0 − cos θ

0 sin θ 0 0 cos θ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

We note that HSOC is only a function of polar angle θ . That
is, the band degeneracy and thus the topological properties
are directly coupled to the magnetization direction m. From
the symmetry point of view, all the relevant operations can be
obtained by

P −1
R H (k)PR = H (R−1k), (6)

where PR (e.g., mirror operator M or C2 rotation operator
PC) is the symmetry operator of R, and R is the 3 × 3
matrix defining the three-dimensional symmetry operation.
Moreover, eigenvalues for the mirror operator of |dxy〉 and
|dx2−y2〉 are ±1. Considering the spin degree of freedom,
we can obtain the matrix representations of the symmetry
operator with SOC,

PSOC = (σ · a) ⊗ P, (7)

where σ = (σ0, σ1, σ2, σ3) are the identity matrix and Pauli
matrices, a is the coefficient of the Pauli matrix, and P is
the symmetry operator without SOC. Taking the (110) mirror
plane as an example, as magnetization is a pseudovector,
i.e., the magnetization direction changes (is invariant) when
it is parallel (perpendicular) to the mirror plane, i → − j ,
j → −i , k → −k, the magnetization direction m = cos φ

sin θ i + sin φ sin θ j + cos θk will change to mM = cos
( π

2 − φ) sin(θ + π )i + sin ( π
2 − φ) sin(θ + π ) j + cos(θ +

π )k, hence φ → ( π
2 − φ), θ → (θ + π ). Therefore, it

is easy to get σ · a by |φ, θ〉 = σ · a |π
2 − φ, θ + π〉,

correspondingly σ · a = i√
2
(σx − σy ). For the (110) mirror

plane, it is easy to show that σ · a = i√
2
(σx + σy ). In the

same spirit, for C2(z) (C2(x), and C2(y)), σ · a = iσz (iσx , and
iσy), respectively.

Using the spin matrices for all the relevant symmetry
operations obtained so far, it is straightforward to find out
the change in the electronic structure induced by HSOC. When
the spin matrices for the mirror and C2 symmetries can be
expressed as σ · a = ασy + βσz, where α and β are arbitrary
complex constants, [H,M] = 0, [H,PC] = 0, if and only if
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FIG. 2. The lattice structure and electronic structure of C4CrX3.
(a) The lattice structure of C4CrX3. (b) Weyl points of C4CrSi3 in
a reciprocal lattice without SOC: The color lines show the main
contribution of partial density of states near the gapless points in the
first Brillouin zone, and the solid lines show the high symmetry path
in (c). (c) Band structure (without SOC) and fat band structure (with
SOC, magnetization direction along 001 directions) of C4CrSi3. The
k path is shown in (b) where without considering SOC there are no
gapless points along high symmetry lines, and the gap is open in
X-M1-Y . The colors show four different orbit contributions.

θ = π
2 . However, as discussed above, when the mirror opera-

tion is a linear combination of σx and σy , we have to consider
the combination of TRS and mirror symmetry. Taking the
TRS operator T as iσyK ⊗ I with K indicating the complex
conjugate, we have also [H,MT ] = 0, [H,PCT ] = 0, if and
only if θ = π

2 . That is, for θ = π
2 , regardless of the resulting

spin matrix in the presence of SOC, the original symmetry
of the Hamiltonian Hij (k) will not be further lowered, i.e.,
the topological nodal-line state is untouched. On the other
hand, when θ �= π

2 , the SOC will break the combination of
TRS and mirror/C2 symmetries, leading to the reduction of
the nodal line into Weyl points. In this sense, the topolog-
ical properties are protected by a combination of TRS and
mirror/C2 rotation symmetries, and tuning the magnetization
direction can effectively change the topological nature of the
electronic states. This is consistent with our observation of
the three-band lattice model [Eq. (3)], where nodal lines are
protected by the mirror/C2 symmetries without SOC, but will
be reduced to Weyl nodes after considering SOC if θ �= π

2 ,
i.e., if the magnetization is not in the θ �= π

2 plane.
Turning now to the realization of such a lattice model

which is in principle applicable to all materials with the point
group D2d , we propose that magnetization-direction tunable
topological states can be achieved in C4CrX3 (X = Ge and
Si). It is noted that both C4CrSi3 and C4CrGe3 are predicted
to host the spin gapless semiconducting state [43,44].

For C4CrX3, the crystal structure is shown in Fig. 2. The
crystalline space group is P 43m, leading to the Td point group
symmetry. There are six mirror refection planes, namely,
(011), (011), (101), (101), (110), (110) planes, and the three
C2 rotation axes are the x, y, z axes, respectively. To identify
the gapless points in the Brillouin zone with and without SOC,
non-self-consistent DFT calculations are performed on a very

TABLE I. Weyl points and nodal-line dependence on the magne-
tization direction.

Magnetization direction WPs (pairs) Nodal line

Without SOC 6 6
001 8 4
010 8 4
100 8 4
011 10 2
101 10 2
110 10 2
111 12 0

dense k mesh. For the case without SOC, we find six pairs of
Weyl points and six nodal lines lying exactly on the six mirror
planes. It is noted that the Weyl points and nodal lines can
be divided into three sets, each containing four Weyl points
and two nodal lines (Fig. 2). It is observed that each set of
Weyl points and nodal lines can be attributed to different d

orbitals, based on the fat band plots, as shown in Fig. 2(c).
For instance, for M1 (0.5, 0.5, 0), the relevant orbitals are the
{dxy, dz2 , dx2−y2} orbitals, while for M2 (0, 0.5, 0.5) and M3

(0.5, 0, 0.5), the orbitals originate from the {dyz, dz2 , dx2−y2}
orbitals and the {dxy, dz2 , dx2−y2} orbitals, respectively. Focus-
ing on the {dxy, dz2 , dx2−y2} orbitals at M1 (0.5, 0.5, 0), it is
observed that without SOC, there exist two nodal lines lying
on the M110 and M110 mirror planes, and two pairs of Weyl
nodes on the C2x and C2y rotation axes. This corresponds to
the black lines in the left panel of Fig. 2(c). After considering
SOC with the magnetization direction along (001), the degen-
eracy in the nodal lines is lifted, resulting in two more pairs
of Weyl nodes. Correspondingly, a finite band gap is opened,
as shown in the left panel of Fig. 2(c). This is consistent with
our analysis using the lattice model in previous discussions.
At M1 (0.5, 0.5, 0), the corresponding isotropy group is D2d ,
with the resulting bands from the {dxy, dz2 , dx2−y2} orbitals
behaving exactly the same as expected based on the lattice
model.

The symmetry arguments can be further applied to un-
derstand the band structure at other M points. It is noted
that dxy , dyz, and dxz form the basis of the three-dimensional
irreducible representation of the Td point group. Therefore,
without SOC, the bands at M1, M2, and M3 are related to
each other by the C3 rotation along the [111] axis, where
the band character changes depending on the M points
[Fig. 2(c)]. After considering SOC, as shown in Fig. 2(c) for
M ‖ (001), the band gap is only opened between bands from
the {dxy, dz2 , dx2−y2} orbitals at M1, while for the bands from
the {dyz, dz2 , dx2−y2} orbitals at M2 and the {dxz, dz2 , dx2−y2}
orbitals at M3 the degeneracy is kept. Such degeneracies for
bands from the {dyz, dz2 , dx2−y2} and {dxz, dz2 , dx2−y2} orbitals
lead to nodal lines on the (011) and (101) planes, respectively.
Based on the lattice model presented in previous discussions,
such nodal lines are protected by the fact that the magneti-
zation direction is perpendicular to the mirror planes such as
(011) and (101), i.e., θ = π

2 effectively.
In Table I, the number of Weyl points and nodal lines

from DFT calculations are shown for cases without SOC and
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FIG. 3. Surface states and Berry curvature. (a) Surface electronic
structure projected onto the (001) surface. (b) Surface electronic
structure projected onto the (010) surface. (c) Surface states on the
(001) plane obtained with ξ = 0.04, θ = π

4 . (d) The distribution of
Berry curvature in the red square highlighted in (c), where the arrows
indicate the x, y component of the Berry curvature, the blue (red)
solid circles denote Weyl nodes with chirality +1 (−1), and the cyan
solid circles correspond to (b) the gapless points of the nodal lines in
the (001) plane.

with SOC for several magnetization directions. That is, after
considering SOC, the number of pairs of Weyl points nwp

and nodal lines nnl satisfy nwp + nnl = 12. Such a conser-
vation law is guaranteed by the symmetry, e.g., each pair of
perpendicular mirror planes define an axis, and two nodal
lines will be protected when the magnetization direction is
perpendicular to the axis, corresponding to the θ = π/2 case
as discussed above. Therefore, the resulting number of nodal
lines nnl is always two times the number of axes (kx, ky, kz)
which are perpendicular to the magnetization direction.

The topological nature of the electronic structure can be
explicitly visualized from the surface states. Figure 3 shows
the surface states and the distribution of the Berry curvature
for θ = π

2 of the three-band D2d lattice model. Without any
loss of physics, here we set the H� = 0, i.e., we consider
a spinless model as given by Eq. (3). It is noted that the
surface states shown in Fig. 3 are in good agreement with
those obtained based on DFT calculations (cf. Supplemental
Material [40]).

Obviously, in the case without SOC, there are Fermi arcs
connecting two Weyl nodes. As shown in Fig. 3(a), on the
(001) surface, the Fermi arcs connect the Weyl nodes from

the blue group [Fig. 2(b)]. Actually, due to the presence of
the nodal lines, the Fermi arcs from X to M merge into the
projected drumhead surface states originating from the nodal
lines. The chirality of the Weyl nodes is clearly evidenced by
the distribution of the Berry curvature [Fig. 3(d)], where the
Berry curvature “flows out” of the Weyl points with chirality
+1 (blue points), “passes by” the points of the nodal line
(cyan points), and finally “flows into” the Weyl points with
chirality −1 (red points). On the (010) surfaces [Fig. 3(b)],
two Weyl points are projected onto the X points, and the other
two Weyl points are located on each side of X on the line
�-X. Additionally, there are two gapless points from the pro-
jected nodal lines. After considering SOC, when θ = π

2 , the
derived surface states (not shown) are exactly the same with
the corresponding cases without SOC [Figs. 3(a) and 3(b)].
However, when θ �= π

2 , the SOC breaks the combination of
mirror and time-reversal symmetry following the analysis in
previous discussions, leading to a reduction of nodal lines into
Weyl points. In Fig. 3(c), it is clear that at M the degeneracy
in the nodal lines has been lifted, resulting in a local band
gap. In this case, on the projected surface states, the original
Weyl points are no longer connected to the nodal lines, and
the Fermi arcs lie between two Weyl points along the X-M
section. After further investigation, it is noticed that four of
the eight Weyl points are type-II Weyl points.

To summarize, we have developed a three-band lattice
tight-binding model for the D2d point groups for the dz2 , dxy ,
and dx2−y2 orbitals, where nodal lines and Weyl points coexist.
It is observed that the magnetization direction can be used
to tailor the electronic structure and hence the topological
properties. A detailed symmetry analysis reveals that a com-
bination of mirror and time-reversal symmetry can protect the
occurrence of nodal lines for specific magnetization directions
even after considering SOC. In addition, we put forward a
different class of materials C4CrX3 (X = Ge and Si) where
the three-band model can be applied and demonstrated explic-
itly that the number of nodal lines and Weyl points depends
on the magnetization direction. We suspect that in other real
materials with the essential symmetry, such a magnetization-
direction tunable topological phase transition should exist,
awaiting further theoretical and experimental explorations.
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