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Rich many-body phase diagram of electrons and holes in doped
monolayer transition metal dichalcogenides
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We use a variational technique to study the many-body phase diagram of electrons and holes in n-doped and
p-doped monolayer transition metal dichalcogenides (TMDs). We find a total of four different phases. (i) A fully
spin polarized and valley polarized ferromagnetic state. (ii) A state with no global spin polarization but with spin
polarization in each valley separately, i.e., spin-valley locking. (iii) A state with spin polarization in one of the
valleys and little to no spin polarization in the other valley. (iv) A paramagnetic state with no valley polarization.
These phases are separated by first-order phase transitions and are determined by the particle density and the
dielectric constant of the substrate. We find that in the presence of a perpendicular magnetic field the four
different phases persist. In the case of n-doped MoS,, a fifth phase, which is completely valley polarized but not
spin polarized, appears for magnetic fields larger than 7 T and for magnetic fields larger than 23 T completely

replaces the second phase.

DOI: 10.1103/PhysRevB.98.115432

I. INTRODUCTION

It is known that long-range exchange interactions cause
the three-dimensional electron gas to become ferromagnetic
at low densities [1-3]. This was later confirmed by Monte
Carlo simulations [4,5], which predicted the same effect in the
two-dimensional (2D) electron gas [4,6]. The 2D electron gas
has been investigated in detail in semiconductor heterostruc-
tures and electrons above liquid helium [7-9], however the
discovery of graphene [10], later followed by a whole range
of different 2D materials, provided new systems with different
dispersion relations and topologies for studying the 2D elec-
tron gas [11]. The pronounced effect of the dispersion relation
on the many-body state of the electron gas was shown by
using a variational wave function technique, which found that
monolayer graphene does not exhibit a ferromagnetic phase
[12] while bilayer graphene does [13].

Another class of 2D materials is formed by the mono-
layer transition metal dichalcogenides (TMDs), such as MoS,,
MoSe,, WS,, WSe,, etc. [14-19]. As opposed to graphene,
monolayer TMDs lack inversion symmetry, which leads to a
large direct band gap in the low-energy valleys at the corners
of the first Brillouin zone. Furthermore, they exhibit a strong
spin-orbit coupling, which leads to a large splitting of the
valence bands and a small splitting of the conduction bands,
which is opposite in the two valleys. It is expected that this
valley-contrasting spin splitting will result in a rich many-
body phase diagram with many more possible phases than
those predicted for monolayer and bilayer graphene.

Recently, ferromagnetic behavior was predicted in numer-
ous different TMD-based systems such as exfoliated TMDs
with defects [20], transition metal-doped TMDs [21], in-
tercalated TMDs [22], TMD-based heterostructures [23,24],
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and TMDs in which one of the chalcogen layers is either
removed [25] or different from the other chalcogen layer [26].
However, in all of these systems the ferromagnetic phase is
not driven by many-body exchange interactions but rather
is a single-particle effect in which one of the spin states is
energetically preferred over the other, and which is not present
in clean monolayer TMDs.

In the present paper we use a variational technique, similar
to that used in Refs. [12,13], to study the exchange interaction-
driven many-body phase of different monolayer TMDs and
its dependence on the dielectric constant of the substrate and
on a perpendicular magnetic field. Our paper is organized as
follows. In Sec. II we present an outline of the theoretical
model, including the many-body Hamiltonian and the varia-
tional state. The numerical results are discussed in Sec. III.
The main conclusions are summarized in Sec. IV.

II. MODEL

A. Many-body Hamiltonian
1. Kinetic energy

The effective low-energy single-particle kinetic Hamilto-
nian of monolayer TMDs is given by [27]

A .

S+ Ar0T at(tk, —iky)
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at(tky +iky) —5 +Ai07T

with a the lattice constant, ¢ the hopping parameter, o0 = £1
the spin index, T = %1 the valley index, A the band gap,
and A, (1,) the spin-orbit coupling strength leading to a
spin splitting of 24, (2A,) at the conduction (valence) band
edge. The values of these constants are listed in Table I
for different TMDs. The corresponding single-particle kinetic
energy spectrum is given by

Ae + by AZ.
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TABLE I. Lattice constant (a) [27], hopping parameter (¢) [27],
band gap (A) [27], spin splitting of the conduction (2A.) [28] and
valence (21,) [29] band, and 2D polarizability (x,p) [30] for different
TMD materials.

a(m) 1@V) A(eV) 2 (eV) 24, (eV) xop (nm)
MoS, 0.32 1.10 1.66 —0.003 0.15 8.29
MoSe, 0.33 0.94 1.47 —0.021 0.18 10.34
WS, 0.32 1.37 1.79 0.027 0.43 7.58
WSe, 0.33 1.19 1.60 0.038 0.46 9.02

with A, ; = A + (A — Ay)o T and with the plus (minus) sign
describing the conduction (valence) band. Because sponta-
neous electron-hole creation is suppressed due to the large
band gap we have to consider either only conduction band
states (n-doped TMDs) or only valence band states (p-doped
TMDs). The many-body kinetic Hamiltonian can then be
written as

I:IO =4 Z Ek,a,r,:l:&]:mt&k,(r,rv (3)

k,o,t

with the plus (minus) sign describing electrons (holes) and
with &,LM (dk.s,) the creation (annihilation) operator of
either an electron in the conduction band (n-doped TMDs)
or a vacancy in the valence band (p-doped TMDs) with
wave vector k, spin index o, and valley index t. The hole
quasiparticle has opposite energy, momentum, spin index, and
valley index as compared to that of the vacant valence band
state.

2. Interparticle interactions

The interaction potential in monolayer TMDs is, due to
nonlocal screening effects, given by [31-33]

e g v A
4mc802_ro[ 0(5)_ O(Eﬂ’ @

with r the distance between two particles, where Yy and H
are the Bessel function of the second kind and the Struve
function, respectively, with k = (&5 + &)/2, where & is
the dielectric constant of the environment below (above)
the TMD monolayer, and with rop = x»p/(2k) the screening
length where y,p is the 2D polarizability of the TMD. For
ro = 0 this potential reduces to the bare Coulomb potential
V(r) = e?/(4mkeor). Increasing the screening length leads
to a decrease in the short-range interaction strength while the
long-range interaction strength is unaffected. For very large
screening lengths ryp — oo the interaction potential becomes
logarithmic, i.e., V(r) = e*/(4mkeoro)In(ro/r). The g depen-
dence of the interaction potential (4) goes as (g + roqz)‘l.
The many-body interaction Hamiltonian is in general given
by

. 1
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with |+ ) the eigenstates of the Hamiltonian (1)
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0 = arctan(k,/k,), A is the surface area, 1, is the orthonor-
mal spin states, and with the plus (minus) sign describing
electrons (holes). We then have

<wq,v,p¢k,a,r | V(r)wfq’,u/,p/ Wk’,a’,r’>
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where (), denotes the overlap element of the pseudospin
part of the eigenstates and where we have neglected inter-
valley scattering due to the large corresponding momentum
exchange. When only considering the exchange interactions
(the direct interactions should be canceled by the interactions
with the positive lattice background), we find

|(Vg,0.0 1 Vk,o,0) I

2
A e
V=-—
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3. Zeeman effect

The presence of a perpendicular magnetic field leads to
three different Zeeman effects by coupling with three different
magnetic moments. (i) The magnetic moments of the particles
around their atomic site. The magnetic quantum numbers in
the conduction and valence bands are given by m, = 0 and
m, = 2t, respectively. (ii) The spin magnetic moments of the
particles. (iii) The intrinsic magnetic moment of the individual
Bloch particles [34]

. e
my g, = _lﬁ<vk¢/k,a,t| X (Hy o —
ea2t2AM
-7 e..
Aha?k? + hAZ

Ek,a,r)|Vk1/fk,a,r)p

(10)

Putting this all together we get for the magnetic part of the
many-body Hamiltonian

A AT ~
HB =+B E (UI'LB - eZ,'mk,(f,‘[)ak’a-yrak,d,t

k,o,T

—2B Y tupdy, Ao, (1)

k.o,

with the plus (minus) sign describing electrons (holes) and
where the last term should only be included for holes.

Apart from the different Zeeman effects, a perpendicular
magnetic field also leads to confinement of the charge carriers,
which results in discrete Landau levels in the energy spectrum.
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This will have a significant effect on the many-body phase
when the confinement region is smaller than the average inter-
particle distance. The latter can be estimated by (r) = 1//7n
with n the charge carrier density, while the former is given
by the magnetic length [z = //i/(eB). For B =50 T we
have [z = 36.3 A, which is less than the average interparticle
distance for densities smaller than n = 0.3 x 10'* cm~2. This
means that only at strong magnetic field strengths and low
densities would the Landau levels significantly affect the
many-body phase. Therefore, we do not take this effect into
account in the current work.

B. Variational solution

We consider a variational state in which the four energy
bands can be filled independently from each other up to a
certain number of particles N, ., i.e., the state

o) = [T IT @b |19. (12)

0,7 k<ky”

with k7" the band dependent Fermi wave vector and with
|#) the vacuum state, i.e., completely filled valence bands
and completely empty conduction bands. This is a Hartree-
Fock method in which Fermi correlation is taken into account
(through the anticommutation relations of the creation and
annihilation operators) but Coulomb correlation is not. The
occupation number of a given single-particle state is therefore
given by

1, fork < k%",

Nior = (Wold) , ak.0|%0) =
ot k.o,e00 T 0, fork > ky".

13)

The total number of particles in a given energy band is
given by Ny = Y Ni o . and together they form the set of
variational parameters. In order to gain more direct physical

J

Ve = (Wo| VW) =

where the integral

insight from the variational parameters we transform them to

Zar O—NU,T
N = NO',‘L'7 Ca ==
; Z(r,r NU,T (14)
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¢ - la = . — .
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The total number of particles in the system N is fixed,
meaning that we have three variational parameters: ¢, {;, and
¢y. These are the spin, valley, and spin-valley polarization,
respectively, and can range from —1 to 1. For example, a state
characterized by (¢, ¢r, &) = (0, 0, 1) has an equal number
of spin up and spin down particles, has an equal number of
particles in both valleys, but all spin up (spin down) particles
reside in the K (K’) valley. Starting from Ny = Y, Nk
converting the summation over k to an integral, and using
Eq. (13) we obtain an expression relating N, ; and k7". We
then invert the set of equations in Eq. (14) to get

Na,r

kGt =\ 4n =% = fan(l+ 08 + 18 +0T8).  (15)
with n = N/A the total particle density.

1. Kinetic energy

The expectation value of the kinetic energy (3) for our
variational state is given by

T

g - k;vr dkk
Vo |Hy| W) = = E Eyr
( 0| 0| > 2 - /(; k, ,T,:l:

N Ae + Ay
= — + + oT
2mn p 2

([t 57+ 22,177 = 45, )- 10

(k)

+
24a%t?
2. Interparticle interactions

The expectation value of the interparticle interactions (9)
for our variational state is given by

_ Ne2 Z[ (kmf)3 (17)
deoke 2 )dn 4= 7" Fe

uv[uv? + f7. ) f7 (V) + 2uvfy - () f5. (v) cos 6]

1 1 m
L,,,:/ du/ dv/ a9 _ _ :
0 0 0 du? 4+ Ay fre V2 + Ayt for e (WI[V 12 + 12 — 2uv cos 0 + ¢4 (u? + v2 — 2uv cos 0)]

with
fa,r(x) = Aa,r +.,/x2+ quf,
o,T 19
< As e Xopk (9
o, — o7 Co,r = s
2atky 2K

is evaluated numerically.

18)

3. Zeeman effect

The expectation value of the magnetic part of the Hamilto-
nian (11) for our variational state is given by

(Ap) = N, upB + 8 > thgcln 1+ !
= o T L TAg 1IN = )
B Sattp l6mhn =" =" A2

0,7

(20)
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FIG. 1. The four different phases of monolayer TMDs in zero magnetic field. Blue and red bands are spin up and spin down bands,

respectively.

where in the first term we have to substitute ¢, — ¢, + 2¢;
for holes.

The sum of the three terms (16), (17), and (20) gives the to-
tal variational energy, which depends on the three variational
parameters. We minimize the variational energy brute force to
find the variational parameters which define the lowest energy
many-body state.

III. RESULTS

The main results and discussions presented here are for
n-doped TMDs, which are our main focus. In the next sub-
section we briefly comment on the results for p-doped TMDs.

A. n-doped TMDs

In the absence of interactions the many-body state can
simply be found by filling up the lowest energy single-particle
states. In the absence of a magnetic field this means that both
valleys are populated equally and, as a consequence, that both
spin states are also populated equally. The many-body state
is therefore characterized by (¢, ¢r, o) = (0,0, 1) at low
densities, i.e., there is no global spin and no valley polarization
but there is spin polarization in each valley separately (spin-
valley locking). For densities above some critical value, the
electrons will also populate the higher conduction band in
both valleys and as such the spin-valley locking will be grad-
ually lost, i.e., there is a second-order phase transition. The
many-body state is then given by (¢, ¢, &) = (0, 0, a(n))
for Mo-based TMDs and by (&5, ¢z, &o) = (0,0, —ax(n)) for
W-based TMDs with

Ay — Ae) — (hy 4 A )VAa22n + A2 — 4k,
2a2t’mn

a(n) =
2D

as a function which decreases continuously with increasing
density from 1 to 0.

When electron-electron interactions are present, we find
four different many-body phases as shown in Fig. 1.
Phase I is characterized by (&y,¢r,8¢e) = (1,1,1) or
(5,87, 84) =(—1,—1,1) for Mo-based TMDs and by
(655 8e,8e) = (1, =1, 1) or ({, &r, Go) = (=1, 1,=1) for
W-based TMDs. The system is completely spin polarized
and valley polarized, i.e., the many-body state is a truly
ferromagnetic state. In the specific case of MoS, we also
find another ferromagnetic phase, phase I, characterized by
(o &rs Ca) = (=1, 1, =1) or (¢, &7y Ga) = (1, =1, —1). The

difference with phase I is that the electrons now all occupy one

of the upper conduction bands as opposed to one of the lower
conduction bands. This is possible because of the very small
spin-orbit coupling in the conduction band and because the
upper conduction bands have a slightly larger effective mass
My = h?Aq./(2a%t?) reducing their kinetic energy contri-
bution. Phase II is characterized by (¢, ¢r, &) = (0,0, 1)
for Mo-based TMDs and by (¢, &7, ¢o) = (0,0, —1) for W-
based TMDs, i.e., the low-density phase of the noninteracting
case discussed above. There is no global spin and valley
polarization but there is spin-valley locking. Phase III is
characterized by nonzero values between —1 and 1 for all
three variational parameters, which vary as a function of
the electron density, such that one of the valleys is com-
pletely spin polarized, whereas the other valley shows little
to no spin polarization. Finally, phase IV is characterized
by (¢s, &r, Co) = (0,0, a(n)) for Mo-based TMDs and by
(&5 8ey &) = (0,0, —ax(n)) for W-based TMDs. This is the
completely unpolarized phase which was also found in the
high density limit without interactions.

The energies of these four phases are shown in Fig. 2(a)
as a function of the electron density. This shows that we
find a step by step decrease in the spin/valley order of the
many-body state when increasing the density. In the limit of
zero density the energy of all these phases converges to A /2 —
A, 1.e., the lowest single-particle energy. However, at very
low densities the system should transit to a Wigner crystal,
which is predicted to occur [35] at densities of the order of
1 x 10 cm~2. Furthermore, we see that the first derivative of
the ground state energy shows discontinuities when transiting
between phases, meaning that the transitions between these
phases are all first order. In the noninteracting case there are
only two phases (phase II and phase IV) with a second-order
transition between them, but when interactions are included
we find an additional phase between them (phase III) and
an extra phase at low densities (phase I) with first-order
transitions between all phases.

The phase diagram as a function of the electron density
and the substrate dielectric constant is shown in Figs. 2(b)
and 2(c). We can see that all the phase transitions occur
at lower densities for higher substrate dielectric constants.
This is because the substrate weakens the electron-electron
interactions. The phase transition between phase I and II is
less dependent on the substrate dielectric constant than those
between phase II and III and between phase III and IV. The
order in which the four different TMDs change phases is
different for the phase transition between phase I and II as
compared to those between phase II and III and between
phase III and IV.
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n (10" em™2)

FIG. 2. (a) Energy per particle for MoSe, for zero magnetic
field and ¢, = ¢, = 1 as a function of the total electron density for
phase I (blue), phase II (red), phase III (black), and phase IV (green).
The phase transitions are indicated by the vertical lines. (b) Phase
diagram for zero magnetic field as a function of the total electron
density and the dielectric constant of the substrate below the material
& (6, = 1) for MoS; (solid, blue) and MoSe, (dashed, red). (c) The
same as (b) but now for WS, (solid, blue) and WSe, (dashed, red).

When a perpendicular magnetic field is added to the sys-
tem, we find the phase diagram shown in Fig. 3(a). The four
phases which are present at zero magnetic field persist for
nonzero magnetic field. The magnetic field breaks the valley
degeneracy and as a result phase I is now only character-
ized by (&s, &y &) = (—1, —1, 1) for Mo-based TMDs and
by (&5, &2y &o) = (1, —1, —1) for W-based TMDs. For MoS,
phase I’ persists up to magnetic field strengths of 40 T and is
characterized by (¢, ¢r, &) = (1, —1, —1). This means that
a complete flip in spin polarization, from ¢, = —1to {, = 1,
occurs when tuning the system from phase I to phase I'. The
transition to phase I’ occurs at larger densities with increasing
magnetic field because the energy difference between the two
conduction bands in the lowest energy valley increases with
magnetic field. Phase II is now characterized by (¢, &7, {y) =
(—B(n), —B(n), 1) for Mo-based TMDs and by (¢, &7, &o) =

50

40~

10f

0.8

I

|
i I ]
0.6 | ' ]
5 [ | 1
" 0.4F !
0.2F |

0.0-(b)
1.0

-
~a
~e
e
~a
..........

—
—_—— e |

1.5

n (10" cm=2)

FIG. 3. (a) Phase diagram for ¢, = ¢ = 1 as a function of the
total electron density and the perpendicular magnetic field for MoS,
(solid, blue), MoSe, (dashed, red), WS, (dotted, black), and WSe,
(dot-dashed, green). (b) Spin polarization for ¢, = ¢, = 1 for MoSe,
as a function of the total electron density for a perpendicular mag-
netic field of O T (solid, blue), 20 T (red, dashed), and 50 T (black,
dotted).

(B(n), —B(n), —1) for W-based TMDs with B(n) a function
similar to «(n). The exact numerical values of the variational
parameters which define phase III and phase IV also change
slightly due to the magnetic field but they still represent the
same type of phases as shown in Fig. 1. We see that the
phase transitions between phase I and phase II and between
phase III and phase IV shift to higher densities as the magnetic
field increases. The phase transition between phase II and
phase III, however, shifts to lower densities as the magnetic
field increases.

In Fig. 3(b) we show the spin polarization as a function
of the electron density. This clearly shows the transition from
phase I with complete spin polarization to phase II with partial
spin polarization. In the absence of magnetic field the spin
polarization in phase II is 0, but this value increases with the
magnetic field strength. This also shows that the transition
occurs at higher densities for stronger magnetic fields.

Furthermore, for MoS,, we find an additional phase (phase
V) at magnetic fields larger than 7 T which completely re-
places phase II for magnetic fields larger than 23 T. This phase
is characterized by (¢, {7, &o) = (—B(n), —1, B(n)) and is
shown in Fig. 4. There is complete valley polarization and
very little spin polarization, which is a consequence of the
fact that the states in the K’ valley shift down in energy with
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FIG. 4. Phase V in MoS, when a perpendicular magnetic field is
present.

respect to those in the K valley. The reason that we only find
this phase for MoS, is because of the very small spin-orbit
coupling in the conduction band. This phase will also occur
for the other TMDs but at much stronger magnetic fields.

B. p-doped TMDs

For p-doped TMDs we find the same four phases as for
n-doped TMDs. The transition between phase I and phase II
as a function of the substrate dielectric constant is identical to
that for n-doped TMDs for MoS; and MoSe,. This is because
in both phase I and phase II only the lowest energy bands are
occupied and therefore the energy difference with the higher
energy bands due to the spin splitting, which is very different
for the conduction and valence bands, has no influence on this
phase transition. For WS, and WSe,, however, we find that
this phase transition occurs at lower densities for p-doped
TMDs as compared to n-doped TMDs. The reason is that
for these materials the highest valence bands have a smaller
effective mass than the lowest conduction bands, whereas for
MoS, and MoSe, these bands have the same effective mass.
Furthermore, we find that phase III and phase IV occur at
much higher densities, above 7-15 x 10'3 cm~2 depending on
the TMD and the substrate, as compared to n-doped TMDs.
This is a consequence of the much stronger spin splitting in
the valence bands as compared to the conduction bands. This
strong spin splitting also leads to the absence of phase I’ for
p-doped MoS;.

In the presence of a perpendicular magnetic field we find
that the transition between phase I and phase II depends

more strongly on the magnetic field for p-doped TMDs as
compared to n-doped TMDs. This is a consequence of the
coupling of the magnetic field with the magnetic moments of
the particles around their atomic site, which only occurs for
valence band states. Furthermore, we find that phase V only
occurs for unrealistically strong magnetic fields for all TMDs,
including MoS,.

IV. SUMMARY AND CONCLUSION

We used a variational technique to study the different
many-body phases of electrons in different monolayer TMDs.
We found that there are four phases with first-order phase
transitions between them. There is a stepwise reduction in
spin/valley order with increasing electron density, where
the system consecutively exhibits: a complete ferromagnetic
phase, complete spin polarization in each of the valleys sep-
arately, spin polarization in only one of the valleys, and a
paramagnetic phase. We studied the effect of a substrate below
the TMD and found that it leads to a reduction in spin/valley
order.

Furthermore, we investigated the effect of a perpendicular
magnetic field and found that all four phases persist. For the
specific case of MoS; an extra phase appears for magnetic
fields larger than 7 T. In this phase there is complete valley
polarization but little to no spin polarization. Another effect
exclusive to this material is that a complete flip in spin polar-
ization, from ¢, = —1to ¢, = 1, occurs at low densities. Both
these effects are the consequence of the very small spin-orbit
coupling in the conduction band.

Finally, we also considered p-doped TMDs and found that
the corresponding phase diagram is less rich than than of n-
doped TMDs. Phase I’ and phase V do not occur and phase II1
and phase IV only occur at very large densities.

The phase diagrams obtained in the current work could in
principle be measured experimentally. Phases with a signif-
icant spin polarization, i.e., phases I and III, should be the
easiest to observe experimentally by using a magnetometer,
although the limited density region in which phase III occurs
might hinder observations of this phase. However, to the
best of our knowledge, such experiments have not yet been
reported.
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