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We analytically characterize the influence of a neighboring metal nanoparticle (MNP) on the behavioral
trends of a quantum dot (QD) using a generalized nonlocal optical response (GNOR) method based approach,
taking the MNP distance dependent modifications to the QD population relaxation and dephasing rates into
account. The GNOR model is a recent generalization and an extension of the hydrodynamic Drude model
(HDM), which goes beyond HDM by taking into account both the convection current and electron diffusion
in the MNPs. It allows unified theoretical explanation of some experimentally observed plasmonic phenomena
which otherwise would require ab initio analysis as the conventional local response approximation (LRA) fails
to account for them. For example, it has been demonstrated in literature that the GNOR model captures size
dependent resonance shifts of small MNPs which are unrevealed by the conventional LRA based methods, and
it has proven to yield results displaying better agreement with the experimental observations for plasmonic
experiments. Attempts to incorporate MNP nonlocal effects in the analytical characterization of vicinal excitons
found in literature utilize the phenomenological hydrodynamic model and assume the absence of MNP interband
effects. Moreover, they are only applicable to narrow parameter regions. In this paper we present a complete
analytical characterization which overcomes these drawbacks and lends to the perusal of the system over wide
continua of various parameters, enabling us to get an elevated view at a much lesser level of complexity compared
to the conventional LRA based numerical methods or the conventional ab initio methods of accounting for the
nonlocal effects. Our proposed GNOR based model predicts strong modifications to various QD properties such
as population difference, absorption, MNP induced shifts to excitonic energy and Förster enhanced broadening,
coherent plasmonic field enhancement, and quantum state purity, compared to the conventional LRA based
predictions. Such modifications are prominent with small MNP radii, high QD dipole moments, small detunings
(of the coherent external illumination from the bare excitonic resonance), and near parameter regions exhibiting
plasmonic meta resonance (PMR)-like behavior. Moreover, our complete analytical characterization enables
optimization of the large system parameter space for different applications, a luxury not fully offered by the
methods currently available in literature.
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I. INTRODUCTION

Luminescent semiconductor nanocrystals or quantum dots
(QDs) are a class of nanomaterials possessing unique pho-
tophysical properties such as high quantum yield and excep-
tional resistance to both photobleaching and chemical degra-
dation [1]. Ability to exploit the unique optics of QDs has a
broad range of applications in optoelectronic devices such as
high-efficiency single photon sources, quantum information
processors, light emitting devices, photovoltaic cells, opto-
electronic nanoswitches, various in-vivo nanodevices [2–7],
and as zero-index gain media [8] of spasers [9–15]. In such
applications, the optical properties of the excitons in the QDs
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can be controlled using different reservoirs such as optical
microresonators or photonic crystal nanocavities [2,7,16–21].
However, the size of such resonators has an intrinsic limitation
which inhibits device miniaturization beyond the diffraction
limit of infrared light [2].

Metal nanoparticles (MNPs) possess nanocavitylike near
fields that can amplify and localize electromagnetic fields at
nanometer length scales much smaller than the diffraction
limit of light, due to the existence of localized surface plasmon
resonances (LSPRs) [22–31], which are formed primarily due
to the collective motion of the conduction band electrons
tightly bound to a metal-insulator interface [23,32]. Thus,
MNPs can be used to tailor the optical properties of QDs at
nanoscale [33,34].

Almost all recent studies of QDs subjected to near fields
of MNP nanocavities [2,7,34–39] deploy the local response
approximation (LRA) [40] to model the MNP. In the LRA,
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the nonlocal effects of the MNP’s optical response are not
taken into consideration and it has recently been challenged
on a number of accounts; one example being its prediction
that the resonance energy of the LSPRs in the quasistatic limit
is independent of the MNP size [40]. This claim by LRA
conflicts with the experimentally observed results [40–44].
The experimentally observed size dependence of the LSPR
energy is believed to be a result of the quantum properties
of the MNP’s free electron gas, which strengthen as the
particles lessen in size [45]. Modeling the MNP based on
ab initio approaches such as density-functional theory (DFT)
[46] captures such nonclassical effects [47,48]. However, such
approaches are computationally quite demanding. Simpler
and computationally less demanding approach would be to
surpass the LRA using nonlocal response theories such as the
nonlocal hydrodynamic or the generalized nonlocal optical
response (GNOR) models [40,49]. Combining such analytical
nonlocal models with a fully analytical characterization of
the excitons in a neighboring QD enables the generation of
insightful analytical results and the optimization of the large
parameter space associated with device designing, a function-
ality not fully offered by the methods currently available in
literature.

When a metal nanoparticle is made increasingly smaller,
the ratio of the number of surface atoms to those that make up
the bulk of the particle grows larger. This causes the surface
effects to dominate the physics of the particle [50]. It has
been shown that the origin of the size dependence in nonlocal
response is the smearing of the surface charges induced by an
external electric field over a finite distance (few Å) into the
metal via the presence of longitudinal waves. However, in the
LRA, it is assumed that the charges induced due to an external
field reside only on the geometric surface of a metal structure
[40]. Thus, nanoplasmonics experiments defy explanations
with classical LRA [40–44] due to the nonclassical effects
arising as a result of the nonlocal response.

The concept of nonlocal response in MNPs was first intro-
duced phenomenologically, and was based on the semiclassi-
cal hydrodynamic Drude model (HDM) afterwards. The gen-
eralized nonlocal optical response (GNOR) model is a recent
generalization and an extension of the HDM model, which
goes beyond HDM by taking into account both the convection
current and electron diffusion phenomena in the MNPs [41].
Thus, it better captures both size dependent resonance shifts
and linewidth broadening of the extinction cross section that
occur as the radius of the MNP decreases. Experiments on
dimers with few nanometer sized gaps have suggested that
the GNOR model yields results similar to the experimentally
measured spectra, without the need of invoking the quantum
mechanical effect of tunneling [40].

First-principle approaches such as variants of density-
functional theory (DFT) [47,51,52] are capable of describing
microscopic interaction effects of electrons in metals with
high accuracy. However, ab initio quantum mechanical treat-
ment of the optical properties of plasmonic systems is quite
demanding, due to the high number of electrons contributing
to their optical response. Such models are usually limited to
very small systems with a few thousand conduction electrons.
However, a practical plasmonic system used in experiments
contain many millions or even billions of electrons which

can be barely handled with first-principle methods [52]. The
GNOR model allows unified explanations of observed ex-
perimental phenomena for both monomers and dimers which
previously seemed to require ab initio explanations [40,41] at
an extremely lesser level of computational complexity.

In this paper we study the behavior of excitons under the
influence of MNP near fields associated with LSPRs [53,54]
by modeling the MNP using a generalized nonlocal optical
response (GNOR) method based fully analytical approach.
Our main objective is to highlight how the incorporation
of the MNP’s nonlocal effects change the optical properties
observed in the excitons of vicinal QDs. Our results suggest
that significant differences exist between the LRA and GNOR
based predictions, especially for QDs with high dipole mo-
ments near small MNPs at the incidence of coherent external
illumination with small detunings from the bare excitonic
resonance and in the parameter regimes exhibiting near plas-
monic meta resonance (PMR)-like [6] behavior.

This paper is organized as follows. In Sec. II A we model
the exciton of the QD as an open quantum system which
undergoes dipole interaction with the externally incident co-
herent driving field and the near field of the LSPRs, taking
the nonlocal effects of the MNP into account using a GNOR
based approach. In Sec. II B we analytically solve the system
using Cardano’s method. In Sec. III we present a tabulation
of the complete QD characterization under the influence of
the MNP, followed by a detailed analysis and a discussion of
the system (in Sec. IV) using the aforementioned analytical
characterization.

II. FORMALISM

A. The open quantum system

Let us consider an MNP-QD hybrid nanosystem compris-
ing of an MNP with radius a and a QD with a relatively
negligible radius, separated by a distance R, as depicted in
Fig. 1. Throughout the formalism section we use bold fonts,
hat notation, tilde notation, and bolded hat notation to refer
to vectors, quantum mechanical operators, slowly varying
amplitudes, and unit vectors, respectively.

The system is submerged in an environment of relative
permittivity εb and experiences an externally applied coherent
electric field E = ẑE0(e−iωt + eiωt )/2 = ẑE, where i is the
imaginary unit, ω is the angular frequency, and ẑ is a unit
vector along or perpendicular to the MNP-QD axis. All dis-
tances are assumed small enough for the retardation effects
to be ignored and thermal effects [55,56] are assumed to be
negligible in the model.

We choose the direction of the incident field to be par-
allel/perpendicular to the axis of the MNP-QD system. QD
is considered as a spherical semiconductor with a dielectric
constant εs containing a two-level atomlike quantum sys-
tem (exciton) at the center. The exciton is treated quantum
mechanically, using the density matrix formalism, with bare
excitonic energy h̄ω0 and transition dipole moment μd .

The dielectric permittivity of the MNP is obtained using
the Drude-like dielectric function [40] εm(ω) = εcore(ω) −
ω2

p/ω(ω + iγ ), where ωp is the bulk plasmon frequency, γ is
the relaxation constant of the bulk material, and εcore(ω) is the
response from the bound electrons [40]. We can safely assume
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FIG. 1. The schematic diagram of the system under study. The
exciton in the quantum dot (QD) undergoes dipole interaction with
the coherent external drive E (with angular frequency ω) and the
near field of the localized surface plasmon resonances in the metal
nanoparticle (MNP). The bare excitonic energy of the QD is h̄ω0.
The MNP-QD center separation distance is R. The dielectric permit-
tivities of the MNP and the host medium are εm and εb, respectively.

that εcore = 1 in cases where interband effects are absent and
only the conduction band electrons contribute to the optical
properties of the material. However, in common plasmonic
material such as gold and silver, interband transitions play
an important role in determining the plasmonic response.
Therefore, in our analysis, we determine εcore using the recipe
εcore = εexpt(ω) + ω2

p/[ω(ω + iγ )] [40], where εcore can be
determined using an experimentally measured bulk dielectric
function, such as the data set presented by Johnson and
Christy [57].

Let â = |g〉 〈e| and â† = |e〉 〈g| be the exciton creation
and annihilation operators, where |g〉 and |e〉 are the energy
eigenvectors of the unperturbed atomic Hamiltonian repre-
senting the exciton ground and excited states, respectively.
The Hamiltonian of the QD under the influence of the MNP
and the externally applied electric field can be given as
[5,35,58,59]

Ĥqd = h̄ω0â
†â − Eqdμd (â + â†), (1)

where Eqd is the (magnitude of) the total electric field expe-
rienced by the exciton at the center of QD. Eqd comprises
the influence of the externally incident coherent illumination
E and the dipole response field of the vicinal MNP at the
QD location given by [54] Eres = sαPmnp/(4πε0εbR

3), where
ε0 denotes the free space permittivity and sα = 2(−1) is an
orientation parameter which indicates that the external field is
parallel (perpendicular) to the axis connecting the MNP and
QD centers. The field experienced by the quantum system at
the center of the QD will be screened due to εs such that [35]
Eqd = (E + Eres)/εeffS, where εeffS = (2εb + εs )/3εb. Mag-
nitude of the MNP polarizarion denoted by Pmnp is given
by [50]

Pmnp = 4πε0εba
3(βẼ+

mnpe
−iωt + β∗Ẽ−

mnpe
iωt ), (2)

where Ẽ+
mnp and Ẽ−

mnp are the positive and negative frequency
coefficients of Emnp, which is the electric field felt by the
MNP, given by

Emnp = E + 1

4πε0εb

sαPqd

εeffSR3
, (3)

with the QD polarization denoted as Pqd = μd (ρ12 + ρ21)
[36], using the off-diagonal density matrix elements ρ12 and
ρ21 of the QD. Both MNP and QD polarize along the incoming
radiation E.

In this work we model β, the Clausius Mossotti factor
of the MNP, using the generalized nonlocal optical response
(GNOR) method [40] in contrast to the traditional local
response approximation (LRA) usually adopted in literature
[6,35,50,60,61]. In the GNOR based approach, β is obtained
as follows [40]:

β = εm(ω) − εb(1 + δNL)

εm(ω) + 2εb(1 + δNL)
, (4)

where the nonlocal correction δNL is given by

δNL = εm(ω) − εcore(ω)

εcore(ω)

j1(kLa)

kLaj ′
1(kLa)

. (5)

The spherical Bessel function of the first kind of angular-
momentum order 1 is denoted by j1 and j ′

1 is its first order
differential with respect to the argument. The longitudinal
wave vector kL that is responsible for the nonlocal effects
in the MNP is modeled in the GNOR based approach as
k2
L = εm(ω)/ξ 2

GNOR(ω). The frequency dependent function
ξGNOR(ω), namely the nonlocal parameter of the GNOR
model, is given by

ξ 2
GNOR(ω) = εcore(ω)[κ2 + D(γ − iω)]

ω(ω + iγ )
, (6)

where D is the diffusion constant of the GNOR model and
κ2 = (3/5)v2

F for ω � γ (in the high frequency limit) with
vF being the MNP Fermi velocity. To obtain the relevant equa-
tions for the HDM model, one can simply replace ξ 2

GNOR(ω)
by the nonlocal parameter in the HDM model given by
ξ 2

HDM(ω) = εcore(ω)κ2/[ω(ω + iγ )] [40].
We factor out the high frequency time dependence of the

off-diagonal density matrix elements of the QD as [50] ρ12 =
ρ̃12e

iωt and ρ21 = ρ∗
12. Using these definitions, Eqd can be

recast as

Eqd = h̄

μd

{
�eff

12 + ηρ̃21
}
e−iωt + H.c. = Ẽ+

qde
−iωt + H.c.,

(7)
where H.c. stands for Hermitian conjugate.

The Rabi frequency in the absence of quantum coherence
is denoted by �eff

12 [61] and η arises due to the MNP electric
field component induced as a result of the QD dipole response
field incident on the MNP, and hence can be thought of as the
self-interaction of the QD [50]. These quantities are given by

�eff
12 = �0

12

(
1 + sαβa3

R3

)
, (8a)

η = s2
αβa3μ2

d

4πε0εbh̄ε2
effSR

6
, (8b)
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where �0
12 = (μdE0)/(2h̄εeffS) is the Rabi frequency of the

bare external field when the MNP and QD are isolated
(large R).

We obtain the effective or normalized Rabi frequency
[21,62] of the QD under the influence of both MNP and the
external field using the effective field incident on the QD
exciton given by (7) as [61] �r

12 = (μd/h̄)Ẽ+
qd = �eff

12 + ηρ̃21,

where Ẽ+
qd is the positive frequency coefficient of Eqd. Using

the Rabi frequencies under bare external illumination and
in the presence of the MNP, the coherent plasmonic field
enhancement (CPFE) experienced by the excitonic system in
the QD is defined as [6,7] CPFE = |�r

12/�
0
12|2.

The Hamiltonian of the QD given by Eq. (1) describes a
closed quantum system where the effects of the environment
are not yet taken into account. The QD couples with the envi-
ronment, forming an open quantum system with irreversible
dynamics [54]. Quantum dynamics of the system coupled
with the environments can be accounted for by solving the
following master equation for the QD density matrix ρ̂ [50]:

˙̂ρ = i

h̄
[ρ̂, Ĥqd] + λ1L(â)ρ̂ + λ2L(â†)ρ̂ + λ3L(â†â)ρ̂, (9)

where the three Lindblad terms λ1L(â)ρ̂, λ2L(â†)ρ̂, and
λ3L(â†â)ρ̂ correspond to the bath induced decay of the
excitonic excited state into the ground state, bath induced
excitation of the system into the excitonic excited state, and
elastic scattering processes between the bath and the quan-
tum system, respectively. As the elastic scattering processes
conserve the number of excitations in the bath and the atom
separately, we assume it gives rise to pure dephasing in the
quantum system which is analogous to T2 relaxation in nuclear
magnetic resonance (NMR) [50].

Expansion of Lindblad terms in (9) as L(Â)ρ̂ = 2Âρ̂Â† −
Â†Âρ̂ − ρ̂Â†Â results in

˙̂ρ = i

h̄
[ρ̂, Ĥqd] + λ1(2âρ̂â† − â†âρ̂ − ρ̂â†â)

+ λ2(2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†)

+ λ3(2â†âρ̂â†â − â†âρ̂ − ρ̂â†â), (10)

where we have used the property (â†â)(â†â) = â†â for â =
|g〉 〈e| and â† = |e〉 〈g|.

Matrix form of the master equation (10) in the basis space
formed by |g〉 , |e〉 reads

˙̂ρ = i

h̄

[ −μdEqd(ρ12 − ρ21) −μdEqd(ρ11 − ρ22) + h̄ω0ρ12

−μdEqd(ρ22 − ρ11) − h̄ω0ρ21 −μdEqd(ρ21 − ρ12)

]
−

[
2λ2ρ11 − 2λ1ρ22 (λ1 + λ2 + λ3)ρ12

(λ1 + λ2 + λ3)ρ21 2λ1ρ22 − 2λ2ρ11

]
, (11)

where the latter component is the relaxation matrix �(ρ̂) of
the quantum system. For optical frequencies, λ2 ≈ 0 even near
room temperature [50]. Let

τ = 1/(2λ1), (12a)

T = 1/(λ1 + λ3). (12b)

Using (12a), (12b), and ρ11 + ρ22 = 1,

�(ρ̂) ≈
[

(ρ11 − 1)/τ ρ12/T

ρ21/T ρ22/τ

]
, (13)

where ρuv refers to the density matrix element located at the
uth row and vth column. Therefore, the master equation can
be approximated using (13) for optical frequencies of our
interest as

˙̂ρ = i

h̄
[ρ̂, Ĥqd] − �(ρ̂). (14)

The energy or population relaxation time of the QD which
will lead to a mixing between ρ11 and ρ22 is denoted by τ . The
relaxation time τ includes a contribution from nonradiative
decay to the dark states [63]. T refers to the polarization
relaxation or dephasing time [6,64] which will cause losses
in the off-diagonal density matrix elements of the QD. Both
population relaxation and dephasing cause loss of coherence
in the system [50].

The normalized decay rates in the vicinity of the MNP can
be expressed as follows, taking the nonlocal effects of the
MNP into account, according to the two linearly independent

orientations of the QD dipole moment [65,66]:

(
1/τ

1/τ0

)
⊥

= 1 + 3

2k3

∞∑
n=1

[
Im{αn(ω)}(n + 1)2

(a + R)2(n+2)

]
, (15a)

(
1/τ

1/τ0

)
‖

= 1 + 3

2k3

∞∑
n=1

[
Im{αn(ω)}n(n + 1)

2(a + R)2(n+2)

]
, (15b)

where τ0 is the population relaxation time of the QD in the
absence of the MNP, k = ω/c is the wave number, αn is the
nth polarizability of the MNP, and ⊥ and ‖ denote the radial
(sα = 2) and tangential (sα = −1) orientations of the QD
dipole with respect to the MNP. Using the above equations,
it can be shown that, in the dipole limit where n = 1 and
α = β(ω)a3, the QD relaxation time depends on the MNP
nonlocal dipolar polarizability as

τ (ω) = τ0

1 + f Im{α(ω)}/{k3(a + R)6} , (16)

where the factor f = 6 when sα = 2 and f = 3/2 when sα =
−1. Using (12a), (12b), and tp = 1/λ3 where tp corresponds
to pure dephasing due to elastic scattering, the relationship
between the QD dephasing rate and the MNP nonlocal dipolar
polarizability can be arrived at as [64]

T (ω) = 2τ (ω)tp
tp + 2τ (ω)

. (17)

Using R → ∞ in (16) and (17),

tp = 2τ0T0/(2τ0 − T0). (18)
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B. Steady state analytical solution

As a majority of QD related applications operate well away
from the rise time of the applied field where the transients
have settled down [2,6,24,61], throughout this work we focus
on the steady state solution of the system.

We first define the following to be used when solving the
master equation (14),

ρ̃12 = A + iB, (19a)

ρ̃21 = A − iB, (19b)

� = ρ11 − ρ22, (19c)

�eff
12 = �re + i�im, (19d)

η = ηre + iηim. (19e)

Using element-wise comparison on (14), we can arrive at
the system Bloch equations defining the behavior of the QD
under the influence of the MNP and the externally incident
field,

ρ̇22 = − ρ22

τ (ω)
+ i�r

12ρ12 − i�r∗
12ρ21, (20a)

ρ̇11 = ρ22

τ (ω)
− i�r

12ρ12 + i�r∗
12ρ21, (20b)

˙̃ρ21 = −[i(ω0 − ω) + 1/T (ω)]ρ̃21 + i�r
12�. (20c)

By rearranging (20) using (19), we can arrive at the follow-
ing form of the system Bloch equations:

Ȧ = − A
T (ω)

+ δB − (�im + ηimA − ηrB)�, (21a)

Ḃ = − B
T (ω)

− δA − (�re + ηreA + ηimB)�, (21b)

�̇ = 1 − �

τ (ω)
+ 4[�imA + �reB + ηim(A2 + B2)], (21c)

where δ = ω − ω0 denotes the detuning of the external
field with the QD excitonic transition.

In the steady state, using (21a) and (21b),

A = −[δ�re + �im/T (ω)]� − (ηim�im + �reηre)�2

[ηim� + 1/T (ω)]2 + (δ + ηre�)2

= −Re

(
�eff

12�

δ + η� + i/T (ω)

)
, (22)

B = [δ�im − �re/T (ω)]� + (ηre�im − �reηim)�2

[ηim� + 1/T (ω)]2 + (δ + ηre�)2

= Im

(
�eff

12�

δ + η� + i/T (ω)

)
. (23)

Using (21c) in the steady state we can obtain [64]

w3�
3 + w2�

2 + w1� + w0 = 0, (24)

where

w3 = T (ω)2
(
η2

re + η2
im

)
,

w2 = 2T (ω)2δηre + 2T (ω)ηim − T (ω)2
(
η2

re + η2
im

)
,

w1 = T (ω)
[
4τ (ω)

∣∣�eff
12

∣∣2 − 2ηim
] + T (ω)2(δ2 − 2δηre) + 1,

w0 = −T (ω)2δ2 − 1.

Setting w̃i = wi/w3 for i = 0, 1, and 2 we can obtain

�3 + w̃2�
2 + w̃1� + w̃0 = 0. (25)

Using Cardano’s method for solving cubic equations [67]
we obtain the three possible solutions for � as

�1 = (p1 + p2) − w̃2/3, (26a)

�2 = −(p1 + p2)/2 − w̃2/3 + i
√

3(p1 − p2)/2, (26b)

�3 = −(p1 + p2)/2 − w̃2/3 − i
√

3(p1 − p2)/2. (26c)

In the above equation

p1 = P1/3
1 , where P1 = r +

√
q3 + r2, (27a)

p2 = P1/3
2 , where P2 = r −

√
q3 + r2, (27b)

where q = w̃1/3 − w̃2
2/9 and r = (w̃1w̃2 − 3w̃0)/6 − w̃3

2/27.
As � = ρ11 − ρ22 is the QD population difference, only

the real roots of � satisfying the condition −1 � � � 1 are
useful [64]. The first Cardano root of (25), �1, given by (26a),
holds the only real root which readily satisfies this condition
when q3 + r2 >= 0, where we have easily picked the real
cubic roots of P1 and P2 as p1 and p2, respectively.

However, when q3 + r2 < 0, P1 possesses three complex
cubic roots, the complex conjugates of which will appear as
the cubic roots of P2. Careful observation of (26) reveals
that all three roots of � (�1, �2, and �3) are real in such
conditions. Under this condition, the physically valid root of
� in (25) is given by �1 in (26a) when the cubic roots of
P1 and P2 are picked using De Moivre’s nth root theorem for
complex numbers as (see the Appendix)

p1 = |P1|1/3[cos (θ1/3) + i sin(θ1/3)] and p2 = p∗
1, (28)

where P1 = |P1|/θ1 in the polar form. The above analytical
results were verified for a large parameter space against the
steady state numerical solutions of (21), (22), and (23). Thus,
the complete and physically valid analytical solution of (25)
for the entire parameter region considered reads � = p1 +
p2 − w̃2/3, where

p1 = (P1)1/3 ∈ R and p2 = (P2)1/3 ∈ R for q3+r2 >=0,

p1 =|P1|1/3 cos (θ1/3) and p2 =p∗
1 for q3 + r2 <0.

C. Absorption, energy, and dephasing rate normalization
of the QD in the presence of the MNP

Variation of optical properties such as QD absorption, red
and blueshifts of exciton energy, and dephasing rates in the
presence of plasmonic nanocavities could be exploited for the
development of nanoscale plasmonic devices particularly for
chemical and biological sensing applications [2,61]. We now
proceed to analytically characterize such QD properties using
the GNOR based approach.

The energy absorption of the QD can be obtained using the
QD population difference as [50]

Qqd = h̄ω0ρ22/τ (ω) = h̄ω0(1 − �)/[2τ (ω)], (29)
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where we replace the conventional LRA based population
difference with the newly suggested GNOR based �.

The system Bloch equation (20c) for the off-diagonal
density matrix element ρ21 can be recast as

˙̃ρ21 = −[i(�21 − ω) + �21]ρ̃21 + i�eff
12�. (30)

The astute reader will notice that �21 and �21 denote
the normalized energy and the Förster-enhanced broadening
(normalized dephasing rate) of the QD excitonic transition
caused by the presence of the vicinal MNP [61] given by
�21 = ω0 − ηre� and �21 = 1/T (ω) + ηim�. We call the
two factors �f = ηre� and �f = ηim� the exciton transition
energy (red) shift and FRET rate factor (or the dephasing rate
blueshift), respectively.

D. Quantum state purity of the system

Recently there has been considerable progress in investi-
gating the potential of using semiconductor quantum dots as
qubits, where identifying and ameliorating sources of deco-
herence are important steps in understanding and improving
system performance [68,69]. It has also been proposed that
directed nanoscale information transfer can be achieved by
coupling qubits, for example in QDs, to plasmonic nanostruc-
tures [36]. To exploit this paradigm, it is vital to understand
the effects of MNP-QD coupling on the properties of QD,
including how nonclassical phenomena such as the MNP
nonlocal response could affect the quantum information. A
GNOR based analytical characterization of the quantum state
purity of the QD could be useful in this context.

A system’s ability to exhibit quantum interference or “co-
herence” is a characteristic of a system in a pure quantum state
that is maximally specified within quantum mechanics [70],
whereas mixed states are classical statistical mixtures [71].
Coherence is represented by the off-diagonal elements of the
system density matrix, which will be zero for a system in a
completely mixed state and nonzero for a system with partial
or full coherence. However, as the presence or absence of off-
diagonal density matrix elements could be basis dependent,
it is always considered more appropriate to check purity as
[70,71]

Purity = Tr(ρ̂2), (31)

where the bounds of system purity are set such that 1/d �
Purity � 1.

The dimension of the associated Hilbert space is denoted
by d here. If the system’s quantum state is pure (Purity = 1),
it spans a one-dimensional subspace of the system Hilbert
space [70]. A state that falls within the bounds without being
pure or completely mixed (Purity = 1/d) is called a “partially
coherent state” [71].

For the excitonic system of our concern, using (31), (19a),
(19b), and (19c) it can be shown that

Purity = 1 + �2

2
+ 2(A2 + B2) = 1 + �2

2
+ 2|ρ12|2. (32)

Then the mixedness of the system can be naturally de-
fined as the complement of system purity such that [70]
Mixedness = 1 − Purity. It is important to note that both
purity and mixedness are invariant under transformations of

the form ρ̂ → Û ρ̂Û †, where Û is a unitary operator. For
example, this invariance holds under the dynamical mapping
Û (t, t0) = e− i

h̄
Ĥ(t−t0 ), where Ĥ is the system Hamiltonian

[70]. Moreover, when A2,B2 � 1 and � ≈ 1 (32) reduces
to Purity ≈ 1+�2

2 ≈ �2 ≈ �. Hence, purity is expected to
roughly follow the behavior of � under such conditions.

Finally, for comparison purposes, we derive the system
purity in the absence of the vicinal MNP. We nullify the
effect of the MNP by setting R → ∞, T → T0, and τ →
τ0. Then from (8a) and (8b) η → 0 and �eff

12 → �0
12. This

leads to the reduction of the cubic equation (24) to a linear
equation with the coefficients w1 → 4τ0T0|�0

12|2 + T 2
0 δ2 + 1

and w0 → −T 2
0 δ2 − 1 as w2, w3 → 0. T0 and τ0 denote the

dephasing and decay rates of the isolated QD, respectively.
Substituting these back in (24) yields the steady state analyti-
cal population difference of the isolated QD as

�iqd = −w0

w1
= T 2

0 δ2 + 1

4T0τ0

∣∣�0
12

∣∣2 + T 2
0 δ2 + 1

. (33)

The steady state expressions for the real and imaginary parts
of the slowly time varying off-diagonal density matrix ele-
ment of the isolated QD then become

Aiqd = −Re

(
�0

12�iqd

δ + i/T0

)
, (34a)

Biqd = Im

(
�0

12�iqd

δ + i/T0

)
. (34b)

Thus,

{Purity}iqd = (
1 + �2

iqd

)/
2 + 2

(
A2

iqd + B2
iqd

)
. (35)

III. SUMMARY OF ANALYTICAL RESULTS

For the convenience of readership, we summarize our
GNOR based fully analytical characterization of a QD in the
vicinity of an MNP using Table I in the Appendix. Note that
when δNL → 0, the GNOR based nonlocal β of the MNP
approaches the Clausius Mossotti factor in the LRA given by
[40,50]

βLRA = εm(ω) − εb

εm(ω) + 2εb

. (36)

Thus, using δNL → 0, τ → τ0, and T → T0 the conventional
LRA based equation set [2,6,34–36,38,50,61,63] can be ob-
tained. Using R → ∞, τ → τ0, and T → T0, the relevant
equations for the isolated QD can be obtained.

IV. RESULTS AND DISCUSSION

Using the presented analytical equations, we study the
system behavior over continua of several parameters. Unless
specifically mentioned otherwise, the common parameters
used for the generated results are as follows: incident
field intensity I0 = 1 × 103 W cm−2, orientation parameter
sα = 2, polarization relaxation (dephasing) time of the
isolated QD T0 = 0.3 ns, energy or population relaxation
time of the isolated QD τ0 = 0.8 ns [63], dielectric constant
of the submerging medium εb = 1, dielectric constant of
the QD material εs = 6 [63], and QD resonance frequency
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TABLE I. Summary of the GNOR based analytical characterization.a,b

QD measure Expression

� = p1 + p2 − w̃2/3, where
Population difference p1 = (P1)1/3 ∈ R and p2 = (P2)1/3 ∈ R for q3 + r2 >= 0

p1 = |P1|1/3[cos (θ1/3) + i sin(θ1/3)] and p2 = p∗
1 for q3 + r2 < 0

P1 = r + √
q3 + r2 = |P1|∠θ1 and P2 = r − √

q3 + r2, where

q = w̃1/3 − w̃2
2/9 and r = (w̃1w̃2 − 3w̃0 )/6 − w̃3

2/27

w3 = T (ω)2(η2
re + η2

im)

w̃2 = {2T (ω)2(ω − ω0)ηre + 2T (ω)ηim − w3}/w3

w̃1 = {T (ω)[4τ (ω)|�eff
12 |2 − 2ηim] + T (ω)2[(ω − ω0)2 − 2δηre] + 1}/w3

w̃0 = {−T (ω)2(ω − ω0)2 − 1}/w3

T = 2τ tp/(tp + 2τ ), where tp = 2τ0T0/(2τ0 − T0 )

τ = τ0/(1 + [f Im{β(ω)a3}/{k3(a + R)6}]), where k = ω/c

�eff
12 = [3μdεbE0/2h̄(2εb + εs )](1 + sαβa3/R3) = �re + i�im

η = 9s2
αβa3μ2

dεb/[4πε0h̄(2εb + εs )2R6] = ηre + iηim

β = [εm − εb(1 + δNL)]/[εm + 2εb(1 + δNL)]

δNL = [(εm − εcore )/εcore][j1(kLa)/{kLaj ′
1(kLa)}]c

k2
L = εm/ξ 2

GNOR

ξ 2
GNOR = εcore[κ2 + D(γ − iω)]/{ω(ω + iγ )}

κ2 = (3/5)v2
F for ω � γ

Density matrix elements ρ21 = −(�eff
12�)/[(ω − ω0) + η� + i/T (ω)]e−iωt = ρ̃21e

−iωt and ρ12 = ρ∗
21

ρ11 = (1 + �)/2 and ρ22 = (1 − �)/2

Normalized Rabi frequency �r
12 = �eff

12 + ηρ̃21

Plasmonic field enhancement CPFE = |�r
12(2h̄εeffS )/(μdE0 )|2, where εeffS = (2εb + εs )/(3εb )

Absorption Qqd = h̄ω0ρ22/τ

Normalized energy �21 = ω0 − ηre�

Normalized dephasing rate �21 = 1/T + ηim�

Quantum state purity Purity = (1 + �2)/2 + 2|ρ12|2
a = MNP radius

Variables vF = MNP Fermi velocity
γ = MNP bulk damping rate
D = MNP diffusion constant
εm = MNP dielectric permittivity
εcore = MNP bound electron response
ω0 = Excitonic resonance (angular) frequency of the isolated QD
μd = QD transition dipole moment
τ0 = Population relaxation (decay) time of the isolated QD
T0 = Polarization relaxation time of the isolated QD
tp = Pure dephasing time constant of the QD
εs = relative dielectric constant of the QD
E0 = Amplitude of the coherent external illumination
ω = Angular frequency of the coherent external illumination
R = MNP-QD center separation
sα = 2, f = 6 for parallel (sα = −1, f = 3/2 for perpendicular) polarization
εb = relative dielectric constant of the background medium
(c = Speed of light, h̄ = reduced Planck’s constant, ε0 = free space permittivity)

aUsing δNL → 0, τ → τ0 and T → T0 the conventional LRA based equation set can be obtained.
bUsing R → ∞ and τ → τ0 and T → T0, the relevant isolated QD equations can be obtained.
cj1 is the spherical Bessel function of the first kind of angular-momentum order 1 and j ′

1 is its first order differential with respect to the
argument.

ω0 = 3.5eV [72] such that the QD, MNP, and the incoming
coherent radiation are near-resonantly coupled. The analysis
uses a silver MNP where the bulk plasma frequency
h̄ωp = 8.99 eV, bulk damping rate h̄γ = 0.025 eV, Fermi
velocity vf = 1.39 × 106 ms [40], diffusion constant D ≈

9.624 × 10−4 m2s−1 [73], and the experimental bulk dielectric
data εexpt are obtained from the tabulations by Johnson and
Christy [57]. The amplitude E0 and the intensity I0 of the
coherent external field are related using E0 = √

2I0/(ε0c),
where c is the speed of light in vacuum [64].
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FIG. 2. Second and third columns depict the top view of the x = ω (range 3.499–3.501 eV), y = a (range 3–30 nm) surface plots of LRA
based (subscript L) and the GNOR based (subscript NL) results of Qqd (first row), �f (second row), and �f (third row), respectively. The first
column depicts the line plots corresponding to the cross sections marked in black and pink on the respective surface plots in the same row. Solid
lines represent the GNOR based plots, whereas the dashed lines are the conventional LRA based plots. The final column depicts the signed
percentage difference �X = (XL − XNL)/XNL%, where X denotes the physical quantity of the relevant row. For all subplots, R = a + 10 nm
and μd = 1.3e nm.

A. Absorption, excitonic energy shift, dephasing rate shift,
and plasmonic field enhancement

We first analyze the variation of QD absorption Qqd (in
the vicinity of an MNP), MNP induced redshift of the QD
excitonic energy �f , and MNP induced blueshift of the
QD dephasing rate �f with varying MNP radius a and
coherent external illumination frequency ω, as depicted in
Fig. 2. Subfigures in the second and third columns depict the
LRA based and GNOR based results of the three properties,
respectively, presented in the form of color-coded surface
plots (top view). Subfigures in the first column depict the
line plots corresponding to the cross sections indicated in
pink and black on the LRA and GNOR based surface plots
in the two successive columns of the same row. The solid
lines correspond to the GNOR based results, whereas the
dashed lines correspond to the relevant LRA based result.
The final column shows the surface plots of the percentage
difference between the respective LRA and GNOR based
results (normalized by the GNOR based result).

Figure 2(a) reveals that Qqd follows a singly peaked distri-
bution along ω (in both LRA and GNOR based models) with
a peak near the QD resonance 3.5 eV. It can be observed using
Figs. 2(a), 2(b) and 2(c) that the LRA based model suggests
smaller peak amplitudes and larger absorption linewidths
along the frequency axis compared to the respective GNOR
based counterparts. Moreover, as seen in Fig. 2(c), the GNOR
model suggests a higher asymmetry of peaks along the fre-
quency axis compared to the LRA based model. The signed
percentage difference �Q = (�qd-L − �qd-NL)/�qd-NL% de-
picted in Fig. 2(d) reveals that the LRA based model underes-
timates the QD absorption by more than 23% compared to the
GNOR based model, in the entire region under study.

From the second and third rows of Fig. 2, it can be seen
that both �f and �f possess singly dipped distributions along
the ω axis (under both LRA and GNOR based models). From
Fig. 2(h), it can be seen that �� = (�f-L − �f-NL)/�f-NL is
<−20% in the entire region under consideration, implying
that the LRA based model underestimates the MNP induced
redshift of the excitonic resonance frequency by more than
20%. Figure 2(h) indicates that this percentage difference
exceeds 80% in magnitude when the external field frequency
ω gets close to the bare excitonic resonance ω0 implying the
dominance of nonlocal effects in the region. Figure 2(l) shows
that a substantial overestimation of the LRA based �f over
the GNOR based result is suggested for MNP radius a <

10 nm when the dark blue region with very small detunings
from the exciton resonance is exceeded.

We then study the behavior of Qqd, �f , and �f when the
coherent external field intensity I and the QD dipole moment
μd are varied in continua, using Fig. 3. All subplots are in
the same constellation as Fig. 2. From Fig. 3(d) it is evident
that �Q = (QL − QNL)/QNL% < −40% in the entire region,
suggesting that the LRA based model underestimates the QD
absorption compared to the case where the nonlocal effects are
taken into account. It can also be observed that this percentage
difference is almost invariant along the I axis for a given value
of μd .

From the second and third rows of Fig. 3, it can be
seen that both �f and �f are almost invariant along the I

axis for a given μd . Figure 3(h) shows that �� = (�f-L −
�f-NL)/�f-NL% < −14% in the entire parameter region
suggesting that the GNOR based model results in higher
redshifts to the exciton resonance when in the near field
of an MNP. From Fig. 3(l) it is evident that the GNOR
based model suggests smaller blueshifts to the QD dephasing

115430-8



EXCITON BEHAVIOR UNDER THE INFLUENCE OF METAL … PHYSICAL REVIEW B 98, 115430 (2018)

FIG. 3. Second and third columns depict the top view of the x = μd, y = I surface plots of LRA based (subscript L) and the GNOR based
(subscript NL) results of the QD energy absorption Qqd (first row), excitonic energy (red) shift �f (second row), and dephasing rate (blue)
shift �f (third row), respectively. The first column depicts the line plots corresponding to the cross sections marked in black and pink on
the respective surface plots in the same row. Solid lines represent the GNOR based plots, whereas the dashed lines are the conventional LRA
based plots. The final column depicts the signed percentage difference �X = (XL − XNL)/XNL%, where X denotes the physical quantity of
the relevant row. For all subplots, the MNP radius a = 3 nm, MNP-QD center separation R = 13 nm, and frequency of the coherent external
illumination ω = 3.4995 eV.

compared to the LRA based model, resulting in �� =
(�f-L − �f-NL)/�f-NL > 350% in the entire region under con-
sideration.

In Fig. 4 we study the variation of coherent plasmonic field
enhancement (CPFE) experienced by the QD, �f , and �f

when μd and ω are varied, using the usual arrangement of
subfigures. The first row depicts the LRA and GNOR based
predictions (both as line and surface plots) of CPFE and
their percentage difference. From Figs. 4(a)–4(c) it can be
observed that the GNOR based model suggests a Fano-like
distribution for CPFE, whereas the LRA based model suggests
a modified Fano-like distribution. From Fig. 4(d) it is evident
that the GNOR based model entails significant modification
of CPFE from the LRA based model as μd increases and the
detuning of ω from ω0 decreases. The second and third rows of
Fig. 4 correspond to �f and �f , respectively, both of which
follow narrow, singly dipped frequency distributions for all
μd , under both LRA and GNOR based models. In line with the
observations in the earlier parameter spaces, the GNOR model
suggests higher redshifts (�f ) to the exciton resonance in the
entire parameter region. It suggests lower blueshifts (�f ) to
the QD dephasing rate compared to the LRA based model,
except at coherent illumination frequencies extremely close
to ω0.

B. Analysis of the near PMR region

We then study the behavior of the QD as the MNP-QD
center separation (R) and the QD dipole moment (μd ) are
varied. The first, second, and third rows of Fig. 5 correspond
to the real component of the normalized QD Rabi frequency

Re [�r
12], the QD population difference �, and QD absorption

Qqd in the usual arrangement of subplots.
The solid lines of Fig. 5(a) which correspond to the

GNOR based prediction have four distinguishable features,
especially when μd > 1 enm. (i) For large R, it can be seen
that Re [�r

12] → �0
12, and the field experienced by the QD

approaches the externally applied field. (ii) Re [�r
12], and

hence the field experienced by the QD slightly increases above
�0

12 as R decreases. (iii) This enhancement reaches a peak and
then starts to decrease with further decrease of R, which is an
indication of the competition between Förster energy transfer
from QD to MNP and the plasmonic field enhancement near
QD. (iv) This follows by an encounter of an abrupt and sig-
nificant decrease of Re [�r

12], and hence the field experienced
by the QD, as R decreases further. This could be identified
as near PMR (plasmonic meta resonance)-like behavior of
the MNP-QD hybrid nanosystem [6]. PMR corresponds to
a “molecular-type” resonance which is quite different from
the conventional atomic resonances. It occurs under strong
exciton-plasmon coupling, when separately distinguishable
bright and dark states are experienced by the QD. The dark
state which corresponds to dramatic screening of the effective
field experienced by the QD, due to the presence of the
MNP, is an indication of the PMR. PMR-like behavior of
MNP-QD nanohybrids has recently been under study for a
multitude of practical applications such as in-vivo nanoscale
switching [6,7].

Juxtaposition of Figs. 5(c), 5(g) and 5(k) reveal that the dip
in the distribution of � along R axis and the corresponding
peak of Qqd coincide with the relevant PMR related dip along
the R axis in (c) for μd > 1e nm. Moreover, the percentage
difference plots [Figs. 5(d), 5(h) and 5(l)] indicate that both
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FIG. 4. Second and third columns depict the top view of the x = ω, y = μd surface plots of LRA based (subscript L) and the GNOR
based (subscript NL) results of CPFE (first row), �f (second row), and �f (third row), respectively. The first column depicts the line plots
corresponding to the cross sections marked in black and pink on the respective surface plots in the same row. Solid lines represent the
GNOR based plots, whereas the dashed lines are the conventional LRA based plots. The final column depicts the signed percentage difference
�X = (XL − XNL)/XNL%, where X denotes the physical quantity of the relevant row. For all subplots, a = 3 nm, R = 13 nm.

LRA and GNOR based models converge towards the same
values when R exceeds 30 nm.

C. Population difference and quantum state purity

We then study the resemblance of QD population dif-
ference � to its quantum state purity using Fig. 6. In this
figure, Figs. 6(b), 6(c), and 6(d) in the first row depict the

variation of the LRA based (�L), GNOR based (�NL), and
the isolated QD (�iqd) population differences, respectively,
with varying ω and μd. Figure 6(a) depicts the line plots
corresponding to the cross sections marked in pink and black
on the three subsequent surface plots. The solid, dashed, and
dotted-dashed lines correspond to the GNOR based, LRA
based, and the isolated QD cases, respectively. Figure 6(e)

FIG. 5. Second and third columns depict the top view of the x = R, y = μd surface plots of LRA based (subscript L) and the GNOR
based (subscript NL) results of Re �r

12 (first row), � (second row), and Qqd (third row), respectively. The first column depicts the line plots
corresponding to the cross sections marked in black and pink on the respective surface plots in the same row. Solid lines represent the
GNOR based plots, whereas the dashed lines are the conventional LRA based plots. The final column depicts the signed percentage difference
�X = (XL − XNL)/XNL%, where X denotes the physical quantity of the relevant row. For all subplots a = 3 nm, ω = ω0.
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FIG. 6. Second, third, and fourth columns depict the top view of the x = ω, y = μd surface plots of LRA based (subscript L) and
the GNOR based (subscript NL) and isolated QD (subscript iqd) results of � (first row) and Purity, respectively. The first column depicts
the line plots corresponding to the cross sections marked in black and pink on the respective surface plots in the same row. Solid lines represent
the GNOR based plots, whereas the dashed lines are the conventional LRA based plots and the dotted-dashed lines are the isolated QD plots.
The final column depicts the signed percentage difference �X = (XL − XNL)/XNL%, where X denotes the physical quantity of the relevant
row. For all subplots, a = 3 nm, R = 13 nm.

shows the usual surface-contour plot of the LRA and GNOR
percentage difference �� = (�L − �NL)/�NL%. The second
row of Fig. 6 depicts the same constellation of subplots as the
preceding row, for the quantum state purity of the QD.

Comparison of the first row to the corresponding plots of
the second reveals that the plot shapes of population difference
bear a high resemblance to the respective quantum state purity
plots. It can also be observed that when � → 1, Purity → �

suggesting the existence of the QD in a completely pure state
where the state occupation probabilities, ρ11 → 1 and ρ22 →
0. In contrast, when � → 0, Purity → 0.5 (the minimum
possible value of purity of a two state system) suggesting that
ρ11 → 0.5 and ρ22 → 0.5, leading the QD to a completely
mixed state. Observation of the first three subplots of each
row reveals that both � and Purity possess singly dipped
frequency distributions for each value of μd where � → 0
(and Purity → 0.5) when the detuning of the external field
with the QD resonance decreases, for all three cases under
study. The isolated QD spectra for � and Purity exhibit a
symmetric dip near ω0 which constantly broadens with in-
creasing μd . The LRA based model suggests a symmetric dip
around ω0, the broadening of which is lesser than that of the
isolated QD case, towards higher values of μd . In contrast, the
GNOR based model suggests a dip around ω0 with growing
asymmetry as μd increases. Figure 6(e) indicates that the
percentage difference between the LRA and GNOR based �

predictions become significant as the detuning of the external
field (with respect to ω0) decreases. � and Purity values from
both models tend to coincide at high detunings from ω0.

D. Comparison between HDM and GNOR

Finally, we perform a comparison between HDM based
and the proposed GNOR based characterizations of the QD in-
fluenced by a near-field MNP. Figure 7 depicts sample results
of the comparison. It is evident that the observed differences
are quite significant for MNP radii less than 10 nm, where the
experimentally observed size dependent resonance shifts of
metal nanoparticles (attributed to nonlocal effects) are most
significant [44]. The differences observed between the HDM

and GNOR based results mainly arise as the GNOR model
accounts for the electron diffusion phenomenon in the MNP
which arises mainly due to surface effects such as Landau
damping [40]. From a similar analysis in the μd vs R space, it
was observable that the difference between HDM and GNOR
based results are significant near the PMR-like region and
both models tend to give similar predictions when R increases
beyond 30 nm (when a = 3 nm), due to the decreased impact
of the MNP.

E. Summary of physical observations

Using the above results and discussion, we can conclude
that the GNOR based characterization of a QD exciton sit-
uated in the near field of an MNP displays higher levels of
energy absorption (Qqd), compared to its LRA based coun-
terpart, at least in the large parameter space under study. It
also suggests steeper spectral linewidths along the frequency
axis for Qqd and larger MNP induced redshifts (�f ) to the
excitonic resonance frequency compared to the LRA based
model. The following interesting phenomena (left unrevealed
by the LRA based model) were also displayed by the proposed
GNOR based model, in the selected parameter regime. It
suggests a Fano-like spectrum near the bare excitonic reso-
nance for the coherent plasmonic field enhancement (CPFE)
experienced by the QD and plasmonic meta resonancelike
behavior towards small values of MNP-QD center separation
R. Moreover, incorporation of the nonlocal effects introduces
an asymmetry to the dips of QD population � and quantum
state purity near the bare excitonic resonance ω0.

In summary, the proposed GNOR based model predicts
strong modifications to various QD properties such as popu-
lation difference, absorption, MNP induced shifts to excitonic
energy and Förster enhanced broadening, coherent plasmonic
field enhancement, and quantum state purity, compared to the
conventional LRA based predictions. Such modifications are
prominent with small MNP radii, high QD dipole moments,
small detunings (of the coherent external illumination from
the bare excitonic resonance), and near parameter regions
exhibiting plasmonic meta resonance (PMR)-like behavior,
implying the dominance of nonlocal effects in such regions.
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FIG. 7. Comparison of sample HDM and GNOR based results. Figures depict the top view of the x = ω (range 3.499–3.501 eV), y = a

(range 3–30 nm) surface plots of HDM based (subscript H) and the GNOR based (subscript G) results of Qqd (first row), �f (second row),
and �f (third row), respectively. The final column depicts the signed percentage difference �X = (XH − XG)/XG%, where X denotes the
physical quantity of the relevant row. For all subplots, R = a + 10 nm and μd = 1.3 e nm.

V. CONCLUSION

In this paper we analytically studied the influence of
a metal nanoparticle (MNP) situated in the near field, on
the behavioral trends of an exciton in a quantum dot (QD)
using a generalized nonlocal optical response (GNOR)
method based approach. It has been shown in literature that
the GNOR model allows unified theoretical explanation of
experimentally observed plasmonic phenomena such as the
size dependent resonance shifts of metal nanoparticles that
previously seemed to require ab initio microscopic theory,
as the conventional local response approximation fails to
reveal them. We believe that our improved analytical model
will facilitate gaining better physical intuition of the simple
yet powerful nanohybrid under study and would also enable
application specific parameter optimization. We used the
analytical model to peruse the system over a wide parameter
range, taking the nonlocal response of the MNP into account,
at a much lesser level of complexity compared to the local
response approximation based numerical methods or ab
initio approaches of accounting for the nonlocal effects. We
tabulated the GNOR based fully analytical characterization
of a QD in the vicinity of an MNP, with the guidance
to retrieve the conventional local response approximation
(LRA) based and isolated QD related equations, for the
easy reference by readership. Using the newly suggested
model, we predicted that MNP radius and QD dipole
moment dependent differences exist between the spectra
obtained using the GNOR based and conventional LRA based
methods for quantities such as the MNP induced redshift of
normalized excitonic energy, Förster-enhanced broadening
of the excitonic transition, absorption rate, quantum
state purity, etc. of a QD when it is perturbed by a vicinal
MNP. Moreover, these differences are quite significant for

QDs with high dipole moments located near small MNPs, at
the incidence of illumination sparsely detuned from the bare
excitonic resonance as well as near the parameter regions
exhibiting plasmonic meta resonance (PMR)-like behavior
which have recently been under study for a multitude of
practical applications such as nanoscale switching. Based on
our results it can be suggested that the effects of nonlocal
response non-negligibly affects the near field QD even in
ranges where MNP radius is few tens of nanometers and
hence is important to be accounted for in the entire quasistatic
regime. It could also be observed that the LRA and GNOR
based results tend to converge when the interparticle distance
far exceeds the plasmonic meta resonant region, as expected.
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APPENDIX: ROOT SELECTION FOR q3 + r2 < 0

As summarized in Table I, for q3 + r2 < 0, P1 and P2 from
(27) will be complex conjugates such that

P1 = r +
√

q3 + r2 = |P1|/θ1,

P2 = r −
√

q3 + r2 = |P1|/−θ1.

It is evident that (26) mandates p1 and p2 to be complex
conjugates of each other for at least one cubic root of (25) to
be real. Thus, using De Moivre’s nth root theorem for complex
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numbers [74] and trigonometric identities, it can be shown that

P1/3
1 (j )

= |P1|1/3

[
cos

(
θ1

3
+ 2jπ

3

)
+ i sin

(
θ1

3
+ 2jπ

3

)]

= |P2|1/3

[
cos

(
θ1

3
+ 2(−j )π

3

)
− i sin

(
θ1

3
+ 2(−j )π

3

)]

= [
P1/3

2 (−j )
]∗

,

where j = 0, 1, 2.

Comparison of all possibilities of the roots of (25) against
its steady state numerical solution over the large parameter
space used in this work reveals that the valid root for −1 �
� � 1 when q3 + r2 < 0 is given by

� = p1 + p2 − w̃2/3,

where

p1 = P1/3
1 (j = 0) = |P1|1/3

[
cos

(
θ1

3

)
+ i sin

(
θ1

3

)]
,

p2 = p∗
1 .
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