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Hierarchical material nanostructuring is considered to be a very promising direction for high performance
thermoelectric materials. In this work we investigate thermal transport in hierarchically nanostructured silicon.
We consider the combined presence of nanocrystallinity and nanopores, arranged under both ordered and
randomized positions and sizes, by solving the Boltzmann transport equation using the Monte Carlo method. We
show that nanocrystalline boundaries degrade the thermal conductivity more drastically when the average grain
size becomes smaller than the average phonon mean-free path. The introduction of pores degrades the thermal
conductivity even further. Its effect, however, is significantly more severe when the pore sizes and positions
are randomized, as randomization results in regions of higher porosity along the phonon transport direction,
which introduce significant thermal resistance. We show that randomization acts as a large increase in the
overall effective porosity. Using our simulations, we show that existing compact nanocrystalline and nanoporous
theoretical models describe thermal conductivity accurately under uniform nanostructured conditions, but
overestimate it in randomized geometries. We propose extensions to these models that accurately predict the
thermal conductivity of randomized nanoporous materials based solely on a few geometrical features. Finally,
we show that the new compact models introduced can be used within Matthiessen’s rule to combine scattering
from different geometrical features within ∼10% accuracy.

DOI: 10.1103/PhysRevB.98.115435

I. INTRODUCTION

Highly disordered nanostructures are one of the most
promising ways to achieve very high thermoelectric (TE)
efficiencies and, thus, engineering such materials has recently
attracted significant attention. Strong disorder, and more
specifically disorder on hierarchical length scales, originating
from various types of defects, can scatter phonons of different
wavelengths throughout the spectrum and drastically reduce
thermal conductivity. This approach substantially improves
thermoelectric efficiency and it is currently being employed
in a variety of new generation thermoelectric materials. For
example, using hierarchical inclusions at the atomic scale,
the nanoscale, and the mesoscale in the PbTe-SrTe system,
Biswas et al. reported a lattice thermal conductivity κ of
0.9 W m−1 K−1 at 915 K and a ZT of 2.2 [1]. More recently,
using this method for the p-type Pb0.98Na0.02Te-SrTe system,
Tan et al. reported an even lower κ of 0.5 W K−1 m−1 and
a higher ZT of 2.5 at 923 K [2]. Reports also show that
hierarchical nanostructures can improve the thermoelectric
power factor as well [3–6].

Specifically, for Si-based materials, Si nanowires have
been reported to exhibit thermal conductivities close to or
even below the amorphous limit (κ < 2 W m−1 K−1), which
allowed a 50-fold increase in ZT to ZT ∼ 0.5 by sur-
face roughness engineering [7–9]. (The experimentally deter-
mined κ of amorphous silicon thin films is in the range of
1–2 W m−1 K−1 at room temperature) [10]. Similar observa-
tions have been reported for SiGe nanowires [11] and silicon

*D.Chakraborty@warwick.ac.uk

thin films of 2–6 nm in thickness [12,13]. Drastic reduc-
tions in thermal conductivity were also reported in nanocrys-
talline materials. Wang et al. [14] showed that the room-
temperature silicon thermal conductivity decreases from 81 to
24 W m−1 K−1 as the average grain size decreases from 550
to 76 nm, whereas κ below 5 W m−1 K−1 has been reported
for average grain sizes of about 10 nm [15]. For grain sizes of
3 nm Nakamura et al. reported κ = 0.787 ± 0.12 W m−1 K−1

[16,17].
In addition, single-crystalline silicon membranes with

nanoscopic pores exhibit reproducibly low κ around
1–2 W m−1 K−1 [18–20], while still maintaining sufficient
electronic properties. Nanostructures that combine the effects
of alloying, nanocrystallinity, and porosity have started to
appear as well, as a means to achieve an even lower κ .
Specifically for the nanocrystalline/nanoporous geometry, a
recent Si-based work reported κ of 20.8 ± 3.7 W m−1 K−1

for an average pore size of ∼30 nm and grain sizes be-
tween 50 and 80 nm [21]. By reducing both pore and grain
sizes, however, Basu et al. reported κ = 1.2 W m−1 K−1 at
40% porosity in p-type silicon [22]. A recent work in SiGe
nanomeshes reported ultralow κ of 0.55 ± 0.10 W m−1 K−1

for SiGe nanocrystalline nanoporous structures, a value well
below the amorphous limit [23].

A significant amount of work can be found in the liter-
ature attempting to clarify these experimental observations.
However, theoretical investigations of thermal conductivity
in highly/hierarchically disordered nanostructures (which in-
clude not only crystalline boundaries, but also pores of ran-
dom sizes placed at random positions) are very limited. Un-
derstanding the qualitative and quantitative details of such ge-
ometries on the thermal conductivity would allow the design

2469-9950/2018/98(11)/115435(17) 115435-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.115435&domain=pdf&date_stamp=2018-09-25
https://doi.org/10.1103/PhysRevB.98.115435


CHAKRABORTY, FOSTER, AND NEOPHYTOU PHYSICAL REVIEW B 98, 115435 (2018)

of more efficient thermoelectrics and heat management ma-
terials in general. In this work, we solve the Boltzmann
transport equation for phonons in disordered Si nanostruc-
tures using the Monte Carlo (MC) method. Monte Carlo,
which can capture the details of geometry with relative ac-
curacy, is widely employed to understand phonon transport
in various nanostructures such as nanowires [24–26] thin
films [27,28], nanoporous materials [29–33], polycrystalline
materials [10,15,34–36], nanocomposites [37,38], corrugated
structures [39–42], silicon-on-insulator devices [43], etc. We
consider geometries that include grain boundaries, surfaces,
and pores as in realistic nanocomposite materials, which all
contribute to reducing thermal conductivity. We show that
the influence of randomization in the disorder can have a
crucial effect in determining thermal conductivity, despite
being usually overlooked. After examining the influence of
nanocrystallinity and porosity individually and combined, we
validate the simplified compact models commonly employed
in the literature. We then propose more accurate models based
on simple geometrical configurations that describe the ran-
domization of disorder. These improved models could serve
as a valuable tool for materials design and for experimentalists
to more accurately evaluate a first order interpretation of their
results, without the need of large scale simulations.

The paper is organized as follows: In Sec. II we describe
our theoretical and computational approach. In Sec. III we
present our results on the effects of disorder (nanocrystallinity,
nanoporosity, and both combined) on thermal conductivity κ .
In Sec. IV we validate existing analytical models for such
geometries and develop our more accurate compact models.
Finally, in Sec. V we conclude.

II. APPROACH

The Monte Carlo (MC) approach has been adopted for a
semiclassical particle based description of phonon transport.
For computational efficiency we consider a two-dimensional
(2D) simulation domain of length Lx = 1000 nm and width
Ly = 500 nm. The domain is populated with nanostructured
features as shown in Fig. 1. The MC simulation method is
described adequately in the literature, but because our method
differs in some details, below we describe our numerical
scheme. We use the “single-phonon MC” approach which
differs from the multiphonon MC approach described in var-
ious works in the literature [24,44–47] in terms of phonon
attributes book-keeping. In a multiphonon approach, a num-
ber of phonons are initialized simultaneously. Phonon paths,
energy, and temperature of all cells are traced simultaneously
at every time step, and often periodic boundary conditions
are employed to remove the effect of the limited simulation
domain. In the single-phonon approach one phonon is simu-
lated at a time from the domain boundary/edge and propagates
through the simulation domain until it exits at either edge.
Once the phonon exits, the next phonon is then initialized.

The simulation procedure is then as follows: Phonons enter
from either direction of the simulation domain and alternate
between free flight and scattering events. The time a phonon
spends in the simulation domain until it exits again is recorded
as its time of flight (TOF). The regions at the left/right of the
simulation domain are given “hot” and “cold” temperatures,

FIG. 1. Examples of the nanostructured geometries considered.
The coloring indicates the established thermal gradients when the
left and right contacts are set to TH = 310 K (yellow) and TC =
290 K (green). (a) Pristine silicon channel. (b) Nanocrystalline (NC)
channel. (c) Ordered nanopores (NP) within the channel material of
∼ 20% porosity in a rectangular arrangement. (d) Combined NC and
disordered NP material. (e) Schematic of scattering mechanism for
pore scattering, indicating the pore boundary, the initial angle of the
phonon θin, and potential new angle of propagation θref depending
on specularity parameter p. Probable paths of the phonon after
scattering for both diffusive (red dashed lines) and specular (red
solid line) are depicted. (f) Schematic of the scattering mechanism
for grain boundary scattering, indicating the initial angle of the
phonon θGB from the normal (dashed line), grain boundaries (black
lines), initial path of the phonon (blue line), and probable paths
of the phonon after scattering [red dashed lines and green dashed
(transmitted) line].

TH and TC, respectively. The rest of the domain is initially
set at the average temperature of TH and TC—we label that
as TBODY. At room temperature, �T = 20 K is adequate to
gather the necessary statistics for simulation convergence, and
low enough to ensure the simulation is still within the linear
response regime [31,48].

Phonons are initialized in the contacts only, based on
polarization, frequency, velocity, and energy. Phonon proba-
bilities are drawn from a dispersion relation ω(q ), weighted
by the Bose-Einstein distribution at the given temperature.
We use the dispersion relation ω(q ) and corresponding group
velocities vg(q ) as described by Pop et al. [46] in Eqs. (1) and
(2) below:

ω(q ) = vsq + cq2, (1)

vg = dω

dq
, (2)

where q is the wave vector norm and vs and c are fitting
parameters to match the thermal conductivity of bulk Si in the
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[100] direction. The dispersion coefficients we use are vs =
9.01 × 103 m s−1 and c = −2 × 10−7 m2 s−1 for the longitu-
dinal acoustic (LA) branch, and vs = 5.23 × 103 m s−1 and
c = −2.26 × 10−7 m2 s−1 for the transverse acoustic (TA)
branches [48]. Following common practice, the contribution
of optical phonons is neglected as they have low group veloc-
ities and do not contribute significantly to phonon transport
[24,46,47,49] (although they indirectly could influence the
interaction between optical and acoustic phonons and alter the
effective relaxation rates of the acoustic phonons [50]).

Phonons in the simulation domain either scatter or are in
free flight. During free flight, the position r at time t of the
phonon is given by the equation

r (ti ) = r (ti−1) + vg�t. (3)

Scattering of phonons is caused either by interaction with
geometrical features, or by three-phonon internal scattering
(Umklapp processes). The three-phonon scattering, which is
responsible for the change in the temperature of the domain,
is computed in the relaxation time approximation and is a
function of temperature and frequency, as

τ−1
TA, U =

⎧⎨
⎩

0 for ω < ω1/2

BTA
U ω2

sinh
(

h̄ω
kBT

) for ω > ω1/2
, (4)

where ω is the frequency, T the temperature, BTA
U = 5.5 ×

10−18 s, and ω1/2 is the frequency corresponding to q =
qmax/2. These equations and parameters are well established
and often used to describe relaxation time in phonon Monte
Carlo simulations for Si [24,31,44–46,48]. Three phonon scat-
tering causes a change in the energy, and thus the temperature
(T ) of the simulation domain “cell” where scattering took
place (we use a 1-nm domain discretization). Every time this
happens the cell temperature either rises or falls. The link
between energy and temperature is given by

E = V

W

∑
p

∑
i

(
h̄ωi

exp
(

h̄ωi

ki T

) − 1

)
giD(ωi, p)�ω, (5)

where ω is the frequency, T is the temperature, D is the
density of states at a given frequency and branch polarization,
gi is the polarization branch degeneracy, and V is the volume
of the cell. The temperature of each cell is then numerically
determined by back-solving Eq. (5) iteratively using the New-
ton Raphson method. The dissipation/absorption of energy
from each cell in this way establishes a temperature gradient
under a continuous flow of phonons [shown in Fig. 1(a) with
the yellow to green color scheme]. A scaling factor (W =
4 × 105) is also introduced to scale the number of phonons
simulated to the real population of phonons of 6 × 1010 μm−3

that are present at 300 K for computational efficiency [31].
We keep W constant in the entire simulation domain, where
the average temperature is 300 K [31]. Initially, phonons are
injected from both ends of the domain at their respective junc-
tion temperatures to establish a temperature gradient across
the device as seen by the coloring in Fig. 1. An average of
2.5 million phonons are simulated for this, injected from each
side.

Once the thermal gradient has converged, another 2.5
million phonons are then injected into the domain from each
side. They can make it to the other side, or backscatter to
where they originated from. The total energy entering and
leaving the simulation domain is calculated by the net sum
of the corresponding phonon energies that enter/exit at the
hot and cold junctions as specified by Eq. (5). We label the
total incident energy from the hot junction as EH

in and the total
energy of phonons leaving the simulation domain from the hot
junction as EH

out. Similarly, EC
in and EC

out are the incoming and
outgoing energies at the cold junction. We then determine the
average phonon energy flux in the system as

� =
(
EH

in − EH
out

) − (
EC

in − EC
out

)
n 〈TOF〉 , (6)

where n is the total number of phonons simulated and 〈TOF〉
is their average time of flight. The simulated thermal conduc-
tivity is then extracted as

κs = �
LX

AC�T
, (7)

where AC is the effective (scaled) cross section area of the
simulation domain, which together with the scaling factor W

above are used to convert the simulated energy flux to thermal
conductivity with the proper units, as well as calibrate our 2D
simulation result to the pristine Si bulk thermal conductivity
value (details to follow).

Next, to account for the fact that the length of the simulated
domain (Lx) is smaller than some phonon mean-free-paths,
especially at lower phonon frequencies, a scaling of the simu-
lated thermal conductivity (κs) is needed to compute the final
thermal conductivity κ as [51]

κ = κs

(
LX + λpp

)
(LX)

, (8)

where λpp is the average phonon mean-free-path (mfp) of Si.
Values for the average bulk mfp of phonons in Si at room
temperature vary in the literature. In experimental studies,
values from 100 nm [52] to 300 nm [53,54] are mentioned (the
latter [54] is a study on Si films). In theoretical works an even
greater variation—from 43 nm [55], 100 nm [56], 135 nm
[51,57] to 200–300 nm [44]—have been reported. Here we
chose to use λpp = 135 nm from Jeong et al. [51], because in
that work the mfp is reported over a variety of temperatures,
and we could then validate our scaling method over the entire
temperature range. In this way, the finite size of the simulation
domain is overcome using the average mean-free path to scale
the simulated thermal conductivity to the actual thermal con-
ductivity of an infinite channel length. This scaling is impor-
tant for the pristine bulk case of silicon where a large number
of phonons have mean-free-paths larger than the simulation
domain size, and replaces the need for periodic boundary con-
ditions [31]. It is particularly important in the low-temperature
range where the low temperature κ peak of silicon is observed
only after this scaling. It allows us to simulate shorter channels
(in the micrometer range), which simplifies the simulation
considerably. Thus, with the width of our simulation domain
fixed at 500 nm and a scaling factor of W = 4 × 105 as
specified above [58], which accounts for the reduction of the
number of simulated phonons per unit volume, when using the
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thickness of 0.1 nm which corresponds to a single atomic layer
[59] (to compute the volume V of the cells above), our sim-
ulated thermal conductivity is κs = 130 W m−1 K−1 at 300 K.
After using Eq. (8) to account for the finite simulation do-
main we obtain the pristine bulk silicon κ ∼ 148 W m−1 K−1,
which is the value for pristine bulk Si at room tempera-
ture [28,48]. Note that in the case of nanocrystalline and
nanoporous structures (the focus of this work), where the
scattering length is determined by the grain sizes and pore
distances, this scaling is less important. Indeed, the difference
between the calculated thermal conductivity if the mfp scaling
is performed using λpp = 135 nm vs λpp = 300 nm is at most
15% in the pristine material case, but drops to ∼6% in the case
where pores are introduced, and becomes insignificant when
nanocrystallinity is introduced as well. This is also reinforced
by the fact that we have fully diffusive transport in our
disordered systems, verified by simulations of channels with
different lengths and extraction of the average phonon paths.
(See the Appendix for validation of this method and the above
statement for different λpp considerations, as well as demon-
stration of diffusive transport in the channels we simulate.)

Thus, scaling by an “effective” thickness we can calibrate
the pristine material to Si bulk values, and by scaling with
the mean-free path in Eq. (8) we make it possible to simulate
shorter channels and avoid periodic boundary conditions (see
the Appendix for validation of this statement in channels
with different lengths). Also, the use of the “single-phonon”
method is computationally simpler since we do not keep
track of all phonon positions at the same time. All this
simplifies the computation significantly. In addition, although
Monte Carlo can be efficient for complex geometries in three
dimensions and in the past some of us and other authors had
published studies for 3D MC as well [24,28,31,45,48,49],
here we effectively simulate a 2D material, i.e., corresponding
to ribbons. This is adequate for exploring the influence of
disorder variability (our primary goal). We executed over
1000 simulations, each simulation taking ∼8–10 h, which
is an order of magnitude less computationally expensive
compared to 3D simulations.

We consider transport in different nanostructured geome-
tries. In the first case we consider nanocrystalline geometries
as shown in Fig. 1(b), where the average grain size in the
simulation domain is defined as

〈d〉 = Lx/〈NG〉, (9)

where Lx is the length of the domain in the transport direction
and 〈NG〉 is the average number of grains encountered in that
length. Grains in the nanocrystalline case are generated using
voronoi tessellations, where grain boundaries are created by
considering input values for the number of “seeding points”
and the dimensions of the domain [35]. In these structures,
thermal conductivity is impeded in two ways: the scattering
of phonons due to the grain boundaries and internal three-
phonon Umklapp scattering inside the grains. If a phonon
reaches a boundary, then a decision is made whether the
phonon will transmit to the other side or reflect. This decision
is made upon a probability distribution, which depends on
the phonon wave vector, the roughness of the boundary �rms,
and the angle of incidence between the phonon path and
the normal to the grain boundary θGB [see Fig. 1(f)]. The
transmission probability upon boundary scattering is then

given by the commonly employed relation [35]

tscatter = exp
(−4q2�2

rmssin2θGB
)
. (10)

If the phonon makes it to the other side of the boundary,
it continues its path intact. If it is reflected, then another
random number that depends on the specularity parameter p

(roughness strength) dictates whether it will scatter specularly,
or diffusively [45]. We do not assume that the phonon changes
its energy at the interface as is common practice, but only its
direction. p takes values from 0 to 1, with p = 0 indicating
a diffusive, randomized reflection angle and p = 1 a specular
reflection where the angle of incidence is the same as the angle
of reflection [see Fig. 1(f)]. Using p to determine the specu-
larity of reflection is also applied for pore boundaries—in that
case a phonon can only reflect [see Fig. 1(e)]. Specifically in
the case of specular pore boundary scattering, the angle the
phonon will be reflected into is defined based on geometrical
considerations (the angle of incidence is the same as the angle
of reflection) as

θref = 2γ − θinc, (11)

where θinc is the angle of propagation of the phonon relative to
the x axis, and γ is the angle formed by the line perpendicular
to the pore at the point of interaction and the x axis, as
explained in Fig. 1(e).

Note that instead of a constant specularity p, in Monte
Carlo it is also customary to determine the actual spec-
ularity for each phonon using the expression p(q ) =
exp(−4q2�2

rms), which also allows wave-vector dependence
reflections. In that case, what is constant is the surface
roughness (�rms). Here we use a constant p, and the ratio-
nale behind studies which use constant �rms versus constant
p [31,48,60–64] is that the microscopic details of phonon
scattering at interfaces are poorly understood anyway [64].
However, either way gives very similar results without any
qualitative or quantitative differences in disordered structures.
For example, one can map a specific �rms to a specific
specularity; the p = 0.1 case in our results below corresponds
to �rms ∼ 0.3 nm (see the Appendix), which corresponds
well to rough silicon surfaces [65,66].

III. RESULTS

Initially simulations were carried out to compare and
validate the simulator for bulk values of silicon thermal
conductivity. All validation of the simulator was carried out
using a fixed simulation domain of length Lx = 1000 nm and
width Ly = 500 nm. Good agreement is found between our
simulated results and literature values of silicon thermal con-
ductivity across a large temperature range with several works
in the literature. After bulk-Si validation, we proceeded with
the analysis of nanostructuring on the thermal conductivity.

Nanocrystalline geometries—influence of grain size and
boundary roughness. We begin our investigation with the
effects of the grain size 〈d〉 and boundary roughness (�rms)
on the thermal conductivity. The results are shown in Fig. 2
where κ is plotted as a function of average grain size 〈d〉.
Each point is an average of 50 simulations of different geom-
etry realizations. We consider average grain size from 〈d〉 =
1000 nm down to 〈d〉 = 50 nm as indicated by the geometry
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FIG. 2. The effects of grain size and grain boundary roughness
(�rms) on the thermal conductivity of the silicon channel. Grain
size is varied from an average grain dimension 〈d〉 of 1000 nm
down to 50 nm. The structure geometry insets labelled “1” to “6”
give typical examples of geometries from 〈d〉 = 50 to 225 nm,
respectively. We simulate three different values of grain-boundary
roughness: �rms = 0.25 nm (red line), 1 nm (blue line), and 2 nm
(black line). Each point is an average of 50 simulations. A sharp drop
in thermal conductivity is observed below 〈d〉 ∼ 140 nm (structure
panel and point “4”). Inset: Some available experimental results
[14,21,68,73,74] are compared to the �rms = 1 nm (blue line).

subfigures above the graph in Fig. 2 (from subfigure-1 in
the geometry panel where 〈d〉 = 50 nm to subfigure-6 where
〈d〉 = 225 nm). Three different values of �rms = 0.25, 1,
and 2 nm were simulated, shown in Fig. 2 by the red, blue,
and black lines, respectively. Decreasing grain size causes a
reduction in κ , from 97.8 to 19.9 W m−1 K−1. This is con-
sistent with other available theoretical [10,14,15,67–73] and
experimental results [14,21,68,73,74], as shown in the inset
in Fig. 2. Note that our large grain thermal conductivity does
not reach the bulk value (κ ∼ 140 W m−1 K−1) because we
consider boundary scattering on the surfaces of the simulation
domain. An important observation is that a rapid drop in κ

is observed for structures in which the average grain size is
below the average phonon mean-free path (λpp = 135 nm).
For these structures grain boundary scattering has a more
dominant role than intrinsic three-phonon scattering. This
observation is consistent for the different values of grain
boundary roughness.

On the other hand, changes in the values of grain boundary
roughness (�rms) seem to play a comparatively smaller role
in decreasing κ (comparing the red, blue, and black lines,
respectively, in Fig. 2). Phonon paths are already randomized
by the numerous grains and intrinsic scattering, and thus the
additional randomness from grain boundary roughness plays
a minimal role. Similarly, it is also noticeable that as the grain
size decreases the variability in the results (the average of

FIG. 3. The thermal conductivity vs porosity (φ) for two geome-
try cases: ordered case (solid lines) and random case (dashed lines).
Three different values for boundary specularity are considered: p =
1, totally specular boundary scattering (blue lines); p = 0.5 (green
lines); and p = 0.1, almost diffusive boundary scattering (red lines).
The inset depicts the percentage reduction in thermal conductivity
for the p = 0.1 (red line), random porosity case compared to the
ordered case. The geometry structures of the simulated geometries
for ordered and random arrangement cases for 5%, 10%, and 15%
porosity are shown on top of the figure. In all cases the domain size
is fixed to length Lx = 1000 nm and width Ly = 500 nm.

the 50 simulations for each point), as indicated by the error
bars, also decreases, especially for grain sizes smaller than
the mean-free path.

Nanoporous geometries—influence of porosity and pore
roughness. Figure 3 summarizes the effects of porosity (φ)
and pore boundary roughness on the thermal conductivity
of nanoporous silicon. Examples of the typical geometries
considered, with porosities of 5%, 10%, and 15%, for both
ordered and disordered configurations, are shown in the geom-
etry subfigures in Fig. 3. In all panels the channel dimensions
are length Lx = 1000 nm and width Ly = 500 nm. In the
ordered geometry cases the pore diameter is fixed at D =
50 nm. In the random cases the pores are arranged in random
positions and their diameters vary from 10 to 50 nm using
a uniform distribution. Here, κ is plotted as a function of
porosity φ (x axis), and results for structures with boundary
specularity parameters p = 1 (fully specular case, blue line),
p = 0.5 (green line), and p = 0.1 (almost fully diffusive case,
red line) are shown. The ordered pore cases are shown in solid
and the randomized pore cases in dashed lines. Again, each
point is the average of 50 different configurations with the
variation bar denoted. Note that for the p = 1 case (blue solid
line), the boundaries everywhere are completely specular,
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and for zero porosity, the value of κ approaches the bulk
148 W m−1 K−1.

Phonons backscatter on the pores since the pores are large
and transmission is not allowed, unlike in the case of grain-
boundary scattering where transmission of phonons through
the grain boundary is statistically allowed. First, we observe
that reducing specularity causes a reduction in κ . However, an
order of magnitude decrease in p from p = 1 (blue line) to
p = 0.1 (red line) causes only a ∼33% drop in κ at most, and
more noticeably at low porosities where phonon trajectories
might still not be completely randomized [48]. Increasing
porosity, on the other hand, causes a significant decrease in κ

as also observed in previous theoretical [29,31,48,56,75–77]
and experimental results [11,18,19,20]. In fact, the effect of
porosity has a much greater impact than pore roughness. An
order of magnitude reduction in specularity causes roughly the
same effect as 15% porosity in the ordered case (blue solid
line), an observation consistent with previous works [31,48].
We note here that Monte Carlo does not account for coherent
phonon effects which could affect the phonon spectrum and
thermal conductivity, but there is increasing evidence that
such effects are important only at low temperatures and weak
roughness conditions [60,72], whereas here we deal with
room temperature and mostly diffusive boundaries.

Nanoporous geometries—influence of randomized pore po-
sitions and diameters. We next consider the effects of random
diameter and pore positions at different porosities as shown
in the “random” panels in Fig. 3. A further decrease in
thermal conductivity is observed as a consequence of disorder,
irrespective of pore boundary specularity. For the diffusive
pore case the reduction can vary from ∼35% (low porosity)
to ∼ 65% (high porosity), which is quite significant, as shown
in the inset of Fig. 3. We discuss the reasons behind this
in detail in Sec. IV below when we construct an analytical
model to account for this reduction. On the other hand, the
influence of specularity in the randomized pore cases is again
comparatively smaller and diminishes as porosity increases
(blue, green, and red dashed lines in Fig. 3).

It is illustrative to separate the two effects that constitute
the randomization in the polydispersed nanoporous geome-
tries, i.e., the randomization in pore position and random-
ization in pore diameter. Figure 4 shows the thermal con-
ductivity of structures with ordered pores and polydispersed
pores (solid and dashed red lines—the same as the p = 0.1
cases in Fig. 3), and the corresponding thermal conductivity
of the structures in which only the pore positions are ran-
domized. Typical geometries are depicted in the schematics
of Fig. 4. Clearly, the randomization of the positions alone
has a significant effect in lowering the thermal conductivity.
It seems that for lower porosities it is the dominant factor
for the deviation between the ordered and the polydispersed
geometries. For higher porosities both randomized location
and randomized diameters have similar influence in further
reducing the thermal conductivity from the ordered pore case.

Hierarchical disordered nanostructures—combining
nanocrystallinity and porosity. We next combine the
effects of nanocrystallinity and porosity, as in realistic
nanoporous materials. Again, ordered and randomized
pores are considered as shown in Figs. 5(a) and Fig. 5(b),

FIG. 4. The thermal conductivity vs porosity (φ) for ordered pore
structures, randomized pore structures, and polydispersed geometries
with randomized pore positions and diameters. In the first two cases
(red and black solid lines), the diameter is fixed at D = 50 nm (see
schematics panel for 10% porosity). In all cases the specularity for
all boundaries is fixed at p = 0.1

respectively, shown here for 5% porosity. Figure 5(c) plots
the thermal conductivity versus the average grain size
(〈d〉) for structures with different porosity values (φ). The
roughness on the transmittable grain boundaries is fixed
to �rms = 1 nm, while for the outer top/bottom boundaries
of the simulation domain and the pore boundaries we use a
specularity parameter of p = 0.1. Both conditions correspond
to rough, almost fully diffusive cases. Again each point shown
in Fig. 5(c) is an average of 50 simulations.

The top blue line depicts the zero porosity case, the same
as the initial results for �rms = 1 nm shown in Fig. 2 (blue
line). Adding pores in an ordered fashion further reduces κ .
This can be seen for 5% (magenta line), 10% (light blue),
and 15% (red) ordered porosity. The thermal conductivity
decreases as either porosity increases, or the average grain size
〈d〉 decreases, with large porosity dominating at large grain
sizes, whereas boundary scattering dominates at small grain
sizes. With regard to the variation bars, as porosity increases
and/or grain size decreases, scattering becomes more and
more randomized, and variations in the thermal conductivity
are reduced, as also observed above.

Hierarchical disordered nanostructures—nanocrystallinity
with randomized pores. The red-dashed line in Fig. 5(c) shows
the thermal conductivity versus average grain size in the case
of a φ = 15% randomized porous structure. The pores are
randomized in terms of diameter and position as indicated in
Fig. 5(b). The pore sizes are again varied from D = 10 to
50 nm in a random fashion using a uniform distribution. As
in the case of only pores geometries earlier, randomization
in the pore features reduces κ significantly. In this case, at
〈d〉 = 1000 nm on the right side of Fig. 5(c), there is an
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FIG. 5. Monte Carlo simulations showing the combined effects
of grain size and porosity (φ) in both the ordered pores case (solid
lines) and random pores case (dashed line) vs grain size 〈d〉. The
thermal conductivity for porosities φ = 0%, 5%, 10%, and 15% is
shown by the blue, magenta, light blue, and red lines respectively.
The effect of combined nanocrystalline and nanoporous material
with random pore positions and sizes (uniformly distributed between
10 and 50 nm) is depicted by the red dashed line. Examples of typical
geometries simulated for the case of 5% porosity, for both ordered
and random pore arrangements, are shown at the top of the figure.

initial 50% drop in κ in the randomized case compared to the
ordered (red lines), followed by a slow rate of decrease in κ

as the grain size decreases. This suggests that a high degree
of randomization and small average pore size makes phonon
scattering on pores much more dominant than the intrinsic
three-phonon scattering and grain boundary scattering. When
the grain size becomes very small (below λpp), then it starts to
play an important role again.

IV. ANALYTICAL MODELS—EXTENSIONS
AND VALIDATION

There are many analytical models available in the liter-
ature that describe the effects of material geometry on κ ,
either in the presence of grain boundaries [71,72,78,79] or
pores [75,76,80–82]. These are based on simple geometrical
considerations, and assume uniformity of the correspond-
ing features, but in the case of nonuniformities, or in the
presence of two or more types of nanosized features, their
accuracy fades. Here we compare our full simulation results
to some of these widely employed analytical models found in
the literature. We aim to quantify their validity and further
develop more accurate models that can capture the effects
of nonuniformity in nanostructuring, based again on simple
geometrical considerations.

Analytical models—nanocrystalline case. The analytical
models widely employed for nanocrystalline materials are
based on the simple logic that (i) phonons in a nanostructured
material undergo additional scattering events at a rate at which

they meet the boundaries as they propagate in the material,
(ii) an additional interface resistance (Kapitza resistance) is
introduced due to disruptions in the phonon flow. Based on
these principles, a few examples of the form that these models
take are given in the works of Nan et al. [78], Yang et al. [79],
and Dong et al. [71], given by Eqs. (12)–(14), respectively:

κ = κ0[
1 + RKκ0

d

] , (12)

κ = κ0[
1 + 2RKκ0

d

] , (13)

κ =
κ0

1+ λpp
dα[

1 + RKκ0(
1+ λpp

dα

)
] . (14)

Above, κ0 is the bulk thermal conductivity of silicon, λpp

is the average phonon-phonon mean-free-path (here λpp =
135 nm), RK is the Kapitza resistance, d is the average
grain size (〈d〉 in Monte Carlo), and α = 0.75 is a com-
monly used fitting parameter [71]. Here we use RK = 1.06 ×
109 K m2 W−1 [83]. Literature values for RK vary slightly in
the range 1–1.16 × 109 K m2 W−1 [71,83–88], a variation that
makes only very little qualitative difference to the results we
show below (at most 2–3%—see the Appendix). In another
simplified intuitive picture, κ is scaled by how many more
scattering events a phonon undergoes due to the crystalline
boundaries within the length of its pristine material mean-free
path as

κ = κ0(
1 + λpp

d

) = κ0
d[

d + λpp
] . (15)

Note that �rms or the boundary specularity does not appear
in any of these models, which are assumed valid under diffu-
sive phonon-scattering conditions.

Figure 6(a) compares our Monte Carlo simulation results
to those of the various nanocrystalline material models. We
keep the temperature fixed at T = 300 K and almost diffusive
grain-boundary scattering with p = 0.1. With the exception
of the model described by Eq. (12) which overestimates the
thermal conductivity, and the model by Eq. (15) (“NC model”)
which underestimates it slightly at larger grain sizes, the
models based on the simple reasoning of increased scattering
rates and Kapitza resistance are in very good qualitative and
quantitative agreement with the full Monte Carlo simulation
results (blue line).

Analytical models—ordered nanoporous case. In the case
of porous materials, the various analytical models are based on
the simple logic that the thermal conductivity is reduced due
to (i) the material volume reduction reflecting the reduction
in the material heat capacity, and (ii) the larger number of
scattering events on the pore boundaries within the intrin-
sic phonon-phonon scattering mean-free-path length, similar
to the nanocrystalline material case. A few commonly em-
ployed models in the literature for the thermal conductivity
of nanoporous materials are given in the works of Eucken
et al. [75], Gesele et al. [76], Tarkhanyan et al. [80], Dettori
et al. [56], and Verdier et al. [81] given by Eqs. (16)–(20)
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FIG. 6. (a) Thermal conductivity vs grain size for commonly em-
ployed analytical models for nanocrystalline geometries compared
to the Monte Carlo results of this work (blue line). The grain size
is varied from an average of 〈d〉 = 1000 nm down to 50 nm with a
roughness �rms = 1 nm. (b) Thermal conductivity vs porosity for the
commonly employed analytical porous material models compared to
the Monte Carlo results of this work (blue line). The pore boundary
specularity is fixed at p = 0.1. In both cases the domain top/bottom
roughness specularity is set to p = 0.1.

respectively:

κ = κ0
(1 − φ)

(1 + φ/2)
, (16)

κ = κ0(1 − φ)g2
0 = κ0(1 − φ)3, (17)

κ = κ0
(1 − φ)

1 + ( λpp

δ

) , (18)

κ = κ0
(1 − φ)

1 + φ

2 + 3λPP
2D

, (19)

κ = κ0

1 + 4
3

λPP
δ

, (20)

where δ is the average distance between adjacent pores and D

is the pore diameter. In Eq. (17) g0 is related to percolation
transport, approximated by the Looyenga effective-medium
model to be (1 − φ) [2,89]. To extract the distance δ, we
determine the number of collision (scattering) events Ncoll

per unit length (along the length of the material towards the

transport direction). The way that the number of collisions
encountered is extracted is simply by multiplying the size of
the pores (area) by the number density of the pores (ρ) in
domain in units of number/area, as [56]

Ncoll = πD2

4
ρ. (21)

The inverse of the number of interface scattering events
per unit length provides the effective scattering distance δ

between the pores (δ = 1/Ncoll). We adopted this from the
works of Dettori et al. [56] and Lorenzi et al. [90]. For
instance, in the case of 10% porosity in the geometries we
consider, the pores are spaced every 150 nm. The diameter
is 50 nm, which from the above equation one can extract
δ ∼ 100 nm, which is similar to an effective distance between
the pore perimeters. In the case of 30% order porosity, for
example, this number changes to 39 nm.

Figure 6(b) shows a comparison of our diffusive boundary
Monte Carlo simulations for the ordered porous structures
of Fig. 3, “ordered cases,” with the analytical models as
described by Eqs. (16)–(20). The model of Gesele et al. (green
line) [76] and Tarkhanyan et al. (purple line) [80] given by
Eqs. (17) and (18), respectively, show excellent agreement.
The model by Dettori et al. (light-blue line) [56] given by
Eq. (19) initially slightly underestimates the Monte Carlo
results, but shows good agreement after ϕ = 20%. The model
of Euken et al. [75] given by Eq. (16), which only accounts
for the reduction in the material volume (φ) in the first order,
significantly overestimates the Monte Carlo results. Alter-
nately, the model given by Eq. (20) [81] (red line) accounts
only for the mean-free-path reduction, but underestimates the
reduction in κ in the Monte Carlo results.

On the other hand, this very good match to ordered porous
simulation data [especially of Eqs. (17) and (18)], signals
that in the case of realistic variations and pore randomization,
which have lower thermal conductivity, these models will fail,
and more accurate models are needed. Indeed, the models
described by Eqs. (16) and (17) do not consider specific
information regarding the details of the pore distribution in
the material (positioning, diameters, shapes, interfaces, etc.),
but only the volume reduction value. The models given by
Eqs. (18)–(20) further consider an effective distance where
scattering events are introduced, but still nothing about the
distribution of those geometrical features in the material.

Analytical models—random nanoporous case. To construct
an effective analytical model for the thermal conductivity
in the case of structures with randomized pore geometries
we consider the following logic: In the case of pores with
randomized diameters and positioning, there are regions in
the simulation domain that have a higher porosity than the
average porosity of the overall material. These regions have
an increased thermal resistance compared to the average resis-
tance of the other segments of the material, something referred
to as reduced “line-of-sight” [91–93]. It is not clear though,
how rearrangement of the thermal resistance along the length
of the material in low and high resistance regions can affect
the thermal conductivity and at what degree. In a previous
work, for pores of constant diameter positioned randomly, we
have shown that there is indeed a correlation between such
rearrangements and lowering thermal conductivity [31,91].
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FIG. 7. Extraction of the variation in distances between pores,
δ, and variation in porosity, φ, in the nanoporous materials exam-
ined. Geometries for ordered (a) and randomized (b) nanoporous
geometries with φ = 10% are shown on top. The distribution of
distances between pores, averaged every ls = 100 nm (depicted
by the dotted red lines), is shown in (c) and (d), respectively.
The distribution of pore distances is well defined and constant in
the ordered case, but deviates in the randomized pore geometry. The
distribution of porosity is shown in (e) and (f), respectively. In this
case the distribution can be evaluated with higher resolution along
the length of the material. In (e) the porosity averages to φ = 10% in
every ls = 100 nm domain. In (f) the porosity deviates from the 10%
average following an inverse trend compared to the distance between
the pores shown in (d). The red shaded portions of the distance profile
in (d) and the porosity profile in (f) represent the regions of increased
thermal resistance.

On the other hand, by introducing a larger number of small di-
ameter pores as in this work, the effect of resistance variation
along the path is magnified since a reduced average diameter
of pores provides greater surface area for phonon scattering
[32,60].

To construct an analytical model that can take this thermal
resistance variation into account, we proceed as follows: We
start by dividing the simulation domain into subdomains
perpendicular to the transport direction, whose length ls is
determined from scattering mean-free-path considerations us-
ing Eq. (21), i.e., ls = δ, as shown in Figs. 7(a) and 7(b) (for
ordered and randomized geometries, respectively). Here, in
the case of 10% porosity the ls ∼ 100 nm. We then compute
the effective distance to adjoining pores δs separately for each
subdomain of length ls again using Eq. (21). This is done
over the total length of the simulation domain as shown in
Figs. 7(c) and 7(d), respectively. In the ordered case this
remains at ls = δ = 100 nm [horizontal line in Fig. 7(c)]. In
the randomized pore geometry, however, δs deviates from ls,
as seen in Fig. 7(d), especially in the regions of large deviation
in local porosity. The local porosity profiles are also shown in

Figs. 7(e) and 7(f), respectively. In the ordered case the poros-
ity averages to the global porosity (10%) every ls, whereas
in the disordered case the porosity deviates substantially, fol-
lowing the inverse trend of the distance deviation of Fig. 7(d).
For porosity we can construct higher resolution profiles as we
have access to the porosity along the channel length limited by
our domain discretization resolution. The red shaded regions
in Figs. 7(d) and 7(f) depict the areas of distance/porosity
smaller/greater than the average distance/porosity, which will
introduce additional thermal resistance. We need to stress here
that the choice of ls as the calculation of δ are extracted in
a logical way, based completely on the underlying geome-
tries. These change only when the porosity and randomness
changes in the geometry, and are not parameters that we use
arbitrarily to map the models to Monte Carlo data. Although
the choice of δ as the distance between scattering events is
intuitive, the choice of ls can also be justified by the fact
that the important things that affect transport happen within
the scattering lengths (see the Appendix for sensitivity of the
results in variations in ls).

We then evaluate the standard deviation of the average scat-
tering distance values along the length δs, and label this as �δ.
In the case of ordered pore arrangements this deviation would
be zero. In the case of randomized pore geometries, however,
it can be significant. To extract a more accurate value for
�δ we run 50 simulations of different randomized geometries
for each porosity value and average the extracted 50 �δ. We
then alter the distance δ in the models for random porosities
as δr = δ–�δ to account for an average smaller scattering
mean-free path. For example, in the case of 10% porosity with
δ = 100 nm, �δ ∼ 10 nm, indicating an effective reduction in
the distance between boundaries. In a similar way, the average
deviation in porosity �φ can be determined by using the
porosity profiles along the length of the channel. We refer to
these models from here on as the �δ and the �φ models.

As a first attempt to model thermal conductivity in random-
ized pore geometries we consider altering δ in the model by
Tarkhanyan et al. [80] given by Eq. (18), which provides the
best match to ordered porous simulations in Fig. 6(b) (purple
line). The model now becomes

κ = κ0
(1 − φ)

1 +
(

λpp

δ−�δ

) . (22)

In the simulated geometries, again the pore sizes are varied
from D = 10 to 50 nm in a random fashion using a uniform
distribution. The thermal conductivity predictions are plotted
by the black line in Fig. 8, which compares this model with
the full Monte Carlo results (blue line). For reference, we plot
by the purple dashed line the result of the same model in the
ordered case as in Fig. 6(b), which significantly overestimates
the thermal conductivity. As we can see, the improved model
has very good agreement with the MC results for high porosi-
ties, but for low porosities still some mismatch is observed.

In order to improve the �δ model [Eq. (22)] for low
porosities, we consider further the effect of local resistance
imposed by the geometrical arrangement. Clearly, a large
number of pores would give a very small local δs, i.e., high
local porosity and will impose a significant degradation of
thermal conductance. Thus, the model is extended to include
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FIG. 8. Thermal conductivity vs porosity for the analytical mod-
els of randomized pore geometries, compared to the Monte Carlo
simulation results of this work (blue line). Pore boundary specularity
in Monte Carlo is fixed at p = 0.1. The model of Tarkhanyan et al.
[80] as described by Eq. (18) is shown by the dashed purple line.
Equation (22) (black line) incorporates a deviation �δ in the average
distance. There is good agreement with Monte Carlo results for
porosities beyond φ = 20%. To improve the model, Eq. (24) (red
line) incorporates a weight on the deviation �δw, increasing the
importance of regions of higher porosity. As a reference, Eq. (25)
(green line), incorporates a further weighted deviation in porosity
�φw, which, however, slightly underestimates the Monte Carlo
simulations.

the possibility that some subdomains can have a porosity
much higher than the average porosity, i.e., regions of high
thermal resistance contributing to a more substantial drop in
κ . For this, we simply consider the deviation in the scattering
distances in each subdomain as before, but we now weigh
more the regions where the local δs is less than that of the
uniform case. In this way, we increase the dominance of
regions with higher local porosity in determining thermal re-
sistance. Thus, the deviation in the scattering lengths/porosity
decreases/increases even further as

�δw = �δ
LX

LX − LH
, (23)

where LH is the proportion of these high porosity regions
compared to the overall length of the domain LX. For exam-
ple, for porosities φ = 10%, 20%, 30%, �δw ∼ 19, 10, and
8 nm, respectively, an increase compared to the corresponding
nonweighted �δ ∼ 10, 8, and 8 nm. Thus, an improved
model (we will refer to it as the “�δw model”) is now
given by

κ = κ0
(1 − φ)

1 +
(

λpp

δ−�δw

) . (24)

As can be seen in Fig. 8, this model (red line) has very
close agreement with the full Monte Carlo results (blue line)
for the random porosity case. We note that considering both

FIG. 9. Thermal conductivity vs porosity for the analytical mod-
els of randomized pore geometries compared to the Monte Carlo
simulation results in this work (blue line). Pore boundary specularity
in Monte Carlo is fixed at p = 0.1. The model of Gesele et al. [76]
as described by Eq. (17) is shown by the dashed green line. Equation
(26) (black line) incorporates a deviation �φ in the average porosity.
There is good agreement with the Monte Carlo results for porosities
beyond φ = 30%. To improve the model, we incorporate a weight on
the porosity �φw [Eq. (27)] increasing the importance of regions of
higher porosity (red line).

the weighted deviation in distance and porosity as

κ = κ0
[1 − (φ + �φw )]

1 +
(

λpp

δ−�δw

) (25)

seems to underestimate the thermal conductivity predictions
compared to Monte Carlo (green line in Fig. 8), possibly
because of double counting the scattering events. We also
note that the choice of the regions LH that have in absolute
terms smaller δs (or higher porosity) than the average δ is
arbitrary. One can consider LH as regions which have δs

smaller than a fraction of δ, which might be more relevant
when the variations are very small. In our case, however, the
variation is substantial and the reference we used (δ) provided
a good match with the Monte Carlo simulation results.

Next, as a second example, we test the same methodology
by increasing the effective porosity in the model by Gesele
et al. [76] in Eq. (17). We increase the porosity by the overall
deviation �φ and by the weighted deviation �φw (referring to
them as the “�φ” and “�φw” models). Here we only modify
the transport component in the model, i.e.,

κ = κ0(1 − φ)(1 − (φ + �φ)2, (26)

κ = κ0(1 − φ)(1 − (φ + �φW)2. (27)

Figure 9 shows the comparison of these models to our
Monte Carlo results (blue line) versus porosity. Since we
simulated 50 different channels for each porosity value, in
the model we use the average �φw value for all 50 of these
geometries. In the case of 10% porosity, for example [shown
in Fig. 7(a)], �φ increases the effective porosity by another
7.5% to the total 17.5% porosity. The model predictions using
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�φ, given by Eq. (26), are shown by the black line in Fig. 9.
While this model works well for higher porosity values above
φ = 20%, it again overestimates the thermal conductivity for
porosities below φ = 20%. This is again due to the possibility
of regions of porosities above the average value in the simu-
lation domain, which dominate thermal resistance. At higher
porosities the pores make the different regions look more
uniform. However, this is significant improvement compared
to the starting model of Gesele et al., Eq. (17), which, as
shown by the green dashed line, significantly overestimates
the thermal conductivity. Note that in the uniform porosity
cases �φ is effectively zero.

In the case where we include the weighted porosity �φw

[the “�φw model” given by Eq. (27)], the model is signifi-
cantly improved as indicated by the red line in Fig. 9, which
essentially overlaps the Monte Carlo results (blue line). Here,
for the 10% porosity case, �φw is computed to be 18% after
we average it over 50 different channels. This is a ∼10%
increase in the overall porosity over the nonscaled �φ above.
This makes the effective porosity of this disordered channel to
increase by almost a factor of 3 to φ + �φW = 28%. In sum-
mary, it turns out that for φ = 10%, 20%, and 30%, �φw =
18%, 21%, and 16%. As porosity increases, the deviation
in porosity, in general, decreases. However, these numbers
stress the importance of nanostructured geometry variability
in thermal conductivity, an effect that is usually overlooked,
but increases the effective porosity significantly, with its effect
being more dominant even than boundary roughness.

Thus, the new models (�δw and �φw) described by
Eqs. (24) and (27) are shown to be accurate and can be
used to extract first-order thermal conductivity estimations for
structures with random pore positions and diameters, using
knowledge of basic geometrical specifics in the nanostructure.
In an experimental setting, these models can not only be
used to understand thermal conductivity measurements if the
geometrical features are known, but also conversely, to esti-
mate the degree of disorder in nanostructures, once average
porosity and thermal measurement data are available. Details
on the degree of randomization might be hard to extract in
the entire domain of the material, but these models provide a
possible way of estimating this. Finally, we note that recent
theoretical studies show that the effect of variations on elec-
tronic transport (where the mean-free path is much shorter),
might not be as noticeable [6,94]. Thus, variability can be
used as a means to achieve lower thermal conductivity without
affecting the electronic system, which could be advantageous
for thermoelectric applications.

Verifying Matthiessen’s rule. When different scattering
events are considered independently, it is usual practice to
combine the different scattering rates, or resistivities using
Matthiessen’s rule. It is important to examine if the combi-
nation of nanocrystallinity and nanoporosity can be combined
using Matthiessen’s rule, which will provide an indication of
the degree of independence of the two scattering mechanisms.
Here, we examine this using the Monte Carlo simulation
results for each mechanism independently and together. We
also examine the eligibility of the analytical models we have
constructed for being used within Matthiessen’s rule. In this
case we consider scattering due to (i) three-phonon processes
leading to a κPH, (ii) scattering due to nanocrystalline geome-

tries leading to a κNC, and (iii) scattering due to nanopores
leading to a κNP. Thus, the total thermal conductivity is given
by

1

κTOTAL
= 1

κPH
+ 1

κNC
+ 1

κNP
. (28)

We proceed with our verifications as follows: (i) We
simulated structures including nanocrystallinity with 〈d〉 =
225 nm and nanoporosities 5%, 10%, and 15%. In the ordered
pore case we use D = 50 nm and in the random pore case
D varies from D = 10 to 50 nm in a random fashion using
a uniform distribution. (ii) We simulated the nanocrystalline
geometry structures and the nanoporous structures separately,
for the same 〈d〉 and φ as in (i). (iii) We computed the
combined thermal conductivity of the two simulations in (ii)
using Matthiessen’s rule and compared that to the combined
Monte Carlo simulation of (i). (iv) We combined the results of
the analytical models for nanocrystallinity [the “NC model”
given by Eq. (15)] and porosity [�δw and �φw models given
by Eqs. (24) and (27) respectively] and compared those to
the Monte Carlo simulation results of (i). For the structures
with porosities φ = 5%, 10%, 15%, we extracted �δw =
27, 19, 13 nm, and �φw = 20%, 18%, 16%, respectively.

The summary of these comparisons is shown in Figs. 10(a)
and 10(b) for the ordered and randomized porous materials,
respectively. The blue bars show the full MC simulations
which include nanocrystallinity and porosity. The error bars
indicate the spread of the 50 simulations performed to extract
the average value of the thermal conductivity. The green
bars indicate MC simulations for each scattering environment
separately (nanocrystallinity and porosity), coupled together
using Matthiessen’s rule to extract the overall thermal conduc-
tivity. The purple bars indicate the thermal conductivity pre-
dicted by the �δw analytical model [Eq. (24)] combined with
the nanocrystalline model by Eq. (15) using Matthiessen’s
rule. Finally, the red bars indicate the thermal conductivity
predicted by the combination of the �φw model [Eq. (27)] and
Eq. (15) using Matthiessen’s rule. The percentage difference
of the three latter situations compared to the full MC results
is indicated on top of the respective bars. Clearly, a very
good agreement between the full MC results, the partial MC
results, and the analytical models is observed. In the ordered
pore case shown in Fig. 10(a) the error introduced by the
analytical models is at most 10%, observed for the 15%
porosity material. In the case of random pores results shown
in Fig. 10(b), a slightly larger variation is observed for the
larger porosities, but it is still at most 13% (for both partial
MC results and the analytical models).

The good agreement between all results indicates that
Matthiessen’s rule is still valid at a large degree and the
nanocrystallinity and nanoporosity can be treated as inde-
pendent mechanisms. It also indicates that well-validated
analytical models are at first-order accurate for estimating
phonon transport in complex nanostructured materials, at least
silicon-based at room temperature. Quantifying the validity of
Matthiessen’s rule is especially important for experimentalists
seeking a fast verification of measured data, but we should
note that our conclusions could be only confidently valid for
the structures and geometries we considered. Deviations from
Matthiessen’s rule have been observed in various cases for

115435-11



CHAKRABORTY, FOSTER, AND NEOPHYTOU PHYSICAL REVIEW B 98, 115435 (2018)

FIG. 10. Comparison between (i) the full Monte Carlo (MC)
simulated results in structures with grains and pores (blue bars)
and (ii) MC simulation results of grains alone and pores alone,
but combined through Matthiessen’s rule (green bars), (iii) results
given by the porous material model introduced in Eq. (24) (�δw

model) combined with the nanocrystalline model of Eq. (15) through
Matthiessen’s rule (purple bars), and (iv) results given by model
introduced in Eq. (27), (�φw model) combined with the nanocrys-
talline model of Eq. (15) through Matthiessen’s rule (red bars). (a)
Ordered pore geometries. For the MC simulations, 50 realizations
with grain boundaries of 〈d〉 = 225 nm are averaged, and pores of a
fixed diameter D = 50 nm. (b) Randomized pore geometries. The
pore diameters vary from 10 to 50 nm. The percentage numbers
indicate the variation of each method from the full MC results (blue
bars). Porosities φ = 5%, 10%, and 15% are shown.

phononic but also electronic systems [95,96]. In particular, we
only considered nanopores larger than 10 nm in diameter to
stay within the validity of the particle nature of phonons as
treated by Monte Carlo. Other works, however, have consid-
ered smaller pores (D less than 10 nm), which also drastically
reduce κ , but indicate larger violations of Matthiessen’s rule
[56,81,90,97–99].

V. CONCLUSIONS

In this work we have developed and employed a “single-
phonon” Monte Carlo phonon transport simulator to solve the
Boltzmann transport equation for phonons in hierarchically
disordered Si nanostructures. We investigated the presence of
nanocrystalline and nanoporous features separately and com-
bined, in ordered and disordered realizations. In nanocrys-

talline geometries the effect of grain size on κ is more pro-
nounced at grain sizes 〈d〉 smaller than the average phonon
mean free path of the system (λpp). In that case, boundary
scattering dominates over internal three-phonon scattering.
We further show that the effect of changing porosity (φ) on
thermal conductivity is much larger than boundary rough-
ness and specularity (p) in reducing κ . An important result
of this work is that it demonstrates that randomization in
disorder, which is often overlooked, can play an important
effect, further reducing thermal conduction by even up to 60%
compared to the ordered pore geometry. Thus, nonuniformity
can be as important, if not more important, in reducing κ

compared to boundary roughness and specularity (p) and
needs to be considered at a similar level in interpreting
experimental data. Based on simple geometrical rules and
previous analytical models for ordered structures, we con-
structed accurate analytical models for randomized porous
structures with excellent agreement with the full scale Monte
Carlo simulations. We believe our results and the models
presented will provide guidance in developing better under-
standing of thermal transport in nanostructured materials and
aid the design of better thermoelectric and heat management
materials.
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APPENDIX

In this Appendix we include sensitivity studies to the simu-
lation parameters and model choices we employ in the paper.
The purpose is to demonstrate that the conclusions we reach
in the paper, and the analytical models we propose, are
qualitatively and quantitatively robust with respect to model
assumptions and parameter choices. The following parameters
are examined

1. Phonon-phonon mean-free-path (mfp) value

The influence of a different choice for the phonon-phonon
scattering mean-free path λpp when scaling the simulated
thermal conductivity in Eq. (8). In the literature λpp varies
from 100 to 300 nm, thus, here, we recreate Fig. 5 of the main
text as Fig. 11 when λpp = 135 nm (solid lines) (as in the main
text) and λpp = 300 nm (dashed lines) are used in Eq. (8). Fig-
ure 11 shows the thermal conductivity versus nanocrystalline
domain size for porous materials with porosities φ = 0%
and 15%, in both ordered and randomized pore conditions.
Doubling the mfp has at most ∼15% qualitative difference
in our results in the pristine material with no crystallinity
and no porosity (compare the dashed to solid blue lines at
〈d〉 = 1000 nm), which drops to ∼6% in the case where high
and randomized disorder is introduced (dashed versus solid
purple lines at 〈d〉 = 1000 nm). At smaller 〈d〉 the dependence
on mfp is insignificant, indicating that boundary scattering
dominates transport. Thus, the assumption of mfp scaling
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FIG. 11. Monte Carlo simulations showing the effect of scaling
Eq. (8) by different phonon-phonon scattering mean-free paths on the
combined effects of grain size 〈d〉 and porosity (φ). The blue lines
show the thermal conductivity in the presence of nanocrystallinity
only (no pores). Ordered pores case (red lines) and random pores
case (purple lines) vs grain size 〈d〉 are also shown. Porosity φ =
15% is considered. The dashed lines indicate the simulations where
λpp = 300 nm [44,53]. The solid lines are for λpp = 135 nm as in the
main text [51,57].

choice in Eq. (8) does not change any of our quantitative or
qualitative trends.

2. Constant roughness �rms versus constant specularity p

Instead of a constant specularity p, for boundary scattering
in Monte Carlo it is also customary to determine the
actual specularity for each phonon using the expression
p(q ) = exp(−4q2�2

rms), which also allows wave-vector
dependence reflections. In that case, what is constant is
the surface roughness (�rms). Below, we recreate Fig. 3 of
the main text (for the ordered pore cases only) as Fig. 12,
but include simulation results for constant �rms = 0.3 nm
treatment of pore boundary scattering (i.e., now there is
q-dependent scattering), a value which corresponds well to
rough silicon surfaces [65,66]. This specific p = 0.1 (red line
in Fig. 12), which we employ throughout the main text, seems
to correspond to this �rms ∼ 0.3 nm in all the porosity values
we consider (black dashed line in Fig. 12). This means that
the average phonon wave vector (from the expression above)
can be extracted to be q = 2.5/nm, which corresponds to
phonons around the first quarter of the Brillouin zone (length
2π/a0, where a0 = 0.543 nm).

3. Channel length dependence

Throughout the paper, we have fixed the channel length
at Lx = 1000 nm, which is indeed shorter than some of the
phonon mean-free paths in Si, and used a scaling to adjust for
this short channel described by Eq. (8) in the main text. Here
we performed Monte Carlo simulations in nanoporous mate-
rials of channel length twice as much, of Lx = 2000 nm, and
compare the thermal conductivity results for the two cases.
Figure 13 shows the comparison of the thermal conductivity

FIG. 12. Comparison of fixed specularity values vs fixed �rms

(black line) for ordered porous geometry cases. Three different
values for fixed boundary specularity are considered: p = 1, totally
specular boundary scattering (blue line); p = 0.5 (green line); and
p = 0.1, almost diffusive boundary scattering (red line). The results
for the fixed �rms = 0.3 nm (black dashed line) most closely corre-
spond to p = 0.1.

versus porosity in channels with the different lengths, Lx =
1000 nm (blue line) and Lx = 2000 nm (red line). Indeed,
due to the scaling performed, the boundary scattering on the
upper/lower surfaces, as well as scattering on the pores, the
channel we consider (Lx = 1000 nm) is already diffusive, and
changing the length does not alter the thermal conductivity,
either for the pristine channel (for φ = 0) or for the porous
channels at any porosity.

4. Grain size and average phonon path

In order to have a clear picture of the transport regime
at which the channel operates (ballistic versus diffusive),
we have also calculated the average phonon path length in
our polycrystalline structures from the moment the phonons

FIG. 13. (b) Thermal conductivity vs porosity for randomized
nanoporous geometries in the nominal domain length Lx = 1000 nm
(blue line) and doubled domain length Lx = 2000 nm (black line).
Pore boundary specularity is p = 0.1.
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FIG. 14. (a) Average phonon path vs 〈d〉 for nanocrystalline
geometry cases. 〈d〉 is varied from 〈d〉 = 1000 nm to 〈d〉 = 50 nm.

enter the domain after initialization to the moment they are
extracted from the domain. This is shown below in Fig. 14
versus the nanocrystalline size 〈d〉. The average phonon path
length in the pristine channel is only twice the length of
the domain (at 〈d〉 = 1000 nm), which is the reason for the
phonon mean-free-path scaling we employ by Eq. (8). As
the nanocrystallites are reduced in size, the path increases,
especially when their size becomes smaller compared to λpp

(135 nm). The path of the phonons is then more than an
order of magnitude compared to the channel length, indicating
compete channel diffusion and large reductions in the thermal
conductivity.

5. Kapitza resistance variation

In the analytical models for nanocrystalline materials
described by Eqs. (12)–(14), the value of the Kapitsa re-

FIG. 15. Thermal conductivity vs grain size from the commonly
employed Yang model [79] analytical model for nanocrystalline
geometries compared to the Monte Carlo results of this work (blue
line). We assume �rms = 1 nm. The Kapitza resistance value is
varied from 1 × 109 K m2 W−1 (red line) to 1.06 × 109 K m2 W−1

(yellow line) to 1.16 × 109 K m2 W−1 (purple line).

FIG. 16. The sensitivity of the randomized models in the ls
distance that we chose to split the channel into for the calculation of
the porosity variation along the transport direction. Results for 2ls ls,
and ls/2, where ls = δ are shown and compared to the Monte Carlo
results and the simpler nonrandomized model of Eq. (18).

sistance appears. There is a slight variation in the val-
ues of the Kapitsa resistance in the literature, from RK =
1–1.16 × 109 K m2 W−1. Here we vary the value of RK in
that range to examine the amplitude of this variation in
the thermal conductivity. Indeed, the effect of this varia-
tion, as shown in Fig. 15, is minor, both qualitatively and
quantitatively.

6. Choice of domain splitting ls for the randomized
analytical models

In the extension of the analytical models in order to capture
the effect of randomized porosity [Eqs. (24) and (27)], we
split the simulation domain in lengths of ls = δ, where δ is
the scattering length introduced by the pores, and determine
the deviation in porosity across the length of the channel
based on that ls region separation. Although δ is determined
solely by the underlying geometry, ls is a choice we make
based on the fact that the effect of porosity will be correlated
to the scattering distance it causes. However, here we inves-
tigate the sensitivity of the proposed models on the choice
of ls. We separated the domain in ls = δ, ls = 2δ, and ls =
δ/2, and extracted the deviations in porosity based on those
separations. We then included them in the analytical model
given by Eq. (24). Figure 16 below is a recreation of Fig. 8 of
the main text, which shows that (i) independent of the choice
of ls, the model that included deviations provides a better
fit to the Monte Carlo data compared to the simple, nonran-
domized model (dashed purple line), (ii) large ls compared to
δ still gives accurate results (light-blue line), (iii) smaller ls
compared to δ overestimates the effect of disorder variability,
especially at lower porosities (green line). However, at higher
porosities the inaccuracy decreases independent of the choice
of ls.
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