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Macroscopic quantum violation of the fluctuation-dissipation theorem in equilibrium
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We examine the Hall conductivity of a macroscopic two-dimensional quantum system and show that the
observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response
(LR) regime infinitesimally close to equilibrium. At low temperature and in strong magnetic field, which are
experimentally accessible, the violation can be by an order of magnitude larger than the Hall conductivity itself.
We further generalize the results and obtain a necessary condition for such large-scale violation to happen.
This violation is a genuine quantum phenomenon that appears on a macroscopic scale when the time-reversal
symmetry is broken (by, e.g., a magnetic field). Our results are not only bound to the development of the
fundamental issues of nonequilibrium physics, but the idea is also meaningful for practical applications, since
the FDT is widely used for the estimation of noises from the LRs. We give an alternative formula evaluating
precisely the fluctuations from the LRs even in the quantum systems with large FDT violation.
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I. INTRODUCTION

According to the fluctuation dissipation theorem (FDT),
fluctuation in a thermal equilibrium state should agree with the
linear response (LR) function times temperature T = 1/β (we
take kB = 1) [1–12]. While the FDT was originally proposed
on the dissipative components of LRs such as the diagonal
conductivity [1–3], it was later suggested [13,14] and proved
[8] in classical systems that the FDT holds also for the dissi-
pationless components of LRs, such as the Hall conductivity.
Consequently, the FDT is accepted as a universal relation that
holds for all LRs in classical systems. This contrasts with the
responses to strong external fields that drive the systems far
away from equilibrium, for which such a relation does not
hold in general [15–30].

The most important aspect of the FDT is that it connects
the results of completely different and independent experi-
ments [1–12]: The LR function is obtained by measuring the
response in a nonequilibrium state, whereas the fluctuation is
obtained by measuring the time correlation in an equilibrium
state. According to the FDT, one can tell the magnitude of the
equilibrium fluctuation by measuring the response function in
nonequilibrium, and vise versa. This nontrivial aspect of the
FDT is utilized widely, e.g., to estimate noises (fluctuations)
from the responses in electric circuits [31–33], optical devices
[33–35], and gravitational-wave detectors [36].

However, the validity of the FDT is nontrivial in quantum
systems [8–10]. In “deriving” the FDT microscopically [4–7],
it was implicitly assumed that the disturbance by measure-
ment was negligible. Such an ideal measurement is possible
only for classical systems, because quantum systems follow
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the uncertainty relations [37–42]. The best solution seems to
assume a quantum measurement as quasiclassical, emulating
the ideal classical one as closely as possible [9,10]. Then, a
question arises: Does the FDT hold in quantum systems if
quasiclassical measurements are made?

This fundamental question has recently been solved in
Refs. [9,10]. It was shown rigorously that the FDT, as a
relation between the results of two different experiments, is
partially violated in quantum systems. Unlike obvious vio-
lations far from equilibrium [15–30], this violation occurs
between equilibrium fluctuations and the LRs to infinitesimal
external fields.

However, one might conjecture that the violation would
occur only at high frequency, h̄ω � T , for the following rea-
son. According to Nyquist [3], a macroscopic phenomenology
holds using the observed LR functions as given parameters,
although their values may be determined by quantum effects.
Then the remaining quantum correction for the fluctuation and
the LR should be only about the equipartition law [3]. Since
it breaks down only at h̄ω � T , so should do the FDT. In
systems with the time reversal symmetry, this is indeed the
case, e.g., for the violation caused by the detectors that cannot
measure zero-point fluctuations [43–51]. Practically, such a
violation at high ω (e.g., ω/2π � 20 GHz at T = 1 K) is
negligible in most applications [31–36] (except at very low
T ) because their operation frequencies are much lower.

By contrast, if the time-reversal symmetry is broken, the
violation found in Refs. [9,10] occurs even at low frequency,
h̄ω � T , for certain responses and even in the quasiclassical
measurement by means of the heterodyning [51] or quantum
nondemolition [52–56] detectors. However, since Refs. [9,10]
did not estimate the magnitude of the violation in actual
systems, one might still conjecture that it would be very
small in macroscopic systems because it is a genuine quantum
phenomenon that vanishes at h̄ = 0.
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In this paper, we explicitly calculate the magnitude of
the violation for the Hall conductivity σxy of a macroscopic
quantum system. We show that the violation can be larger by
an order of magnitude than |σxy | even at h̄ω � T , in contrast
to the above conjecture. We also derive a condition for such
a macroscopic violation of the FDT in general quantum
systems.

These results imply that the foundation of nonequilibrium
physics needs to be updated even in the LR regime infinites-
imally close to equilibrium. Furthermore, our results also
have an impact on practical applications because the standard
technique of estimating equilibrium noises of currents is to es-
timate them from the LR functions using the FDT [31–36], but
wrong predictions are obtained about the ‘real antisymmetric
parts’ (see Sec. II), such as the Hall conductivity. We will give
the correct method for estimating fluctuations from the LRs in
such a case.

II. FDT VIOLATION IN HALL EFFECT

Consider a macroscopic two-dimensional electron system
(2DES) in the x-y plane and apply a uniform magnetic field
with a flux density, B = (0, 0, B ). This system has been
studied extensively in the context of the quantum Hall ef-
fect (QHE) [57–72]. Here, we study the FDT between the
conductivity tensor, σμν , and the time correlation �μν of
ĵμ := Ĵμ/

√
� and ĵν := Ĵν/

√
�, where Ĵμ (μ = x, y) is the

total current and � is the area of the system. For simplicity,
we assume that the system is invariant under rotation by π/2
about the z axis. Then, the Hall conductivity has only the
antisymmetric part, σxy = σ−

xy := (σxy − σyx )/2, which does
not vanish since the time-reversal symmetry is broken by the
external magnetic field [9–11]. Here, we define the symmetric
(+) and antisymmetric (−) parts of the tensor, T , as

T ±
μν := (Tμν ± Tνμ)/2. (1)

Notice that one can imagine various types of time cor-
relations in quantum systems that approach 〈jν (0)jμ(t )〉eq

in the classical limit, where 〈•〉eq denotes the equilibrium
expectation value. Therefore, we first need to choose which
type of time correlation should be employed in the FDT.

The answer was found in the measurement of the time
correlation. Since we first measure ĵν and then ĵμ after a
certain time interval t , the measurement of ĵμ is disturbed
by the preceding measurement of ĵν in quantum systems.
The uncertainty relation between measurement error and dis-
turbance [39–41] does not allow this disturbance to vanish,
since the measurement error should be smaller than the current
fluctuation in the equilibrium. References [9,10] showed that
such a disturbance effect can be minimized by adopting the
quasiclassical measurement, which simulates the ideal classi-
cal measurement as closely as possible (see the references for
its precise definition). They proved that the time correlation,
taking into account such disturbance by the measurement, is
symmetrized as

�μν (t ) = 〈
1
2 {ĵν (0), ĵμ(t )}〉eq, (2)

where {A,B} := AB + BA. It is noteworthy that the dis-
turbance by the measurement on the time correlation is rel-

evant even in the macroscopic limit, � → +∞. Actually,
the disturbance on ĵμ caused by the preceding quasiclassical
measurement of ĵν was shown to be O(1) [9,10].

In contrast, the definition of σμν is essentially free from
the disturbance caused by the measurement. Indeed, as was
already pointed out in Kubo’s original paper [6], observation
of σμν does not require the sequential measurements. One
first prepares an ensemble of systems in the equilibrium and
then applies a weak electric field along the ν axis. In each
system, the induced current density Ĵμ/� is measured at a
certain time t only once. By choosing different t for the
measurement in each system, one can obtain the induced
current as a function of t , no matter how large the disturbance
by the measurement is.

In usual experiments, however, measurements are made
sequentially at various t in a single system. Still, one can
avoid the disturbance effect by adopting the quasiclassical
measurement. Actually, the disturbance on Ĵμ/� = ĵμ/

√
�

caused by a preceding quasiclassical measurement of Jμ/�

is O(1/
√

�), which is negligible in the macroscopic limit,
� → ∞.

Consequently, the observed σμν is given by the Kubo
formula,

σμν = θ (t )β〈ĵν (0); ĵμ(t )〉, (3)

which was derived without considering the disturbance effect
[6]. Here, the step function θ (t ) represents the causality, and

〈ĵν (0); ĵμ(t )〉 := 1

β

∫ β

0
〈eλĤeq ĵν (0)e−λĤeq ĵμ(t )〉eqdλ (4)

is called the canonical time correlation where Ĥeq is the
equilibrium Hamiltonian. Since it is different from the sym-
metrized time correlation of Eq. (2), the FDT, as a relation
between the observed �μν and σμν , can be violated.

If the types of measurements other than the quasiclassical
ones are applied to the observation of the time correlation, the
FDT violation would be further enhanced. Such enhancement
is out of scope of the present study. We focus only on the FDT
violation caused by the intrinsic reason.

In Ref. [6], Kubo already compared the conductivity,

σμν (ω) =
∫ ∞

0
β〈ĵν (0); ĵμ(t )〉eiωtdt,

with the spectral intensity,

S̃μν (ω) :=
∫ ∞

−∞
�μν (t )eiωtdt, (5)

without examining the measurability of the symmetrized time
correlation, �μν (t ). He derived the identities,

βReS̃xx (ω) = 2Iβ (ω)Reσxx (ω), (6)

βImS̃xy (ω) = 2Iβ (ω)Imσxy (ω), (7)

with

Iβ (ω) := βh̄ω

2
coth

βh̄ω

2
∼

{
1 (βh̄|ω| � 1),
βh̄|ω|/2 (βh̄|ω| 	 1). (8)

References [9,10] not only proved the measurability of
�μν (t ) but also showed that the spectral intensity should be
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redefined as

Sμν (ω) :=
∫ ∞

0
�μν (t )eiωtdt, (9)

which differs from S̃μν (ω) in the lower bound of the integral.
Indeed, the FDT for the Hall conductivity would be violated,
σxy 
= βS̃xy , if S̃xy were employed as ‘fluctuation’, even in
classical systems [10]. To avoid such superficial violation
caused by the improper choice of fluctuation in the frequency
domain, we employ Sμν as the proper definition of fluctuation.

We now focus on the violation in the DC limit, ω → 0,
so that h̄ω � T at any nonvanishing temperature. To quantify
the violation, we rewrite Eqs. (C.3) and (C.5) in Ref. [10] as

βSxx (0) = βReSxx (0) = 1

2
βReS̃xx (0) (10)

βSxy (0) = βReSxy (0) =
∫ ∞

−∞

P
ω

βImS̃xy (ω)
dω

2π
. (11)

Then, we obtain

βSxx (0) = σxx (0), (12)

βSxy (0) =
∫ ∞

−∞

P
ω

Iβ (ω)Imσxy (ω)
dω

π
, (13)

from Eqs. (6) and (7), Iβ (0) = 1 and σxx (0) = Reσxx (0),
where P denotes the principal value.

The FDT for the diagonal conductivity, βSxx (0) = σxx (0),
is valid in both classical and quantum systems, supporting the
naive Nyquist’s argument [3]. In contrast, the FDT for the Hall
conductivity, βSxy (0) = σxy (0), holds only in the classical
systems. Actually, the dispersion relation [11],

σxy (0) = Reσxy (0) =
∫ ∞

−∞

P
ω

Imσxy (ω)
dω

π
(14)

shows that βSxy (0), given as Eq. (13), does differ from
σxy (0) by the extra factor, Iβ (ω), in the integrand. This factor
describes a genuine quantum effect, since Iβ (ω) = 1 in the
classical limit, h̄ → 0.

Our question is how large the quantum FDT violation,
|σxy (0) − βSxy (0)|, should be. We will demonstrate that it can
overwhelm the typical value of |σxy (0)| and even diverge in
the low temperature limit.

III. CONDITIONS FOR LARGER VIOLATION

Equations (13) and (14) show that the FDT would not be
violated if Imσxy (ω) had nonzero values only at h̄ω � T . On
the other hand, the optical absorption (cyclotron resonance)
spectra for the left (L) and right (R) circularly polarized light
are proportional to the real part of [73]

σ L/R
xy (ω) := σxx (ω) ± iσxy (ω). (15)

Hence, Imσxy (ω) should have positive and negative peaks at
around ω = −ωc and +ωc, respectively, where ωc := eB/m

is the cyclotron frequency. This is shown in Fig. 1(a), which
is obtained by the method that we shall explain shortly.
Therefore, we can expect significant FDT violation when

T � h̄ωc. (16)

As we will show in Sec. VII, the violation is further enhanced,
if the spectral peak at around ω = ±ωc is narrow,

h̄ωc � 2�, (17)

where � denotes the half width of the Landau level which
is caused by the impurity scattering [57,58]. We henceforth
assume inequalities (16) and (17) for T and B. The integer
QHE can also be expected at sufficiently low temperature,
T � h̄ωc − 2�, whereas such extremely low temperature (or
QHE) is not necessarily required for observing the FDT
violation clearly.

FIG. 1. (a) Imσxy (ω) as a function of frequency ω for ωcτ = 4, 8, and 12 at temperature, T = h̄/20τ , and electron density, n = 10m/hτ .
Cyclotron frequency and the scattering time at B = 0 are denoted as ωc and τ , respectively. (b) |σxy (0)| and σxx (0) as a function of filling
factor, ν, at T = h̄/20τ (low T ) and T = h̄/5τ (high T ) for fixed electron density, n = 10m/hτ . (c) σxy (0) and βSxy (0) as a function of ν for
the same values of parameters as in (b).
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IV. MODEL AND METHOD OF CALCULATION

To avoid the inconsistency, which could arise due to the
separate evaluation at different levels of approximation, we
evaluate not only the FDT violation, σxy (0) − βSxy (0), but
also each of βSxy (0) and σxy (0) from a single quantity,
Imσxy (ω), by means of Eqs. (13) and (14).

To calculate Imσxy (ω), we assume noninteracting electrons
(with a charge −e, mass m) in two dimensions with the
following single-body Hamiltonian:

Ĥ = 1

2m
( p̂ + eA(r̂ ))2 +

∑
i

V0δ(r̂ − Ri ). (18)

Here, A = (0, Bx) is the vector potential, Ri the location
(obeying the uniform distribution) of an impurity, and V0 is
the strength of the impurity potential. The coordinate and
momentum operators of the electron are denoted as r̂ and p̂,
respectively.

To avoid artificial divergences caused by subtle treat-
ment of the Landau level degeneracies, we employ the self-
consistent Born approximation (SCBA) [57,58]. It prop-
erly gives the quantized Hall conductivity σxy (0) = −νe2/h,
when the filling factor ν := 2πl2n = nh/eB is an integer.
Here, l = √

h̄/eB is the magnetic length and n the electron
density. The formula derived in Ref. [74], which is useful
to calculate σxy (0) [57,58], is inconvenient for our purpose,
i.e., to evaluate Imσxy (ω) for all ω including ω ∼ ±ωc. We
thus perform a straightforward calculation of the Kubo for-
mula using the Landau-level basis and the SCBA. Then, we
can obtain Imσxy (ω) by solving the following self-consistent
equation for the self-energy �(ε),

�(ε) = niV
2

0

2πl2

∑
N

1

ε − h̄ωc(N + 1/2) − �(ε)
, (19)

where N is the Landau index and ni is the density of impuri-
ties. We can also estimate the half width of the Landau level
� from �(ε). It has the asymptotic form [57,58],

� ∼
√

2

π

h̄

τ
h̄ωc, (ωcτ → ∞), (20)

where the scattering time at B = 0 is denoted as

τ =
[

2π

h̄
niV

2
0

m

2πh̄2

]−1

. (21)

V. DIAGONAL AND HALL CONDUCTIVITIES

We first confirm that the quantities evaluated from
Imσxy (ω) agree with the ones in the previous works calculated
directly without referring to Imσxy (ω) [57]. Figure 1(b) shows
|σxy (0)| (= −σxy (0)), obtained from Eq. (14), as a function
of the filling factor ν at T = h̄/20τ and h̄/5τ . The electron
density is fixed to n = 10m/hτ , and the increase of ν implies
the decrease of B. Inequalities (16) and (17) hold at ν � 4.
At low temperature, T = h̄/20τ , integer QHE is expected.
Indeed, σxy (0) is quantized to −νe2/h at ν = 1, 2, 3, and 4,
in agreement with the previous theories [57] and experiments
[59–61]. At high temperature, T = h̄/5τ , the quantization
blurs at ν = 3 and 4, because thermal excitation to the higher

Landau levels takes place. Since these results are obtained by
integrating Imσxy (ω), they indicate that Imσxy (ω) is reason-
ably obtained for all ω.

We also calculate the diagonal conductivity σxx (0) as
shown in Fig. 1(b). It is nearly quantized as σxx (0) =
(e2/π2h̄)ν for half-integer values of ν, in agreement with the
previous studies [58,60–62]. When an external electric field
is applied in the x direction, dissipation occurs if σxx > 0.
This happens for every ν, except when the QHE takes place at
integer ν and at low T .

VI. RESULTS FOR FDT VIOLATION

In Fig. 1(c), the difference between σxy (0) and βSxy (0)
indicates the magnitude of violation of FDT as a function of
ν. Here, the scale of the vertical axis is about 20 times larger
than that of Fig. 1(b).

The magnitude of the violation is larger than |σxy (0)| at
T = h̄/5τ (∼1 K for τ ∼ 10−12 s). It is further enhanced, at
low temperature T = h̄/20τ , to an order of magnitude larger
than |σxy (0)|. This counterintuitive result should be contrasted
with the naive conjectures mentioned in Sec. I.

The violation is enhanced with decreasing ν and lowering
T . This result confirms the expectation in Sec. III that the FDT
is violated significantly when h̄ωc � T .

VII. GENERAL CONSIDERATION

Let us extend our argument to the general macroscopic
systems (such as ones with many-body interactions) and to
the LRs of the general macroscopic observable of a ‘current’
vector ˙̂a := d â/dt , associated with the ‘displacement’ vector
â. Following Ref. [10], we compare the ‘fluctuation’ between
two components of � ˙̂a := ˙̂a − 〈 ˙̂a〉eq,

Sμν (ω) :=
∫ ∞

0

〈
1

2
{� ˙̂aν (0),� ˙̂aμ(t )}

〉
eq

eiωtdt, (22)

with the admittance tensor, χμν (ω), describing the LR of ˙̂aμ

to the external field coupled to âν . When the symmetric and
antisymmetric parts are defined as Eq. (1), the power loss
or the energy dissipation of the external field of frequency
ω is determined only by Reχ+

μν (ω) and Imχ−
μν (ω), but is

independent of Imχ+
μν (ω) and Reχ−

μν (ω) [11].
In classical systems, the FDT, χμν (ω) = βSμν (ω), rigor-

ously holds for any choice of μ, ν, and ω [8–10]. However, in
the quantum systems, it could be violated regarding the dis-
sipationless component even at ω = 0 as χ−

μν (0) 
= βS−
μν (0),

whereas the dissipative component still obeys the FDT
as χ+

μν (0) = βS+
μν (0) [9,10]. [Note that χ±

μν (0) and S±
μν (0)

are real.] Actually, one can straightforwardly generalize
Eq. (13) to

βS−
μν (0) =

∫ ∞

−∞

P
ω

Iβ (ω)Imχ−
μν (ω)

dω

π
, (23)

whereas the dispersion relation [11] gives

χ−
μν (0) =

∫ ∞

−∞

P
ω

Imχ−
μν (ω)

dω

π
. (24)

Again, the FDT is violated because of the extra factor Iβ (ω)
in Eq. (23). Note that χ−

μν = S−
μν = 0 if the system has the
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time-reversal symmetry [10]. Hence, the violation occurs only
when the time-reversal symmetry is broken.

To estimate the magnitude of the violation,

χ−
μν (0)−βS−

μν (0) =
∫ ∞

−∞
P 1 − Iβ (ω)

ω
Imχ−

μν (ω)
dω

π
, (25)

we rewrite it in terms of

χL
μν (ω) := [χμμ(ω) + χνν (ω)]/2 + iχ−

μν (ω), (26)

as

χ−
μν (0)−βS−

μν (0) = β

∫ ∞

−∞
P Iβ (ω) − 1

βω
ReχL

μν (ω)
dω

π
. (27)

Since ReχL
μν (ω), which corresponds to the real part of (15),

describes the power absorption spectrum of a rotating external
field, it should be nonnegative according to the second law.
Moreover, [Iβ (ω) − 1]/βω vanishes at βh̄|ω| � 1, whereas it
can be approximated to the sign function, sgn(ω), at βh̄|ω| 	
1. Hence, the magnitude of the FDT violation is roughly
determined by the difference between the spectral intensities
of ReχL

μν (ω) distributed in βh̄ω � 1 and in βh̄ω � −1. Thus,
we can expect significant violation at

T � h̄ω̄ := h̄

∣∣ ∫ ∞
−∞ ωReχL

μν (ω)dω/π
∣∣∫ ∞

−∞ ReχL
μν (ω)dω/π

, (28)

as long as the spectral first moment ω̄ is finite. Note that
ω̄ vanishes for systems with time-reversal symmetry, where
Imχ−

μν (ω), the odd component of ReχL
μν (ω), vanishes. To

evaluate ω̄, we can use the moment sum rule [11],∫ ∞

−∞
ωnReχL

μν (ω)
dω

π
= i(−i)n

h̄

〈[
˙̂c−,

dnĉ+
dtn

]〉
eq

, (29)

with n = 0, 1 and ĉ± := (âμ ± iâν )/
√

2. The violation even
diverges in proportion to β at T → 0 with the asymptotic
form,

χ−
μν (0) − βS−

μν (0) ∼ β

∫ ∞

−∞
sgn(ω)ReχL

μν (ω)
dω

π
, (30)

if the integral in the rhs is not canceled out.
As for our example of the Hall conductivity, â stands for

−e
∑

i r̂ i/
√

�, where r̂ i is the coordinate operator of each
electron. Thus, inequality (28) reproduces (16), since Eq. (29)
is explicitly calculated, for n = 0 and 1, as

∫ ∞

−∞
ReχL

μν (ω)
dω

π
= ne2

m
, (31)

∫ ∞

−∞
ωReχL

μν (ω)
dω

π
= ne3B

m2
. (32)

The rhs of Eq. (30) is further enhanced at larger h̄ωc/2�, since
the spectral intensity of Reσ L

xy (ω) is more localized at ω >

0. This yields the condition (17). In the limit of ωcτ → ∞
and T → 0, we have h̄ωc/2� → ∞ and |σxy (0)| ∼ νe2/h =
ne/B, and

|σxy (0) − βSxy (0)|
|σxy (0)| ∼ βh̄ωc

2
. (33)

For n = 10m/hτ , ν = 1 and T = h̄/20τ , the rhs of Eq. (33)
equals to 102, which is consistent with our data shown in
Fig. 1(c).

VIII. ESTIMATION OF FLUCTUATION
FROM LR FUNCTION

The FDT has been widely utilized to estimate the fluctu-
ations (noises) from the LRs when designing, e.g., electric
circuits [31–33], optical devices [33–35], and gravitational-
wave detectors [36]. However, we should be careful in the
quantum system where the time-reversal symmetry is broken,
because the FDT can severely underestimate the fluctuations,
if it is applied to the dissipationless components of LRs.
This is true even at h̄ω � T , where, by contrast, the FDT
still exactly holds for the dissipative components of LRs.
Therefore, alternative formulas that are correct in this case
are craved. Equations (13) and (23) are such formulas, by
which one can estimate fluctuations from the observed LR
functions for dissipationless components. They will be helpful
in practical applications.

IX. NOTES

Although Fig. 1 is obtained approximately for a noninter-
acting system with short-range impurities, our general argu-
ment based on the sum rules is rigorous and independent of the
details of the impurities and the electron-electron interaction.
Therefore, the FDT violation in the Hall conductivity should
be universally observed in 2DES in a magnetic field, as long
as inequalities (16) and (17) are fulfilled. For example, in a Si
inversion layer sample [60] with m ∼ 10−1m0 (m0: free elec-
tron mass), n ∼ 1011 cm−2, and the mobility μ = eτ/m =
ωcτ/B ∼ 104 cm2/Vs, should show relevant FDT violation
in a high magnetic field B � 2 T and at low temperature
T � 20 K.

The caveat is that Sxy , rather than S̃xy , should be compared
with σxy , to let the FDT (in the frequency domain) valid in the
classical systems [10]. If the spectrum analyzer yields S̃xy , one
needs to convert it to Sxy using Eqs. (C.3)–(C.6) in Ref. [10].

X. SUMMARY

We have studied the FDT as a relation between the ob-
served LR functions and the observed fluctuations in macro-
scopic systems, assuming that the measurements are as ideal
as possible and that the system is close to equilibrium. It
is found that the FDT can be violated even at ω = 0 by a
macroscopically large magnitude regarding the dissipationless
components of LRs of ‘current.’ We have also proposed an
alternative method which can evaluate the fluctuations from
the LRs precisely even in such a case. These results are
indispensable for the understanding of the nonequilibrium
physics and for practical applications.
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