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Conditions for the occurrence of Coulomb blockade in phosphorene quantum
dots at room temperature
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We study the addition energy spectra of phosphorene quantum dots, focusing on the role of dot size, edge
passivation, number of layers, and dielectric constant of the substrate where the dots are deposited. We show that
for sufficiently low dielectric constants (εsub < 4), Coulomb blockade can be observed in dot sizes larger than
10 nm, for both passivated and unpassivated edges. For higher dielectric constants (up to εsub = 30), Coulomb
blockade demands smaller dot sizes, but this depends on whether the edges are passivated or not. This dramatic
role played by the substrate is expected to impact the development of applications based on phosphorene quantum
dots.
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I. INTRODUCTION

The production of single (few) layers of black phosphorus
(BP), also known as phosphorene, attracted much attention
from the scientific community because of its physical and
chemical properties that are potentially useful for nanoelec-
tronics [1–4]. Phosphorene combines characteristics of tradi-
tional direct gap semiconductors and the exciting physics of
two-dimensional systems. Different from graphene, few-layer
phosphorene has a large band gap, varying between 0.3 eV
and 2.0 eV, that can be tuned by the number of stacked layers
[5–9]. These properties inspired the demonstration of many
different applications like field effect transistors [4,10], detec-
tors [11], modulators [12], and sensors [13]. The possibility
of developing a phosphorene-based technology triggered a
huge number of studies to understand and control its prop-
erties. For example, it was recently shown that phosphorene
exhibits, depending on the substrate where it is deposited, very
large exciton binding energies [14,15]. de Sousa et al. cal-
culated the exciton fine structure of monolayer phosphorene
quantum dots (PQDs) deposited on different substrates. For
quantum dots (QDs) large enough to reproduce the properties
of infinite layer, they demonstrated that difference in the
photoluminescence (PL) peaks of two independent studies
of Zhang (1.67 eV) [16] and Li (1.73 eV) [17] are due to
the interaction of carriers in the phosphorene layer with the
substrate [18]. In fact, several fundamental studies have shown
that the dielectric surroundings have strong influence in the
interparticle interaction in two-dimensional systems [19–23].
This interaction can be tuned to produce Coulomb engineered
stacks of two-dimensional materials [24].

A natural direction of the research on phosphorene is the
fabrication and investigation of the properties of PQDs. It is
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expected that PQDs exhibit interesting physical and chemical
phenomena, mixing the characteristics of colloidal quantum
dots (e.g., size-dependent quantum confinement and surface
functionalization) with the properties of two-dimensional sys-
tems. PQDs can be fabricated by wet exfoliation methods,
which allow reasonable control of the size of QDs. Studies on
the fabrication of PQDs reported fairly circular shapes with
a varying number of layer and sizes ranging between 1 nm
and 15 nm, depending on the fabrication method [25–29].
In particular, Vishnoi et al. [29] reported the production of
stable blue-emitting PQDs, and wavelength-dependent PL.
They also reported PL quenching by electron donors and
acceptors. The absence of size dependence in the PL and PL
quenching suggests that the QDs surface may have dangling
bonds that are partially saturated by these donors/acceptors
molecules.

Technological applications of PQDs have also been envi-
sioned and tested. For example, PQDs have been fabricated
and employed in ultrafast fiber lasers [30], solar energy con-
version [31], and in nonvolatile memories [25]. In the latter
application, Zhang et al. fabricated low-power nonvolatile
memory and measured the charge storage properties of the
device. They reported a high ON/OFF current ratio of the
order of 104 at reading voltages of only 0.2 V, which is
significantly higher than C60- and MoS2-based PVP devices.
Although the exact write/erase mechanism of the nonvolatile
memories produced by Zhang et al. were not described, Lino
et al. [32] hypothesized that their working principle is very
similar to the single (few) electron transistor (SET) device
model, and demonstrated that the charging energies of small
PQDs are much larger than the thermal energy kBT and
should exhibit Coulomb blockade (CB) effects. In particular,
CB in two-dimensional materials has only been measured in
graphene quantum dots and nanoribbons [33,34], and experi-
mental evidences of CB in phosphorene-based nanostructures
are yet to be reported. Constrained by the limitations of
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FIG. 1. Schematics of QD charging spectroscopy. (a) An STM tip is positioned above the QD, and a voltage difference is applied between
tip and substrate. (b) Conductance dI/dV as a function of the voltage. The peak’s position depends on the charging energies μn, and the
interpeak’s separation depends on the addition energy spectra �n,n+1. (c) QD of 3 nm of diameter with and without saturation of dangling
bonds. (d)–(e) Filling of the single particle states of saturated and unsaturated QDs for several charging states.

the density functional theory (DFT), Lino et al. focused on
small and isolated PQDs, while in practical applications the
dots are deposited in a substrate. However, the substrate-
induced dielectric screening between charge carriers in the
two-dimensional layer (either QDs or infinite phosphorene
sheets) is too strong to be disregarded [18]. Unfortunately,
the calculation of the electronic structure of QDs sitting
on dielectric substrates is a challenging task for DFT-based
methods. As the charging energy of a system is determined
mainly by the Coulomb interaction among confined particles,
new methods to describe the role of substrate in the addition
energy spectra of QDs made of two-dimensional materials are
necessary.

In this paper, we calculate the addition energy spectra of
PQDs in realistic conditions, focusing on the role of QD
size, edge passivation, and substrate, covering a wide range
of substrate dielectric constants of materials relevant to nano-
electronics. We demonstrate that these parameters are critical
for the observation of CB at room temperature, whereas
substrate is more important than dot size, especially in the
case where dangling bonds are not passivated. We also map
the range of QD sizes and substrate dielectric constants for
which CB is expected to occur.

II. METHODOLOGY

A. QD charging process and addition energy spectra

The QD charging process is depicted in Fig. 1, where
it is assumed that after particles are added/removed to/from

the QD, the system quickly thermalizes to its ground state,
such that the added particles fill unoccupied single particle
states according to Hund’s rule. Thermal fluctuations are
disregarded. The addition/removal of electrons in a neutral
QD (also regard as the reference system with N electrons)
can be measured by scanning tunneling spectroscopy (STM)
[35–38]. The conductance dI/dV as a function of the voltage
V applied between the STM tip and substrate exhibits peaks
whose positions and inter-peak separations depend on the
charging energy and addition energy spectrum of the QD. As
electrons are either added or removed, the total energy of the
confined system is modified. The charging energy μn is the
energy needed to add one electron to a QD already containing
n − 1 electrons. This quantity is calculated as [39–44]

μn = E(n) − E(n − 1), (1)

where E(n) is the total energy of the QD containing n

electrons. The addition energy �n,n+1 indicates how much
more energy is needed to add the (n + 1)th electron compared
to the energy to add the nth electron. This is given by

�
(e)
n,n+1 = μn+1 − μn. (2)

The above definition can also be used to determine the
charging energies for holes. In this sense, μ−1 is the energy
to add one hole to the neutral QD. The difference E

qp
gap =

μ1 − μ−1 is the quasiparticle gap, i.e., the energy necessary
to remove one electron from the highest occupied orbital h1

and place it in the lowest unoccupied orbital e1 of an identical
QD at an infinite distance, such that the electron and hole do
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not interact [39,41,42]. Analogously, the addition energy for
holes is defined as �

(h)
n,n+1 = μ−n − μ−(n+1).

The determination of the charging energies of QDs depend
on the calculation of the total energy of a system containing N

electrons. This can be done by a number of methods like DFT-
based ab initio methods [18], semi-empirical pseudopotential
[39,40,45], and effective mass theory [43]. Here, we first
calculated the single particle states of the QDs using a tight-
binding (TB) method. These states are then used to construct
Slater determinants, representing the total wave function of
the N -electron systems. The total energy of the system is
calculated according to Hartree-Fock theory [46].

B. Single-particle electronic structure

Circular PQDs were formed by generating a large sheet
of phosphorene (up to three layers adopting AB stacking)
with armchair (zigzag) direction aligned to the x (y) axis.
The energy spectrum of the PQDs was calculated by solving
Schroedinger equation represented in a linear combination of
atomic orbital (LCAO) basis, such that the effective Hamilto-
nian reads Ĥ = ∑

i εi |i〉〈i| + ∑
i,j ti,j |i〉〈j |. The generalized

index i = { �Ri, α, ν} represents the orbital ν of the atomic
species α at the atomic site �Ri . εi represents the onsite energy
of the i-th site, and ti,j represents the hopping parameter
between ith and j th sites. As for the hopping parameters
and lattice constants, we adopted the parameters of Rudenko
et al. [9], fitted from phosphorene band structure calculations
based on state-of-the-art GW method. QDs constructed as
described above exhibit interface states due to presence of
dangling bonds in the QD borders. Since an experimental
method to saturate those dangling bonds may still lack, we
will study both unsaturated and saturated QD configurations.
In the former case, the extra electrons are added to the
midgap edge states. In the latter case, the extra electrons
are added to the conduction band of the QDs. For this, we
ignore the edge states, and assume that the wave functions
and energy difference between adjacent levels of the lowest
few-conduction band states of saturated and unsaturated QDs
are nearly identical.

C. Total energy calculation

For a neutral QD with N electrons, the ground-state wave
functions of neutral and charged QDs (with either one hole or
electron) are given by the following Slater determinants:

�N−1(�r1, ..., �rN−1) = A[ψ1(�r1), ψ̄1(�r2), ..., ψvbm(�rN−1)], (3)

�N (�r1, ..., �rN ) = A[ψ1(�r1), ψ̄1(�r2), ..., ψvbm(�rN−1), ψ̄vbm(�rN )], (4)

�N+1(�r1, ..., �rN+1) = A[ψ1(�r1), ψ̄1(�r2), ..., ψvbm(�rN−1), ψ̄vbm(�rN ), ψcbm(�rN+1)], (5)

where ψi (ψ̄i) represents the single particle states with spin up (down) of the QD, A is the antisymmetrization operator, and vbm
(cbm) stands for valence band maximum (conduction band minimum). In the Hartree-Fock formalism, the total energy of the
state �N is given by [46]

EN = 〈�N |ĤT (N )|�N 〉, (6)

where 〈�N |�N 〉 = 1, and ĤT is the Hamiltonian of N interacting electrons:

ĤT (N ) =
N∑

i=1

ĥi +
N∑

i=1

N∑
j>i

Vee(|�ri − �rj |), (7)

where ĥi = −(h̄2/2m)∇2
i + V (�r ) is the single particle Hamiltonian of the ith electron, and Vee is the electron-electron interaction

potential. With the help the Slater-Condon rules to evaluate the expected values of one- and two-body operators action on wave
functions constructed as Slater determinants [46], one can determine close formulas for the addition energies as a function of the
number of electrons/holes:

μ1 = e1,

μ2 = e1 + Je1,e1 ,

μ3 = e2 + 2Je1,e2 − Ke1,e2 ,

μ4 = e2 + 2Je1,e2 + Je2,e2 − Ke1,e2 ,

μ5 = e3 + 2Je1,e3 + 2Je2,e3 − Ke1,e3 − Ke2,e3 ,

μ6 = e3 + 2Je1,e3 + 2Je2,e3 + Je3,e3 − Ke1,e3 − Ke2,e3 ,

μ7 = e4 + 2Je1,e4 + 2Je2,e4 + 2Je3,e4 − Ke1,e4 − Ke2,e4 − Ke3,e4 ,

μ8 = e4 + 2Je1,e4 + 2Je2,e4 + 2Je3,e4 + Je4,e4 − Ke1,e4 − Ke2,e4 − Ke3,e4 , (8)
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μ−1 = −h1,

μ−2 = −h1 − Jh1,h1 ,

μ−3 = −h2 − 2Jh1,h2 + Kh1,h2 ,

μ−4 = −h2 − 2Jh1,h2 − Jh2,h2 + Kh1,h2 ,

μ−5 = −h3 − 2Jh1,h3 − 2Jh2,h3 + Kh1,h2 + Kh2,h3 ,

μ−6 = −h3 − 2Jh1,h3 − 2Jh2,h3 − Jh3,h3 + Kh1,h3 + Kh2,h3 ,

μ−7 = −h4 − 2Jh1,h4 − 2Jh2,h4 − 2Jh3,h4 + Kh1,h4 + Kh2,h4 + Kh3,h4 ,

μ−8 = −h4 − 2Jh1,h4 − 2Jh2,h4 − 2Jh3,h4 − Jh4,h4 + Kh1,h4 + Kh2,h4 + Kh3,h4 , (9)

�
(e)
1,2 = Je1,e1 ,

�
(e)
2,3 = (e2 − e1) + (

2Je1,e2 − Je1,e1

) − Ke1,e2 ,

�
(e)
3,4 = Je2,e2 ,

�
(e)
4,5 = (e3 − e2) + (

2Je1,e3 + 2Je2,e3 − 2Je1,e2 − Je2,e2

) + (
Ke1,e2 − Ke1,e3 − Ke2,e3

)
,

�
(e)
5,6 = Je3,e3 ,

�
(e)
6,7 = (e4 − e3) + (

2Je1,e4 + 2Je2,e4 + 2Je3,e4 − 2Je1,e3 − 2Je2,e3 − Je3,e3

) + (
Ke1,e3 + Ke2,e3 − Ke1,e4 − Ke2,e4 − Ke3,e4

)
,

�
(e)
7,8 = Je4,e4 , (10)

�
(h)
1,2 = − Jh1,h1 ,

�
(h)
2,3 = − (h2 − h1) − (

2Jh1,h2 − Jh1,h1

) + Kh1,h2 ,

�
(h)
3,4 = − Jh2,h2 ,

�
(h)
4,5 = − (h3 − h2) − (

2Jh1,h3 + 2Jh2,h3 − 2Jh1,h2 − Jh2,h2

) − (
Kh1,h2 − Kh1,h3 − Kh2,h3

)
,

�
(h)
5,6 = − Jh3,h3 ,

�
(h)
6,7 =−(h4 − h3) − (

2Jh1,h4 + 2Jh2,h4 + 2Jh3,h4 − 2Jh1,h3 − 2Jh2,h3 − Jh3,h3

)
,−(

Kh1,h3 + Kh2,h3 − Kh1,h4 − Kh2,h4 − Kh3,h4

)
,

�
(h)
7,8 = − Je4,e4 . (11)

The quantities Ji,j and Ki,j represent the direct Coulomb
and exchange energies, respectively:

Ji,j =
∫∫

ψ∗
i (�r1)ψ∗

j (�r2)Vee(|�r1−�r2|)ψi (�r1)ψj (�r2)d�r1d�r2, (12)

Ki,j =
∫∫

ψ∗
i (�r1)ψ∗

j (�r2)Vee(|�r1−�r2|)ψj (�r1)ψi (�r2)d�r1d�r2. (13)

D. Dielectric screening model

The electron-electron interaction potential V (|�r1 − �r2|) is
given by

Vee(r ) = q2

4πε0

π

(1 + εsub)r0

[
H0

(
r

r0

)
− Y0

(
r

r0

)]
, (14)

where we adopted the model of Rodin et al. for the Coulomb
interaction between charges confined in a two-dimensional
material sandwiched between a substrate with dielectric con-
stant εsub and vacuum [19]. r is the distance between particles,
r0 = 2πα2D/κ , κ = (1 + εsub)/2, H0 and Y0 are the Struve
and Neumann functions, and α2D represents the 2D polariz-
ability of the multilayers. This quantity is obtained following

the method described by Berkelbach et al. [21], who calcu-
lated the real component of static dielectric permittivity ε as a
function of the interlayer distance d of a single phosphorene
sheet:

ε = 1 + 4πα2D

Lz

, (15)

where Lz is the unit cell size in z direction (perpendic-
ular to the multilayer sheets). Lz is large enough to pre-
vent interaction among BP sheets and their multiple copies
imposed by periodic boundary conditions. The dielectric
function of multilayer BP sheets was calculated using DFT
within the generalized gradient approximation (GGA) and
norm-conserving Troullier-Martins pseudopotentials, as im-
plemented in SIESTA code [47,48]. We used double-zeta
basis set composed of numerical atomic orbitals of finite range
augmented by polarization functions. The fineness of the real-
space grid integration was defined by a minimal energy cutoff
of 180 Ry. The range of each orbital is determined by an
orbital energy confinement of 0.01 Ry. The geometries were
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TABLE I. 2D polarizability of phosphorene sheets with different
numbers of layers.

N Lz(Å) Re[ε(0)] α2D(Å)

1 25.26 3.35 4.72
4.10 [19]

2 25.32 6.28 10.64
3 28.92 8.64 17.59

considered optimized when the residual force components
were less than 0.04 eV/Å. Due to the well-known problem of
gap understimation of DFT, we applied the scissors operator
such that the single particle gap as function of the number of
layers reflected the values obtained by the GW calculations of
Rudenko et al. [9]. The 2D polarizability as function of the
number of layers is shown in Table I. Our monolayer calcu-
lation resulted in α2D = 4.72 Å, which is in good agreement
with α2D = 4.1 Å, calculated by Rodin et al. [19].

E. Self-energy correction

The dielectric discontinuity between the QD and the sur-
rounding materials (vacuum above, and dielectric substrate
below) modifies the single particle states ei and hi such
that they must be corrected to include their polarization
self-energy as

ei → ei + �pol
ei

, (16)

hi → hi − �
pol
hi

. (17)

The general method to calculate the polarization was
described by Fraceschetti et al. [39,40] as

�pol
α = e

∫
ψ∗

α (�r )VS (�r )ψα (�r )d�r, (18)

where VS (�r ) = lim�r ′→�r [G(�r, �r ′) − Gbulk(�r, �r ′)], and G(�r, �r ′)
is the Green’s function associated with the system, and
Gbulk(�r, �r ′) is the Green’s function of the bulk BP.

III. RESULTS AND DISCUSSION

A. Single-particle states

The single-particle energy states of mono-, bi-, and trilayer
PQDs are shown in Fig. 2. The energy spectra changes dra-
matically with the increase of the number of layers (NL). As
in infinite BP layers, the band gap is inversely proportional
to NL. Near the conduction band edge, the energy difference
between adjacent states also decreases with NL, but the op-
posite trend is observed near the valence band edge. One
interesting feature is the change in the symmetry of the e4

state induced by the stacking of layers. For the monolayer,
this state has a node in x direction, while for the bi- and
trilayer this state has three nodes in y direction. This change
of symmetry in a consequence of the renormalization of the
effective masses caused by the stacking of multiple layers
[49]. Finally, the anisotropy of BP band structure gives rise of
anisotropic effective masses. This breaks the radial symmetry
of the Hamiltonian, such that the resulting orbitals cannot be
labeled according to their angular momentum nomenclature s,
p, d, f.

The averaged defect wave functions of the QDs shown in
Fig. 2 are shown in Fig. 3. This was calculated as the linear
combination of the squared wave function of the lowest four
single-particle defect states shown in Fig. 2. One can see that
electrons confined in defect states are trapped in dangling
bonds in the border of the QDs.

B. Charging energies

As electrons are added to a QD, they fill unoccupied single
particle states. Due to the Coulomb interaction with other
confined charges, the total electrostatic energy is also raised.
The total energy of charged QDs can be phenomenologically

FIG. 2. Single-particle energy spectra of mono-, double-, and triple-layer BPQD with D = 4.5 nm. The squared wave functions refer to
the four lowest states in conduction and valence bands.
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FIG. 3. Linear combination of the squared wave functions of the
lowest four defect states of mono, double, and triple layer BPQD
with D = 4.5 nm.

written as

E(n) =
∑

ni

(
ei + �

pol
i

) + J (n) + K (n), (19)

where ni , ei , and �
pol
i represent the occupancy, energy, and

polarization self-energy of the ith state, respectively. J (n) and
K (n) represent the total electrostatic and exchange energies of
the system. The charging energies μn, defined as the energy
difference between two charging states, still depend on the
single-particle energy ei being occupied by the nth electron.
The addition energies �

(e)
n,n+1, defined as the difference be-

tween two consecutive charging energies, depend only on
the energy difference between adjacent single particle states
ei − ei−1 (i is the index of single particle states) and on the
interparticle Coulomb Jij and exchange Kij energies between
ıth and j th quasiparticle states. To understand the charging
phenomena, it is instructive to study those individual energetic
contributions.

Figure 4(a) shows the interaction energy between confined
particles (electrons and holes) for saturated multilayer QDs

deposited on different substrates. The Coulomb interaction
between electrons (holes) J ee

11 (J hh
11 ) is inversely proportional

to the QD size and substrate dielectric constant. The repulsion
between electrons is weaker than between holes, and this
difference between e-e and h-h repulsion decreases with an
increase of the number of layers NL. The reason for this can be
understood by inspecting the electron and hole ground-state
wave functions (see Fig. 2). Due to the interplay between
distinct effective masses (and their anisotropy) in each band,
the electron wave function is spatially distributed in a larger
area than the one of holes, making the repulsion between holes
stronger than between electrons. The increase in the number
of layers (NL) makes the spatial distribution of the hole
wave function similar to the electron one. As a consequence,
the repulsion between holes becomes nearly identical to the
repulsion between electrons in bi- and trilayer QDs.

Increasing NL makes more room to accommodate con-
fined charges, resulting in a reduction of the particles re-
pulsion. The ratios between e-e (h-h) repulsion in isolated
mono (ml)-, bi (bl)-, and trilayer (tl) QDs with 5 nm of
diameter are J bl

ee/J
ml
ee = 0.64(J bl

hh/J
ml
hh = 0.60) and J tl

ee/J
ml
ee =

0.47(J tl
hh/J

ml
hh = 0.43). The ratio between repulsion in va-

lence and conduction bands are J ml
hh /J ml

ee = 1.05, J
/J bl

ee =0.99
hh

and J tl
hh/J

tl
ee = 0.98. In the monolayer, the repulsion between

electrons is weaker than the repulsion between holes. As the
number of layers increases, the repulsion between electrons
become stronger than the repulsion between holes. If those
QDs are deposited in a substrate with εsub = 11.6 (Si), the ra-
tios become J bl

ee/J
ml
ee = 0.78 (J bl

hh/J
ml
hh = 0.70) and J tl

ee/J
ml
ee =

0.65 (J tl
hh/J

ml
hh = 0.57) for the bilayer and trilayer, respec-

tively. The ratio between repulsion in valence and conduction

FIG. 4. Size-dependent Coulomb energy between charges (ee, hh, dd) in the ground state of saturated (a) and unsaturated (b) mono(ml)-,
bi(bl)-, and trilayer (tl) PQDs. Substrate dependence of the Coulomb (c), exchange (d), and polarization self-energies (e) of electrons and holes
in a QD with 4.5 nm of diameter.
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bands are J ml
hh /J ml

ee = 1.1, J bl
hh/J

bl
ee = 0.98 and J tl

hh/J
tl
ee = 0.97.

We conclude that the effect of the substrate enhances the
interparticle repulsion in multilayer QDs as compared to the
repulsion in the monolayer, but the comparative repulsion of
particles in the conduction and valence bands is the same of
the isolated QDs. As for the interaction of particles in excited
states, we observed the following trend for electrons J ee

11 >

J ee
44 > J ee

22 > J ee
33 , and for holes J hh

11 > J hh
22 > J hh

33 > J hh
44 ,

regardless of QD size and substrate dielectric constant.
It is important to note that the Coulomb interaction in

two-dimensional QDs is much higher than in colloidal QDs
[39]. For example, Franceschetti et al. studied isolated InAs
QDs of different sizes with the semiempirical pseudopotential
method [40]. They determined that Jee ≈ 0.18 eV for QDs
with diameter of 3 nm. For the same size, we found an
interaction four times larger in a monolayer QD, and two
times larger for the trilayer QD.

In unsaturated QDs, additional electrons are trapped in
defect states (see Fig. 1). Thus it is important to study the
interparticle repulsion in those states, which are labeled as
dn, where n increases from lower to higher energies. The
Coulomb interaction between particles confined in the lowest
defect state is shown in Fig. 4(b). As in the case of conduction
and valence bands, the repulsion in the defect states reduces
as NL increases. The Coulomb interaction does not exhibit
any dependence with QD size, except for some oscillations
around a mean value. For isolated QDs, we obtained 〈J dd

11 〉 ≈
0.6 eV, 〈J dd

11 〉 ≈ 0.4 eV and 〈J dd
11 〉 ≈ 0.35 eV for the mono-,

bi-, and trilayer QDs, respectively. For QDs deposited on Si,
the Coulomb repulsion in mono-, bi-, and trilayers becomes
nearly identical 〈J dd

11 〉 � 0.2 eV. The Coulomb interaction
between particles confined in upper defect states (not shown
here) is numerically comparable and displays similar behavior
to J dd

11 . The absence of size dependence in the Coulomb
interaction in defects is caused by the fact that the particles
are confined in localized states at the edges of the QDs
(see Fig. 3), and not on the whole QD area. The oscillations
are due to the fact that the distinct spatial arrangement of
dangling bonds as the QD size increases.

The dependence of Coulomb energy on the dielectric con-
stant of the substrate εsub of particles occupying the lowest
state of the conduction and valence bands of multilayer QDs
with 4.5 nm of diameter is shown in Fig. 4(c). The interparticle
repulsion reduces as εsub increases. For the monolayer QD,
it reduces from 0.7 eV (isolated) to 0.1 when deposited in a
substrate with εsub = 30. For trilayer QDs, it reduces from 0.3
eV to 0.06 eV for the same range of dielectric constants. The
exchange energy between particles occupying the two lowest
states in each band is also shown in Fig. 4(c), but this quantity
is approximately 90% smaller than the Coulomb energy for all
cases investigated in this work. Since the main contribution of
the addition energies comes from Coulomb energy, Fig. 4(c)
shows that the type of substrate is crucial to determine the
behavior of �

(e,h)
n,n+1.

The self energies of e1 and h1 states as function of the
dielectric constant of the substrate are shown in Fig. 4(e). �pol

i

is inversely proportional to εsub, and becomes negative for
εsub � 18. �

pol
i is also inversely proportional to NL. But this

is a small effect even for substrates with very low dielectric

constants. Besides, we obtained that �
pol
i is size- (up to

10 nm of diameter) and state-independent (up to the third
excited state in both conduction and valence bands), providing
a rigid energy shift for all single particle states. As in the
case of InAs QDs, �pol is nearly identical for electrons and
holes [40]. Interestingly, the polarization self-energies in the
InAs QDs are much larger than in PQDs. For isolated QDs
(in vacuum), �pol ≈ 0.3 eV in InAs and �pol ≈ 0.09 eV in
monolayer PQDs.

The self-energy correction, as described above, results in
interesting consequences: it modifies the charging energies
but has negligible effect on the addition energies. It also
causes a renormalization of the quasiparticle gaps of QDs
and infinite BP sheets with an arbitrary number of layers. In
a recent work, de Sousa et al. calculated the size-dependent
excitonic properties of monolayer PQDs and showed that
QD sizes of approximately 10 nm (the largest size consid-
ered in that work) display the same properties of infinite
monolayer phosphorene sheets [18]. Due to the fact the �pol

is size-independent, the results shown in Fig. 4(e) suggest
that quasiparticle gap of isolated monolayer phosphorene
sheets increases by approximately 0.18 eV. The adopted TB
parametrization gives a nonpolarized quasiparticle gap of
E

qp,0
gap = 1.84 eV for the monolayer sheet [9]. The self-energy

corrected value becomes E
qp
gap = 2.02 eV. This value is in

good agreement with the value of E
qp
gap = 2.05 eV of mono-

layer phosphorene measured with STM by Liang et al. [38].
This renormalization depends both on NL and on the substrate
where they are deposited.

Figure 5 (left panels) shows the charging energy spectra
of a saturated QD as a function of the dielectric function
of the substrate. The charging energies strongly depend on
a number of factors like QD size, the number of particles
confined in the QD, dielectric constant of the substrate, and
NL. Self-energy effects are responsible for a small correction
of the charging energies. Without this correction, the charging
energy of the first electrons would be unaltered, regardless
of the dielectric constant of the substrate. Due to existence
of midgap defect states, the electron charging energies of
unsaturated QDs are considerably smaller than for saturated
QDs, while the charging energies for holes are equal for both
saturated and unsaturated QDs, as shown in the right panels
of Fig. 5.

The addition energy spectra of QDs with 4.5 nm of di-
ameter in vacuum and deposited in two substrates of tech-
nological importance (SiO2 and Si) are shown in Figs. 6(a)–
6(c). In vacuum, the average addition energy �̄ = 〈�n,n+1〉 of
monolayer QDs is approximately 0.6 eV. When deposited on
substrates, �̄ reduces to approximately 0.35 eV and 0.2 eV
in SiO2 and Si, respectively. The addition energies in multi-
layer QDs are always smaller than in monolayer ones. The
difference between addition energies of bilayer and trilayer
QDs is approximately 0.1 eV in vacuum, and it decreases
as the dielectric constant of the substrate increases. For Si,
this difference is less than 0.025eV. This holds for both satu-
rated and unsaturated QDs. For saturated QDs, the addition
energies are considerably larger than the thermal energy at
room temperature (kBT ≈ 0.026 eV), even for substrates with
dielectric constants as high as Si, at least for monolayer QDs.
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FIG. 5. Charging energies of a 4.5 nm QD as function of the dielectric constant of the substrate. The arrows show the direction of the
increasing number of particles. Black (red) curves represent charging energies without (with) self-energy correction.

For the sake of comparison, we also calculated the charging
energies of multilayer QDs as large as 10 nm. The average
addition energy �̄ of isolated QDs is approximately 0.35 eV
(monolayer), 0.26 eV (bilayer), and 0.21 eV (trilayer). For
QDs deposited in Si, the average addition energy ranges
between 0.07 and 0.08 eV, for all number of layers.

Figures 6(d)–6(f) show the addition energy spectra of an
unsaturated QD deposited in different substrates. It displays
the same general characteristics of the saturated ones. The
essential difference is the amplitude of those oscillations. In
the saturated QDs, electrons occupy conduction band states
that are spatially distributed over the whole QD area, making
�n,n+1 to depend mainly on the QD size, NL, and type of sub-
strate. In unsaturated QDs, the added electrons are confined
in spatially localized defect states. The analytical expressions
of the charging energies shows that �(e)

m,n = J dd
n/2,n/2 (for n =

m + 1 and m odd), i.e., when shells are being completely
filled. Due to the localized nature of the defects states, the
Coulomb repulsion between electrons occupying defect states
J dd

mn = J dd are nearly identical. The same is true for the
exchange energies Kdd

mn = Kdd. For unoccupied shells being

filled, one has �(e)
m,n ≈ (dn − dm) + J dd − Kdd (for n = m +

1 and m even). If we assume that energy difference between
the lowest adjacent states dn − dm = δ is nearly constant, we
obtain that the addition energies fluctuate within the interval
J dd � �n,n+1 � δ + J dd − Kdd. As shown in Fig. 4(b), J dd

(and exchange interaction as well) is nearly independent on
the QD size. Thus, it is not expected a large difference
between addition energies of electrons in unsaturated QDs
of different sizes. The same analysis holds for saturated
QDs but, oppositely to unsaturated QDs, �̄ must exhibit size
dependence because all the energetic contributions δ, J ee, and
Kee are size dependent.

The size dependence of �̄ for saturated QDs, shown in
Fig. 7, follows a scaling law of the type �̄ ∝ R−γ (γ > 0),
where R is the QD radius. This behavior occurs because all
major contributions of �̄ are size dependent. These contri-
butions are (i) the energy difference between adjacent states
in the conduction band whose size dependence is R−α (α �
2, depending on the confinement model), (ii) the Coulomb,
and (iii) exchange energies whose size dependence is R−β

(β � 1). �̄ is also inversely proportional to the number of
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FIG. 6. Addition energy spectra of saturated and unsaturated QDs of 4.5 nm of diameter deposited on different substrates.

FIG. 7. Size dependence of the average addition energy (up to
eight electrons) �̄ of multilayer PQDs on differente substrates.

layers, and the difference between layers reduces with the
QD size and dielectric constant. For an isolated QD with
10 nm of diameter, �̄ is 0.35 eV, 0.26 eV, and 0.21 eV for
the mono-, bi-, and trilayer cases, respectively. For the same
QD deposited in SiO2, �̄ reduces to 0.18 eV, 0.15 eV, and
0.13 eV, respectively. For Si as the substrate, �̄ becomes as
low as 0.08 eV for all cases.

For unsaturated QDs, �̄ is inversely proportional to NL,
and seems to exhibit very weak size dependence for diameters
up to 5 nm. For larger sizes, �̄ fluctuates around a mean value,
without displaying any noticeable size dependence. �̄ for
unsaturated QDs are smaller than saturated ones, except for
large diameters, where fluctuations may occasionally make
it larger than the value of saturated QDs. The absence of
size dependence is caused by the localized nature of defect
states, for which neither the interstates energy difference nor
the Coulomb and exchange energies between defect states are
size-dependent quantities.

C. Occurrence of Coulomb blockade

Our calculations show that the addition energies of PQDs
are inversely proportional to the number of layers, dielectric
constant of the substrate, regardless the saturation state of
dandling bonds in the QD borders. Size dependence appears
only if dangling bonds are saturated. If the saturation of the
dangling bonds is partial, a mixed behavior between saturated
and unsaturated cases is expected. It was also shown that, due
to the two-dimensional geometry of the QDs, the Coulomb
and exchange interactions are enhanced as compared to the
tridimensional QDs, raising the charging energies much above
the thermal energy kBT even at room temperature.
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FIG. 8. Diagram showing the combination of monolayer PQD
sizes and dielectric constants of substrates for which Coulomb block-
ade at room temperature is expected to occur. The adopted cutoff
energy is �̄ = 0.15 eV.

Such high addition energies are evidence that PQDs are
good candidates for the development of SET, whose working
principle is governed by the CB effect. There are two fun-
damental conditions to observe CB in the electrical transport
through small quantum islands: (i) the single electron addition
energy must be much larger than the thermal energy and (ii)
the tunnel coupling between the quantum islands and the leads
has to be small to ensure a long lifetime �t of the electrons
in the quantum island such that the uncertainty in energy
�E ≈ h̄/�t must not exceed the addition energy. The former
depends only on the electronic properties of the quantum
islands, while the later depends on the design of the device.
If we consider that 6kBT ≈ 0.15 eV is a safe cutoff energy
above which CB may occur at room temperature, our results
show that obtaining �̄ ≈ 0.15 eV largely depends on several
factors. The substrate seems to be more relevant than QD size,
depending on the degree of passivation of the dangling bonds.
As shown in Fig. 7, if the substrate has low enough dielectric
constant (εsub � εSiO2 ), one can observe CB in QDs as large as
10 nm with up to three layers. We summarize the combination
of monolayer QD sizes and substrate dielectric constants for
which CB is expected to occur with the diagram shown in
Fig. 8. For tiny saturated PQDs up to 3 nm, CB is expected
for substrates with dielectric constant up to εsub = 30. For
unsaturated PQDs, this range of εsub is much narrower. If εsub

is low enough, CB can be observed in QDs with sizes larger
than 10 nm for both saturated and unsaturated cases.

D. Comparison with DFT

The calculation of the addition energy spectra of QDs
deposited on substrates is a challenging task for DFT-based
methods, and approximated methods like the one presented in
this paper is a promising alternative to calculated the effect
of substrates. Anyhow, it is expected that the two approaches
agree for the case where QDs are in vacuum. To perform this
comparison, it is important to understand and minimize the
differences between the present method and what can be done
within DFT framework.

FIG. 9. Comparison of the addition energy spectra of unsaturated
monolayer QDs with 2 m and 3 nm of diameter.

In a previous work, Lino et al. calculated the addition
energy spectra of small PQDs with DFT [32]. They saturated
the dangling bonds in the QD edges with hydrogen atoms.
They also performed a geometry optimization step after the
addition of each electron. The saturation of dangling bonds
enlarges a little bit the QD sizes as compared to the unsatu-
rated case. Complicated methods to eliminate defects states
within TB formalism have been proposed, but they are either
complicated or not reliable. Geometry optimization changes
the distance between atoms, compared to the initial atomic
positions. However, the adopted TB scheme were parameter-
ized for fixed interatomic distances [9]. Thus, to compare the
results obtained with the present HF-based method with the
ones obtained with DFT, we eliminate from DFT calculations
all features that could not be reproduced by our method:
saturation of dangling bonds and geometry optimization.

Figure 9 compares the addition energy spectra, calcu-
lated with DFT and HF methods, of unsaturated monolayer
QDs. The DFT calculations were performed as described
in Sec. II D. The results of both methods exhibit a general
resemblance, with the HF-based method, providing addition
energies that are, on average, 0.2 eV larger than the DFT
one. As a general behavior, the addition energies remain
fluctuating around a mean value, as the number of confined
electrons increases. The HF-computed average addition ener-
gies 〈�(e)

N,N+1〉 is 0.63 eV and 0.53 eV for QDs with 2 nm
and 3 nm, respectively. The DFT-computed mean addition
energies 〈�(e)

N,N+1〉 are 0.46 eV and 0.32 eV for QDs with 2
nm and 3 nm, respectively.

In principle, more accurate results could be obtained by
using post-HF methods [44,50]. However, they are expected to
provide only minor corrections at the expense of much higher
computational efforts. For example, He et al. investigated
multiple charging effects in InAs/GaAs quantum dots using
the configuration interaction (CI) method. They investigated
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the convergence of the total energy of a dot containing six
particles (electrons or holes) by increasing the number of
single particle states included in the CI base, and found
corrections smaller than 0.1%. Such corrections in the total
energy will cancel each other in the calculation of the charging
energies μn = E(n) − E(n − 1).

The average energy difference of 0.2 eV between the
addition energies calculated with HF and DFT methods is
explained as follows. On one hand, DFT includes correlation
effects in the self-consistent solution of Kohn-Sham equation,
while our non-self-consistent HF method does include cor-
relation effects at all. Correlation adjusts the total electron
density to accommodate interparticle repulsion, reducing the
Hartree energy component of the total energy. On the other
hand, DFT is known to severely underestimate quasiparticle
energies. For example, it is known that DFT-GGA-PBE under-
estimates the band gap of single layer phosphorene by more
than 1 eV as compared to G0W0 approximation [5].

In both methods, the charging and addition energies were
calculated using Eqs. 1 and 2, respectively. Thus, any dif-
ference between methods completely depends on how the
total energies are calculated. We remind that the quasipar-
ticle gap E

qp
gap of N electrons systems is defined as the

difference between the ionization energy IN = E(N − 1) −
E(N ) and the electron affinity AN = E(N ) − E(N + 1) [41],
such that E

qp
gap = IN − AN = E(N + 1) − 2E(N ) + E(N −

1). This expression has the same structure of the addition ener-
gies �

(e)
N,N+1 in Eq. 2, where the reference number of electrons

N increase one by one to mimic the charging process. Thus,
�

(e)
N,N+1 essentially calculates quasiparticle gaps of negatively

charged systems with an increasing number of electrons.
It is well known that even when DFT-GGA act as a good

approximation of ground state properties, it underestimates IN

and overestimates AN by approximately �N/2 [51], such that
we have

E
qp
gap,N = EKS

gap,N + �N, (20)

where EKS
gap,N = eKS

L (N ) − eKS
H (N ) is the Kohn-Sham band

gap of the reference system with N electrons, eKS
L (N ) and

eKS
H (N ) represent the energies of the lowest unoccupied and

highest occupied molecular orbitals as calculated by Kohn-
Sham (KS) equation, and �N is the self-energy correction. �N

can also be regarded as a measure the finite variation of the
exchange-correlation potential vxc(�r ) extended everywhere in
the solid due to an infinitesimal variation of the density n(�r ):

�N =
(

δExc[n]

δn(�r )
‖N+1 − δExc[n]

δn(�r )
‖N

)
+ O

(
1

N

)
. (21)

It has been shown that �N can be of the order of 1.0 eV
for small Si1−xGex nanocrystals [42]. For mono-, bi-, and
trilayer phosphorene, � is of the order of 1.1 eV, 0.8 eV, and
0.8 eV, respectively [5]. More sophisticated approaches to deal
with exchange and correlation, e.g., solving Dyson equation
within GW approximation, allows us to calculate the actual
quasiparticle gaps of systems directly from the KS gap. This
is where the advantage of our method stands out. Our adopted

TB scheme was parameterized from a state-of-the-art GW
corrected band structure [9]. Thus, our HF-based quasiparticle
gap of the reference system with N electrons (neutral system)
embed the �N correction that is underestimated by our DFT-
GGA calculation. This also holds for charged systems. The
above considerations explain why our HF-based calculation
provides larger of the addition energies as compared to the
DFT-based calculation, as shown Fig. 9.

IV. CONCLUSIONS

In conclusion, we calculated the addition energy spectra of
multilayer PQDs for a wide range of dot sizes and dielectric
constants of the substrates where they are deposited. We
also investigated the role of edge passivation on the addition
energy spectra. We consistently obtained addition energies
higher than the thermal energy kBT . This suggests that CB
at room temperature can be observed in PQDs, depending
on trade-off between dot size, dielectric constante of the
substrate, and passivation state of the QD edges: the larger the
dot size, the smaller is the dielectric constant of the substrate
that allows for CB at room temperature. On the other hand,
observing CB in smaller dots depends on the passivation
state of the edges. If the edges are fully passivated, CB is
observed for any substrate with εsub up to 30. If edges are
unpassivated, CB can only be observed for εsub up to 15. This
dramatic role of the substrate is expected to impact not only
the development of charge storage applications of PQDs, but
also optical applications, where dielectric screening effects
plays a major role. One remarkable characteristic of BP is
its band structure anisotropy. Although the CB effects are
dominated by the Coulomb interaction, it indeed plays some
role in the addition energy spectra. As shown in Eq. 10, when
one electron is added to a completely empty energy level,
there is the contribution of em − en, where em is the empty
energy state being filled, and en the filled energy state below.
In a quantum dot made of isotropic materials, the lowest states
would exhibit s, p, d symmetries with degeneracies of 2, 4, 6,
respectively. So, the filling of this QD with eight electrons
involves only three orbitals, with the d orbital being only par-
tially filled. In the case of PQDs, those electrons occupy the
four lowest nondegenerate single particle states. The addition
energy spectra of both cases are expected to be very different.
Besides energetic considerations, there is also a dynamical
aspect in the CB effect. So, the transport across PQDs will
strongly depend on how the leads are connected to the PQDs
and their shapes. Finally, we emphasize that the advantage of
our methodology goes beyond simplicity of implementation.
It allows us to predict accurate values of the charging energies
of PQDs. Our predictions can be tested experimentally with
well-established methods like STM [35–37].
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