
PHYSICAL REVIEW B 98, 115427 (2018)

Interface excitons at lateral heterojunctions in monolayer semiconductors
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We study the interface exciton at lateral type II heterojunctions of monolayer transition metal dichalcogenides
(TMDs), where the electron and hole prefer to stay at complementary sides of the junction. We find that the 1D
interface exciton has giant binding energy in the same order as 2D excitons in pristine monolayer TMDs although
the effective radius (electron-hole separation) of interface exciton is much larger than that of 2D excitons. The
binding energy, exciton radius, and optical dipole strongly depends on the band offset at the junction. The
intervalley coupling induced by the electron-hole Coulomb exchange interaction and the quantum confinement
effect at interfaces of a closed triangular shape are also investigated. Small triangles realize 0D quantum dot
confinement of excitons, and we find a transition from nondegenerate ground state to degenerate ones when the
size of the triangle varies. Our findings may facilitate the implementation of the optoelectronic devices based on
the lateral heterojunction structures in monolayer semiconductors.
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I. INTRODUCTION

Heterostructures between conventional three-dimensional
(3D) semiconductors has inspired the inventions of the mod-
ern electronic devices such as high speed transistors [1],
diode lasers [2], light-emitting diodes [3], and solar cells [4].
Thanks to the development of nanotechnology, we are able
to engineer heterostructures on the nanoscale for high-speed
optoelectronic devices. In III-V and II-VI semiconductors,
various nanoscale heterostructures such as quantum wells,
superlattices, and core-shell nanodots and nanowire have been
widely studied [5–7]. Emerged as a new class of semiconduc-
tors in the two-dimensional (2D) limit [8–12], monolayers of
group-VIB transition metal dichalcogenides (TMDs) possess
a visible range direct gap, exotic properties associated with
valley degeneracy, and new geometries for realizing vari-
ous heterostructures, which provide new platforms to study
the physics and applications at semiconductor heterostruc-
tures [13–16]. By stacking different TMDs monolayers which
are then bound together by the weak interlayer Van der
Waals forces, vertical heterostructures have been realized
recently, e.g., MoX2/WX2 (X=Se, S) heterobilayers [17–24],
which can be analogs of the III-V semiconductor double
heterojunctions.

Besides the vertical heterostructures, two-dimensional ma-
terials also make possible heterostructures of a unique pla-
nar geometry. Two different TMDs seamlessly connected
in a single monolayer has been realized experimentally al-
ready [25–36]. A more recent development is on the growth
of various lateral heterostructures, multiheterostructures and
superlattices for TMDs [37]. The possibility to form an
atomically sharp and straight lateral interface of different
compounds [33,37] points to exciting opportunities towards
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device applications based on the lateral heterojunctions, as
well as a new geometry to realize quantum wires and even
quantum dots in the monolayer semiconductors. The lateral
heterojunctions can also be realized in an alternative way, by
electrostatic gating to define lateral p-n junctions [38–40]. The
recent development shows that the width of the electric gate in
the monolayer MoS2 can be narrowed down to 1 nm by using
a single-walled carbon nanotube as the gate electrode [41].

In most of the vertical and lateral heterostructures formed
between different TMDs monolayers, they feature a type-II
band alignment, where the conduction and valence band edge
locate in different TMDs. The strong Coulomb interaction
binds electron and hole to form an exciton at the interface.
In contrast to a 2D exciton formed in pristine monolayer
TMD, the electron and hole at the interface will be spatially
separated because of the type-II band alignment, and such an
interface exciton can have lower energy, being an excitonic
ground state in the heterostructures. The properties of such
interface excitons can be essential to determine the optical
response of the lateral heterostructures of TMDs. In vertical
heterojunctions MoX2/WX2 heterobilayers, such an interface
exciton has already been investigated theoretically and ex-
perimentally [23,24,42–46]. Due to the spatial separation of
electron and hole, interlayer excitons in MoX2/WX2 heter-
obilayers have shown long lifetime exceeding nanoseconds
[23,24] and electrostatically tunable resonance [47] which are
highly desirable for the realization of excitonic circuits and
condensation [48,49]. Interestingly, the inevitable twisting
and lattice mismatch in the heterobilayers can give rise to
novel light coupling properties [42–46]. Albeit the novel and
appealing properties discovered, the interface excitons in the
heterobilayers of 2D semiconductors are analogues of those
in the conventional heterostructures bulk semiconductors, for
example the spatially indirect excitons in a III-V double
quantum well. The realization of lateral heterostructures in
monolayer TMDs opens up new opportunities to extend the
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study of interface exciton from two-dimensional interface to
the one-dimensional (1D) interface. The 1D interface exciton
mode may shed light on novel optoelectronic devices based on
these atomically thin 2D lateral heterostructures. Moreover,
such 1D interface excitons may also become relevant in lateral
p-n junctions in monolayers TMDs [38–40].

Here, we theoretically study the interface excitonic states at
lateral heterojunctions of the monolayer TMDs. The physical
properties of a one-dimensional type-II interface exciton such
as the binding energy, exciton radius (i.e., electron-hole sepa-
ration), longitudinal-transverse splitting by the electron-hole
exchange, and optical dipole are investigated as a function
of band offset at the interface. We adopted two different
approaches to calculate the interface exciton states. One
approach bases on a real-space tight-binding (TB) model,
and the other approach uses the perturbation expansion in
a hydrogenlike basis in effective mass approximation. We
show that with the increase of the band offset at the interface,
the exciton radius increases as well and can become several
times larger than that of the 2D excitons in homogeneous
monolayer TMDs. In the meantime, the decrease in the
exciton binding energy is not as significant, remaining in
the same order as the 2D exciton, because of the weaker
screening of Coulomb interaction as electron-hole separation
increases. Due to spatial indirect nature of interface exciton,
the optical transition dipole decreases fast with the increase
of band offset, which, at a typical band offset of 300 meV,
is about one order of magnitude smaller than that of 2D
exciton. We also investigated lateral heterostructures with a
closed triangular-shaped interface which effectively realize
a 0D quantum dot confinement of exciton. Such a quantum
dot uniquely features the quantum confinement of one carrier
by the band offset of the interfaces and binding of the other
carrier in the proximity exterior by the strong Coulomb. We
find two distinct scenarios of energy level schemes and valley
optical selection rules of the interface exciton at small and
large quantum dot size, respectively, which can be exploited
for optical quantum controls.

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the exciton of lateral structures in the
effective mass approximation. We study the interface exci-
ton at the 1D p-n and p-n-p heterojunctions of monolayer
semiconductors in Sec. III. The numerical results of the
physical observables of interface exciton are also shown in
Sec. III. In Sec. IV, we show the numerical calculations of the
interface exciton at the 0D quantum dot type triangular lateral
heterostructure. We conclude in Sec. V.

II. HAMILTONIAN IN THE EFFECTIVE MASS
APPROXIMATION

It is shown that electronic properties of monolayer TMDs
near the Fermi surface are effectively described by the three-
band model involving all d orbitals of the transition metal
atom [8]. In the low energy excitation limit where only the
electron in the vicinity of the valance band edge is excited by
light field to the vicinity of the conduction band edge, both the
electron in the conduction band and the hole left in the valence
band can be approximately described by the effective mass
model. In this sense, the periodic parts of the electron and

hole Bloch wave functions are omitted and only the profiles
of the electron and hole Bloch wave functions are taken into
consideration in the following discussion. Together with the
attractive Coulomb interaction and the lattice potentials, the
type II interface exciton at the interface can be described by
the following Hamiltonian

H = − h̄2

2me

∇2
re

− h̄2

2mh

∇2
rh

+ VC(|re − rh|)
+Ve(re ) + Vh(rh), (1)

where me (mh) is the electron (hole) effective mass, and
re (rh) denotes the position coordinates of the electron
(hole). The lattice potentials of electron and hole Ve(re )
and Vh(rh) depend on the different geometries of the lateral
heterostructures.

Here, the Coulomb interaction VC(|re − rh|) between the
electron and hole in the 2D limit reads [50,51]

VC(r ) = −e2π

2r0

(
H0

(
r

r0

)
− Y0

(
r

r0

))
, (2)

where Hn and Yn denote Struve function and Bessel func-
tion of the second kind, respectively. The former researches
demonstrated that in monolayer TMDs the quasi-2D geometry
leads to a distance-dependent effective dielectric screening
[52–55]. For monolayer TMDs, the parameter r0 is on the
order of a few nm, which is comparable to the Bohr radius
of a free 2D exciton [52,53].

III. INTERFACE EXCITON AT 1D P-N AND P-N-P
HETEROJUNCTIONS

A. Type II interface in monolayer TMDs

A lateral type-II interface in monolayer TMDs can be
implemented in two setups. The first is a lateral heterojunction
seamlessly formed between different TMDs [29–32] as shown
in Figs. 1(a) and 1(d). In such cases, the type-II interface is
atomically sharp. The conduction and valence band edges as
functions of position are regarded as the step functions. The
other setup shown in Figs. 1(b) and 1(e) is lateral p-n or p-n-p
junctions electrostatically created in a monolayer TMD by
separate back gates, which has been studied experimentally
[38–40]. Such a setup realizes a gentle type-II interface with
a finite width of the interfaces w. It should be indicated that
although the band offset V0 and the width of the interfaces w

cannot be tuned for the former lateral heterojunction which
are formed by different TMDs, they can be tuned for the
latter lateral heterojunction because the type II band alignment
results from the tunable electrostatic gating.

We are interested in the binding energy and wave func-
tion of the interface exciton ground state, which determines
the stability and optoelectronics properties of the interface
exciton. By the interface potentials, electron and hole pre-
fer to stay at complementary sides of the interface, while
the Coulomb interaction VC(|re − rh|) attempts to bind the
electron and hole. The properties of the interface exciton
therefore depends on the competition between the band offset
and the Coulomb interaction, which are then tunable by the
width w of the interface and the magnitude of the conduction
and valence band edge offsets V0. The effective dielectric
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FIG. 1. (a),(d) Schematics of the single and double heterojunc-
tions formed by MoSe2 and WSe2. The blue, red, and yellow
spheres, respectively, denote W, Mo, and Se atoms. The purple
shadow regions denote the type II interfaces. (b),(e) Schematics of
the monolayer TMDs p-n junction defined by the electrostatic gating.
The red and blue regions denote the n and p regions, respectively.
(c),(f) Illustration of the band edge profile across the single lateral
junction in (a) or (b) and the double lateral junctions in (d) or (e).
Here, w is the width of the interface, which is zero for the case of (a)
and (d), and has a finite value for the gate defined junctions in (b) and
(e). V0 is the average lattice potential of electron and hole in (a) or
(d) and gate voltage in (b) or (e). The δ characterizes the difference
of the band offsets for electron and hole.

screening of Coulomb interaction varies with distance, and for
large distance between electron and hole the screening effect
is substantially reduced. As we will show, this is important
for the interface exciton to have strong binding energy, even
though the spatial separation between the electron and hole is
much larger than the Bohr radius of the 2D exciton.

B. Solving the eigenproblem using Born-Oppenheimer
approximation

Since VI(re, rh) = Ve(re ) + Vh(rh) possesses translational
symmetry while Coulomb interaction possesses rotational
symmetry, incompatible symmetries make it impossible to
obtain analytical solutions for the Schrödinger equation gov-
erned by the Hamiltonian in Eq. (1). We rewrite the above
Hamiltonian with the center-of-mass motion and relative mo-
tion of the electron-hole pair as

H = − h̄2

2M
∇2

R − h̄2

2μ
∇2

r + VC(r ) + VI(R, r), (3)

where the center-of-mass and relative space coordinates are{
R = 1

M
(mere + mhrh)

r = re − rh
(4)

with total mass M = me + mh and reduced mass μ =
memh/(me + mh). Due to the 2D nature of TMDs, these coor-
dinates only have two components which means R = (X, Y )
and r = (x, y). Obviously, the total mass is at least four
times greater than the reduced mass (M � 4μ), which implies
that the center-of-mass motion is a relatively slow one in
comparison with the relative motion. Under this circumstance,
we can apply the Born-Oppenheimer approximation (BOA)
here and in zeroth order BOA the eigenwavefunction is a
product state as

�(R, r) = �(R)�(R, r). (5)

For lateral heterojunctions VI(re, rh) possesses translational
symmetry along the y direction as shown in Figs. 1(a)
and 1(d). The interface potential is numerically modelled
with Ve(xe ) = V0+δ

2 (1 − tanh ( xe

w
)) and Vh(xh) = −V0−δ

2 (1 −
tanh ( xh

w
)), where w is the width of the interface which char-

acterizing the sharpness of the band offset. As VI(R, r) is
independent of Y , the envelope function remains to be a plane
wave in the Y direction, so we rewrite the center-of-mass
motion part as �(R) = �(X)eiPY Y . Since PY stands for the
y-component wave vector corresponding to a kinetic energy
h̄2P 2

Y /2M , obviously PY = 0 for the ground state of type-
II interface exciton. Then the corresponding Schrödinger’s
equations for the relative motion and center-of-mass motion
read

[
− h̄2

2μ
∇2

r + VC(r ) + VI(X, r)

]
�(X, r) = E(X)�(X, r),

(6)[
− h̄2

2M

∂2

∂X2
+ E(X)

]
�(X) = Eg�(X). (7)

The energy E(X) plays the role of an effective potential
in Eq. (7), which leads to the ground state �(X)�(X, r)
of type-II interface exciton with corresponding ground state
energy Eg . To numerically solve Eq. (6), we adopted two
different approaches: One is the solution based on a real-space
tight-binding model for the relative part Hamiltonian Hr =
− h̄2

2μ
∇2

r + VC(r ) + VI(X, r), and the other is a perturbative
expansion of Hr with a hydrogenlike basis of the effective
mass model. Details of both approaches can be found in the
numerical results section below.

C. Physical observables and the electron-hole overlap

Before we present the numerical results we would like to
introduce several important physical observables first. When
applying BOA and obtaining the eigenwavefunction of type-
II interface excitons, we can straightforwardly calculate the
binding energy, effective radius, optical dipole, and the inter-
valley coupling of the interface excitons [56].

The binding energy of type-II interface exciton is defined
as Eb = Ef − Eg , where Ef is the energy of a noninteracting
electron-hole pair at the interface. The effective radius is
straightforwardly calculated as

ab =
√∫∫

drdXr2|�(X)�(X, r)|2, (8)
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which measures the spatial separation between the electron
and hole.

Another important observable is the optical dipole of the
interface exciton defined as

D(V0) = 〈c|A · P|v〉
∫

dX�(X)�(X, 0), (9)

which relates to the lifetime of type-II interface exciton in
TMDs. Here, |c〉(|v〉) is the periodic part of the Bloch function
in the conduction (valance) band, A is the vector potential
of the light field, and P is the momentum operator. If we
refer D0 as the value of D(V0) at V0 = 0 (i.e., that of the 2D
exciton in the absence of interface [57]), |D(V0)/D0| is then
the dimensionless ratio between the dipole of interface exciton
and the 2D exciton. In contrast with the optical dipole of 2D
excitons, there is an additional integral over the X direction
whose value depends on the wave-function profile along the X

direction. Additionally, r = 0 in the relative part of the wave
function �(X, 0) indicates that the recombination of the elec-
tron and the hole in the exciton occurs only when they exactly
locate at the same position. In this sense, the electron and hole
will become harder to recombine with each other and thus
results in a longer lifetime due to the decreased optical dipole.
As we will show that below the amount of overlap between
the electron and hole can be controlled by VI(R, r).

As we can see, the electron-hole overlap plays an important
role in Eq. (8) and Eq. (9). For a ground state of the 2D
exciton, it closely resembles s orbitals, so a relatively large
optical dipole D(V0 = 0) is expected. However for large V0

the wave-function overlap between the electron and hole is
greatly reduced.

Besides the separation of the electron-hole pair and optical
dipole D(V0), the electron-hole overlap also affects other
properties of the type-II interface exciton such as intervalley
coupling induced by Coulomb exchange interaction [56]. It
was proved that under broken threefold rotation symmetry in
monolayer TMDs, the excitonic spectrum could have a finite
valley exchange interaction even in the ground state which is
induced by exchange Coulomb interaction between electrons
and holes [56]. In the presence of VI(R, r), translational
symmetry is only preserved in the y direction, breaking the
threefold rotation symmetry. Thus lateral heterojunctions not
only decrease the electron-hole overlap, but also results in
a nonvanishing valley-exchange term J . Such a term opens
a coupling channel between +K and −K valleys which
is normally suppressed in monolayer TMDs due to large
momentum difference. In a quasi-1D system, the intervalley
coupling strength is written as

J =
(

at

Eg

)2 ∑
PX

VC(PX, PY = 0)P 2
X|ψ (PX )|2, (10)

where a is the lattice constant, t is the hopping constant,
and VC(PX, PY ) is Coulomb interaction in the momentum
space. Here, ψ (PX ) = 1√

LX

∑
X �(X, r = 0)exp(iPXX) is

the electron-hole overlap in the X− component momentum
space. Since the electron-hole overlap is controlled by the
strength of the band offset, a tunable intervalley coupling is
expected in the lateral heterojunction of TMDs.

It is important to note that the above described zeroth-order
BOA is valid only in the adiabatic limit where the gradient of
the band offset caused transition probability is much smaller
than the energy level spacing between the ground state and any
excited state in Eq. (6). Detailed justification shall be referred
to the appendix or literature about generalized BOA [58,59].
For the current eigenproblem of type-II interface exciton in
TMDs, we will numerically justify that the zeroth order BOA
is sufficient.

We will take MoSe2/WSe2 heterojunctions as our example
in subsequent sections of type-II interface excitons. It is
trivial to generalize our method to other sharp TMDs lateral
interfaces.

D. Numerical results based on TB model

In order to obtain the TB model, we discretize Eq. (6) in
the real space. We take a unit in the x direction as a and the
y direction as

√
3

2 a, where a = 3.325 Å is the lattice constant.
The lattice constant of WSe2 and MoSe2 closely matches so it
is legitimate to assume the same lattice constant across the
heterojunctions [20,60]. A 72 × 84 supercell and the open
boundary conditions for both directions are taken into con-
sideration. We consider an armchair interface in the following
calculation, while it will give almost the identical results when
changing the armchair edge to any other type of the interface.
Previous studies [60,61] show that the conduction and valence
bands are accurately described by d orbitals of the metal
atoms, while the orbitals of the chalcogenides play a minor
role. Hence we only consider the metal atoms in our TB
model, and the nearest-neighbor hopping is t = −h̄2/3a2μ

between metal atoms. One of the advantages of applying the
TB model is that VC(r ) and VI(R, r) are exactly diagonalized.
It is noticed that the on-site electrostatic energies U = VC (r =
0) are divergent. Since for a type II alignment the electron
and hole barely can occupy the same site, a large value of the
on-site electrostatic energies U is assumed in our calculation
in order to make the calculation convergent.

The effective masses of the electron and hole are chosen as
me = mh = 0.32m0 and thus the reduced mass is μ = 0.16m0

with free electron mass m0. The width of the interface is
chosen as w = 0.1a to model a very sharp band offset in
order to simulate the single or double heterojunctions. Here,
r0 in the effective Coulomb interaction is chosen as r0 = 75 Å
[53]. A symmetric heterojunction (δ = 0) is considered unless
otherwise specified.

By solving Eq. (7), the binding energy Eb, effective ra-
dius ab, and optical dipole ratio |D(V0)/D0| versus different
strength of the band offset V0 are shown in Fig. 2. We
also depict those physical observables when different on-site
electrostatic energies U are chosen. The red sphere, blue tri-
angle, and magenta diamond symbols, respectively, represent
U = −0.79,−1.19, and −2.98 eV. The physical observables
converge to the same value at high voltage V0 regardless of
U , which actually implies that at large V0 the electron and
hole are well separated and thus there is almost no on-site
electrostatic energy contribution in Eb. Basically there are
two characteristic behaviors, the regime of small band offset
(V0 < 0.1 eV) and large band offset (V0 > 0.4 eV). This
reflects the competition between Coulomb interaction and the
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FIG. 2. (a) The binding energy Eb, (b) the exciton radius ab, and
(c) optical dipole ratio |D(V0)/D0| versus the strength of the band
offset V0 for different on-site Coulomb potential U . The red sphere,
blue triangle, and magenta diamond symbols, respectively, represent
results for different on-site electrostatic energy U = −0.79, −1.19,
and −2.98 eV. The physical observables converge to the same value
at high voltage V0 regardless of U , showing the spatial separation na-
ture of the interface exciton for large V0. There are two characteristic
behaviors, in the regime of small band offset (V0 � 0.1 eV) and large
interface potential (V0 > 0.1 eV), which reflects the competition
between Coulomb interaction and the band offset. Here, D0 is the
value of D(V0) at V0 = 0 (i.e., that of the 2D exciton in the absence
of interface). See text for details.

band offset. For small band offset V0, VC(r ) dominates over
VI(R, r) so the exciton ground state is almost equivalent to
a 2D exciton while VI(R, r) is regarded as a perturbation
term. Therefore, the physical observables of type-II interface
exciton are almost the same as the ones for 2D exciton in this
regime. However, for sufficiently large V0, VI(R, r) dominates
over VC(r ). The effective radius ab shows a rapid rise while D

drops dramatically as the band offset increases. In this sense,
we can control physical properties of type-II interface exciton
by adjusting the band offset.

We obtained an interface exciton binding energy of about
0.2 eV which is of the same order as a 2D exciton in TMDs.
Such a large binding energy at a type-II interface is not present
in most conventional semiconductor nanostructures [5,62,63].
In fact, a type-II interface exciton is often considered unstable
in conventional semiconductor heterostructures [5,64] unless
in the presence of other physical structures like an E field [64]
or within a quantum dot [62]. In a TMD lateral heterojunction,
however, with a relatively large binding energy a type-II inter-
face exciton is predicted to be stable with our calculations. It is
also of concern whether the interface exciton changes back to
a 2D exciton easily. From Fig. 2(b) we see that at V0 = 0.2 eV
the binding energy of the interface exciton is about 0.22 eV,
which is about 0.1 eV smaller than the binding energy of

FIG. 3. (a) Center-of-mass wave function and (b) relative motion
spatial probability distribution at different V0. The white dashed line
denotes the central position of the interface. From (a) we see that
the wave function undergoes a transition from an extended state
to a localized state as V0 increases, demonstrating the competition
between the Coulomb interaction and the band offset. From (b), we
see that for larger V0 the electron-hole pair tends to be farther apart
and electron-hole overlap is greatly reduced.

2D exciton. In this sense, we may assume that for realistic
configurations the interface exciton is a stable ground state
of lateral heterojunctions. The relatively large binding energy
exactly results from the weaker screening effect of Coulomb
interaction when the electron-hole separation increases as
shown in Eq. (2).

It is noted that for a large V0 the on-site Coulomb interac-
tion for an interface exciton is irrelevant. This implies that the
electron and hole are well separated into opposite regions for
sufficiently large V0, while for small and intermediate V0, even
though qualitative behaviors are similar, numerical values
obtained with different U are quite different. Without loss of
generality, U = −0.79 eV is assumed in the remainder of the
paper as it gives the closest free exciton Eb with Ref. [50] for
2D exciton.

The center-of-mass part �g (X) and relative motion wave
function with fixed electron position are, respectively, de-
picted in Figs. 3(a) and 3(b) for different V0. From Fig. 3(a) we
see how �g (X) varies from V0 = 0 to 0.4 eV. For small band
offset V0 < 0.1 eV �g (X) is widespread across the supercell.
This is expected since for small V0 the electron-hole pair
behaves as a 2D exciton. But for sufficiently high V0, �g (X)
is localized around the interface at X = 0. The center-of-
mass part of the wave function undergoes a transition from a
plane wave to a localized state as V0 increases, demonstrating
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FIG. 4. (a) Left: hole, and right: electron reduced wave function
versus V0. Since the translational symmetry is preserved along the
y direction, we only show the cross section of the reduced wave
function along the x direction at y = 0. Apparently the electron-
hole pair is effectively separated at high V0. However, for V0 ∼
0.1–0.2 eV a finite tail into the barrier region remains which gives
rise to a considerable electron-hole overlap. (b) Schematics of an
interface exciton for V0 > 0.1 eV. A considerable overlap between
the electron and hole wave functions survives even for a great spatial
separation of the electron and hole. Here, the thin lines denote the
band offsets. The dark blue and dark red regions, respectively, denote
the cross section of the electron and hole’s reduced wave functions
along the x direction at y = 0.

the competition between the Coulomb interaction and the
band offset. From Fig. 3(b), the biased relative motion wave
function for large V0 implies that the electron-hole pair tends
to be separated apart well and thus electron-hole overlap is
greatly reduced. To further demonstrate the separation nature
of the type-II interface exciton, the reduced wave function of
the electron and hole versus V0 is shown in Fig. 4(a), where
obviously the electron preferentially stays at the left hand side
of the interface while the hole stays at the right hand side of
the interface.

There is still a considerable optical dipole because of the
tunneling tail of the electron and hole reduced wave function.
We find that a small but notable electron-hole overlap still
survives. Such an electron-hole overlap can be schematically
demonstrated by Fig. 4(b). The finite magnitude of overlap
for V0 > 0.1 eV implies that the optoelectrical properties can
be still detected for interface exciton. From Fig. 2(c) we see
that at V0 = 0.2 eV, D only drops by half that of 2D excitons,
and by one order of magnitude at 0.3 eV. Thus at such V0 the
interface exciton still can be excited by the pumping light. On
the other hand, reduction of D suggests a longer lifetime. For
very large V0, D is a few orders smaller than 2D excitons,

(a)

(c)

(b)

-3

-1.5

0

0 0.2 0.4

FIG. 5. (a) Illustration of the intervalley exchange interaction.
Mediated by the exchange part of the Coulomb interaction (the
orange arrow), the exciton may change their pesudospin from −K to
+K as indicated by the green arrow, effectively resulting in a valley
exchange channel. (b) The exchange interaction J leads to a splitting
between the degenerate ±K states. The σ+, σ−, σx, σy , respectively,
denotes the polarizations of the light fields which can pump the
corresponding states. The x and y directions are shown in Fig. 1(a).
(c) The valley coupling strength J versus V0 for a symmetric
and asymmetric heterojunction, respectively. Rotational symmetry
requires vanishing J at V0 = 0 for a symmetric heterojunction, in
contrast to an asymmetric heterojunction for which J increases at
low V0. At high voltage valley coupling of an interface exciton is
small regardless of symmetry of the heterojunction because of the
reduced electron-hole overlap.

meaning that the interface exciton may have a lifetime far
exceeding 2D excitons.

Finally we calculated the intervalley coupling strength J

for different V0 at U = −0.79 eV for both a symmetric inter-
face with δ = 0 and an asymmetric interface with δ = 0.5 eV
in Fig. 5. For the symmetric case, it is expected that J tends to
zero for V0 = 0 due to the emergence of threefold rotation
symmetry. When V0 increases, broken symmetry results in
a dramatic increase of intervalley coupling. However for an
asymmetric interface with δ = 0.5 eV, the threefold rotation
symmetry is broken at the beginning and thus there is a
considerable J at V0 = 0. However as V0 further increases,
the broken symmetry plays a minor role and a very similar
monotonic decreasing behavior in J is observed for both
interfaces. This manifests the reduced electron-hole overlap
ψ (PX ) as in the drop of D when V0 increases.

A nonzero intervalley coupling between ±K implies that
interface exciton ground state has a valley part of the form

1√
2
(|K〉 ± |−K〉). This suggests that the interface exciton

couples with linearly polarized light instead of circularly
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polarized light as in 2D excitons which is shown in Fig. 5(b).
Our calculations show that J has an order of a few meV in
Fig. 5(c).

Under current parameters, we have numerically evaluated
the first and second order terms of a more rigorous general-
ized BOA [58,59] and find that even within the intermediate
regime of V0, the corrections terms are in the order 10−6 eV,
which is much smaller than the energy level spacing in the
order of 10−1 eV. Thus the correction terms may safely be
neglected and the zeroth-order BOA is sufficient for current
circumstance.

E. Numerical results based on continuous model

When the size of the supercell is much larger than
the lattice constant, we can also introduce a continuous
model of type II interface exciton, where its Hamiltonian
in Eq. (6) is diagonalized with a 2D hydrogenic basis. In
the Hilbert space expanded by the 2D hydrogenic basis
{φnl (r )}(n = 0, 1, . . . , l = −n + 1, . . . , n − 1) which satisfy
the Schrödinger equation of the usual 2D hydrogen atom [65](

− h̄2

2μ
∇2

r − e2

εr

)
φnl (r ) = Enφnl (r ), (11)

Eq. (6) can be rewritten as

ak
nl (X)[E(X) − Ek (X)] +

∞∑
n′=1

n−1∑
l′=−n+1

V nl
n′l′ (X)ak

n′l′ (X) = 0,

(12)

where �k (X, r) = ∑
n,l a

k
nl (X)φnl (r) has already been as-

sumed as the linear combination of the basis with coefficients
{ak

nl (X)} and the elements of the electric potential are defined
as V nl

n′l′ (X) = ∫
drφ∗

nl (r)[VC(r ) + VI(X, r)]φn′l′ (r).
Since we need an infinite principal quantum number n

to complete the Hilbert space of Eq. (6) which is obviously
impossible, we need to set a cutoff n when both the binding
energy and wave function of the ground state interface exciton
are convergent. We plot the binding energy versus the prin-
cipal number n for different potential strength V0 in Fig. 6.
It is obvious that the ground state energies converge very
quickly along with the principal quantum number even for
relatively large potential strength. In the following discussion,
the cutoff of n is set to be ncutoff = 7. It is also important
to note that the dielectric constant ε ≈ 1.10ε0 for the 2D
hydrogenic basis is fixed in the above numerical calculation in
order to obtain the same binding energy Eb ≈ 220 meV as the
one from the TB model at V0 = 0.2 eV. Here, ε0 is the vacuum
dielectric constant. In this sense, the binding energy of the 2D
exciton is Eb = 396 meV. The other parameters are the same
as those for the TB model. Based on the continuous model the
numerical results of the binding energy Eb, effective radius ab,
and optical dipole ratio |D(V0)/D0| obtained with different
strength of the band offset V0 are shown in Fig. 7 as the blue
triangle symbols and solid lines. Here, the numerical results
based on the TB model are also shown in the same figure as
the red sphere symbols and dashed lines. The numerical re-
sults, especially the energies, resemble each other reasonably,
which implies the validity of both methods. For large band
offset V0, the difference between the numerical results of both

2 3 4 5 6 7
-300

0

100

200

eV3.00 =V
eV4.00 =V
eV5.00 =V
eV6.00 =V

-100

-200

FIG. 6. The binding energy Eb versus the cutoff of principal
quantum number n for different potential strength V0. The dotted
red line with circle symbol, dot-dashed blue line with triangle
symbol, magenta short-dashed line with pentagon symbol, and olive
solid line with diamond symbol represent the ground state energies
with potential strength V0 = 0.3, 0.4, 0.5, 0.6 eV, respectively. The
other parameters are chosen as ε ≈ 1.1ε0, me = 0.434m0, and mh =
0.533m0 with vacuum dielectric constant ε0 and free electron mass
m0. It is clear that the ground state energies converge very quickly
along with increasing principal quantum number even for relative
large potential strength.

methods becomes greater because the size of the supercell we
chose is not sufficiently large.

F. Interface exciton at lateral double heterojunctions

The former discussion focuses on the properties of the
1D interface exciton at single heterojunction as shown in

(a)

(c)

(b)

0 0.4 0.8

0.2

0.4

0.1

0.3
2D
TB

0 0.4 0.8

18

6

12

2D
TB

0 0.4 0.8
0

0.5

1

2D
TB

FIG. 7. (a) The binding energy Eb, (b) the exciton radius ab,
and (c) the optical dipole ratio |D(V0)/D0| versus the strength of
the band offset V0. The blue triangle symbols with solid line and
the red sphere symbols with dashed line, respectively, represent the
numerical results obtained from the TB model and continuous model,
which are respectively denoted as "TB" and "2D" in the plot.
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FIG. 8. (a) The binding energy of the interface exciton at lat-
eral double heterojunctions versus the width of the double het-
erojunctions L. (b) The typical reduced wave function of elec-
trons (blue solid lines) and holes (red dashed lines) for different
widths of double heterojunctions. The three different widths are
L ≈ 1.3 nm, 3.3 nm, 10 nm. The corresponding central regions are
denoted by the shadow areas. See text for the details. (c) The binding
energy of the interface exciton versus the potential strength of the
double heterojunctions V0 for L ≈ 3.3 nm.

Fig. 1(a). Another important case is the lateral double hetero-
junctions as shown in Fig. 1(d). When the interface exciton
is generated in such a structure, the electron is supposed to
locate at the central region and the hole is supposed to locate
at both hands side of the central region due to the lattice
potential. However, because of the Coulomb interaction the
electron and the hole have a tendency to bind each other. Such
competition will affect the properties of the interface exciton
greatly. Since the lattice potential depends on the width of the
double heterojunctions as well as the potential strength now,
we calculate the binding energy of the interface exciton versus
the width of the double heterojunctions L and the potential
strength V0 by applying the TB method.

The binding energy versus the width of the double het-
erojunctions L is depicted in Fig. 8(a). The V0 is chosen
as 0.5 eV in Fig. 8(a). The other parameters are chosen the
same as those in Fig. 2. As shown in Fig. 8(a), the binding
energy increases as the width of the double heterojunctions
increases and eventually saturates to a constant value which
is the binding energy of the 1D exciton shown in Fig. 2(a). It
can be interpreted by the overlap of the 1D excitons locating
at both interfaces. The reduced wave function of electron
and hole for different widths of the double heterojunctions L

are, respectively, depicted as blue solid lines and red dashed
lines in Fig. 8(b). The typical effective radius of the 1D
exciton for potential strength V0 = 0.5 eV is around 5 nm as
shown in Fig. 2(c). For a small double heterojunction with
L < 5 nm, the lattice potential dominates the binding energy
of the interface exciton. The consisting electron in 1D excitons
locating at both interfaces has great overlap which results

in that the electron can only locate at the very center of
the double heterojunctions. When the double heterojunctions
width increases to be larger than the typical effective radius
of the 1D exciton such as L > 5 nm, the Coulomb interaction
becomes dominating and the electron prefers to locate in the
vicinity of each interface which actually reduces the overlap
of the electrons wave function. When the width L is much
larger than the effective radius, the overlap tends to zero which
results in the saturated value equaling to the binding energy of
the 1D interface exciton.

The binding energy versus the potential strength V0 is de-
picted in Fig. 8(c), where L is chosen as 1.3 nm. The binding
energy decreases when the potential strength V0 increases.
The reason is that the effective radius of the 1D interface
exciton becomes larger as the potential strength V0 increases
as shown in Fig. 2(b). Therefore the overlap of the electron
wave function becomes smaller and eventually reduces the
binding energy.

IV. INTERFACE EXCITON AT CLOSED TRIANGULAR
SHARP INTERFACE AND EFFECTIVE QUANTUM

DOT CONFINEMENT

A. Numerical results of closed triangular sharp interface
without valley index

For all the discussion above, we have assumed the quasi-
1D heterojunction as shown in Fig. 1. However, the realistic
lateral heterostructures for TMDs present the triangular shape
[29–32], whose characteristic length scale is about 5 μm.
Usually, the electron-hole separation of the interface exciton
is up to 10 nm for large V0 from the above calculation of the
1D interface. It is much smaller than the characteristic length
scale of triangular heterostructures, which means the calcula-
tion of 1D interface is also valid for the closed triangular sharp
interface in current experiments.

If the characteristic length scale of closed triangular sharp
interface decreases to the same order of the electron-hole sep-
aration of interface exciton, the electron (hole) wave function
will be strongly affected by the boundaries of the triangular
shape and thus such quantum confinement effect should be
taken into consideration. Actually, such closed triangular in-
terface effectively realizes 0D quantum dot confinement of the
interface excitons. From the similar Hamiltonian in Eq. (1) but
with triangular band offset as shown in Fig. 9, which reads

Ve(r) =
{
V0, r ∈ triangular quantum dot,
0, r /∈ triangular quantum dot, (13)

Vh(r) =
{

0, r ∈ triangular quantum dot,
V0, r /∈ triangular quantum dot. (14)

Here, LSC and WSC are the length and the width of the
supercell adopted in the calculations in units of lattice constant
a, and R is the edge length of the regular triangular quantum
dot. If V0 < 0, the electron is confined in the triangular
quantum dot while the hole stays in the proximity exterior.
In contrast, when V0 > 0, the hole is confined in the triangular
quantum dot while the electron stays in the proximity exterior.
We consider the scenario V0 < 0 in the following discussion.
For V0 > 0, our calculation of the envelop function based on
the effective mass approximation and one-band tight-binding
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W

Mo

Se

R

FIG. 9. Schematics of the triangular heterostructure formed by
monolayer WSe2 − MoSe2. The blue, red, and yellow spheres, re-
spectively, denote W atoms, Mo atoms, and Se atoms. The red
shadow region denotes the region of triangular band offset.

model can be applied by simply swapping the electron and
hole masses.

Since the translational symmetry is no longer preserved in
such a closed triangular sharp interface, we need to develop
another numerical method to calculate the physical properties
of the interface exciton. The complete orthonormal basis
{φ(n)

e (re ) ⊗ φ
(n,m)
h (rh)} is introduced to expand the original

Hamiltonian, where φ(n)
e (re ) is the nth eigenstate of the

electron confined in the triangular region without hole part
such as[

− h̄2

2me

∇2
re

+ Ve(re )

]
φ(n)

e (re ) = E(n)
e φ(n)

e (re ), (15)

and the φ
(n,m)
h (rh) is the mth eigenstate of the hole ef-

fective Hamiltonian H
(n)
eff (rh)φ(n,m)

h (rh) = E
(n,m)
h φ

(n,m)
h (rh),

where the effective Hamiltonian of hole is obtained by aver-
aging the original Hamiltonian on φ(n)

e (re ) as

H
(n)
eff (rh) =

∫
dreφ

(n),∗
e (re )Hφ(n)

e (re ). (16)

It should be indicated that not only the confined states of
electron with energies less than V0 but also the propagating
states with energies larger than V0 are taken into consid-
eration to guarantee the completeness of the orthonormal
basis. The Hamiltonian matrix elements are straightforwardly
calculated as

Hn′,m′
n,m ≡

∫
dre

∫
drhφ

(n′ ),∗
e (re )φ(n′,m′ ),∗

h (rh)H

×φ(n)
e (re )φ(n,m)

h (rh), (17)

which can be simplified according to the orthogonality of the
basis as

Hn′,m′
n,m =

⎧⎨
⎩

E(n)
e + E

(n,m)
h , if n = n′and m = m′,

0, if n = n′and m �= m′,
VC (n, n′,m,m′), if n �= n′,

(18)

with

VC (n, n′,m,m′) ≡
∫

dre

∫
drhφ

(n′ ),∗
e (re )φ(n′,m′ ),∗

h (rh)

×VC(|re − rh|)φ(n)
e (re )φ(n,m)

h (rh). (19)

FIG. 10. The binding energy of the exciton of the closed triangu-
lar interface Eb versus the quantum number m and n. The parameters
are chosen as R = 30a, LSC = 60a, WSC = 36

√
3a, V0 = 0.3 eV.

The binding energy converges quickly along the quantum numbers.
In the following calculation, we set the same cutoff ncutoff = mcutoff =
15 for different V0.

We solve the eigenproblem by diagonalizing the Hamil-
tonian matrix. We still need to set a cutoff for n and
m when the binding energy of the ground state inter-
face exciton is convergent. As shown in Fig. 10, where
the parameters are chosen as R = 30a, LSC = 60a,WSC =
36

√
3a, V0 = 0.3 eV, clearly the binding energy converges

quickly along the quantum numbers, especially along n. In
the following calculation, we set the same cutoff ncutoff =
mcutoff = 15 for different V0.

The numerical results of the binding energy versus the band
offset V0 and the size of the quantum dot R is depicted in
Fig. 11. The binding energy monotonically decreases as the
band offset increases as shown in Fig. 11(a), which results
from the stronger quantum confinement. However, as shown
in Fig. 11(b), the behavior of the binding energy versus R

has a maximum value due to the competition between the
quantum confinement and the Coulomb interaction. When
R < 30a, basically the ground state of the electron and hole
dominates the wave function, and thus when R increases to

FIG. 11. The binding energy versus (a) the band offset V0 and (b)
the size of the quantum dot R. The parameters for (a) are chosen as
R = 21a. The potential strength is chosen as V0 = 0.3 eV. The size
of the supercell is sufficiently large.
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FIG. 12. The reduced wave function of the electron (left panel)
and hole (right panel) for closed triangular interface with different
sizes R = 21a, 30a, 45a, namely R ≈ 7 nm, 10 nm, 15 nm from the
top to bottom. The potential strength is chosen as V0 = 0.3 eV.

decrease the quantum confinement, the binding energy of
exciton increases. While when R > 30a, the excited states
of electron and hole start to appear in the wave function,
which results in the decrement of binding energy. So if
such decrement is greater than the increment of binding
energy resulting from quantum confinement, the binding en-
ergy of exciton decreases as the size of quantum dot R in-
creases. Therefore, there is a maximum binding energy for an
optimal R.

Such competition can be also demonstrated in the reduced
wave function of the electron and hole as shown in Fig. 12.
The left and right panels, respectively, show the reduced
wave function of electron and hole for increasing size of the
quantum dot from the top to bottom. All reduced wave func-
tions have the threefold rotation symmetry inheriting from
the symmetry of the regular triangular shape of the closed
interface. For a small quantum dot such as R = 21a, the
electron is strongly confined in the quantum dot and the hole
wave function stays in the proximity exterior of the quantum
dot. While for a large quantum dot such as R = 45a, the wave
functions of electron and hole only spread over the vicinity
of the edges of the closed interface. Without the interplay
between the wave functions at different edges, the closed
triangular interface will degrade to the 1D interface case. For
a large quantum dot, the binding energy is about 140 meV,
which is consistent with the former 1D interface calculation
as shown in Fig. 2(a).

We can imagine that when the size of the quantum dot
is much larger than the effective radius of the 1D interface
exciton, which is about 5 nm according to the previous calcu-
lation, the interface exciton actually is split into three identical
parts locating at the edges of triangular quantum dot and each
part is analogy to the quasi-1D exciton. When the size of
the triangular quantum dot is decreased, the three parts have
considerable overlap at the corners of the triangular quantum
dot when the size of the triangular quantum dot decreases. In

this sense, an effective Hamiltonian is introduced to describe
such a threefold rotational symmetric system as

Heff =
⎡
⎣ E0 teiθ te−iθ

te−iθ E0 teiθ

teiθ te−iθ E0

⎤
⎦ (20)

with bases {|�〉, C3|�〉, C2
3 |�〉}. Here, |�〉 is the wave func-

tion of 1D interface exciton at one edge, C3 and C2
3 are

rotation operators of threefold rotational group, E0 is the
binding energy, and teiθ represents the transition between
wave functions of 1D interface exciton at different edges. In
order to satisfy the threefold rotation symmetry, the phase
factor can only be θ = 0, 2π

3 , or 4π
3 . In addition, the phase

factors for the opposite valley should be opposite according
to the time-reversal symmetry. Both binding energy E0 and
transition coefficient t are determined by the numerical calcu-
lation based on the excitonic lattice model.

By diagonalizing the effective Hamiltonian, the lowest
three excitonic states can be found as

|φ1〉 = 1√
3

(
eiπ |�〉 + ei π

3 C3|�〉 + ei 5π
3 C2

3 |�〉), (21)

|φ2〉 = 1√
3

(|�〉 + ei 2π
3 C3|�〉 + ei 4π

3 C2
3 |�〉), (22)

|φ3〉 = 1√
3

(|�〉 + C3|�〉 + C2
3 |�〉), (23)

with corresponding eigenenergies Ei = E0 + 2t cos
( 2iπ

3 − θ ) (i = 1,2,3). Since θ can only be 0, 2π
3 , or 4π

3 ,
there are two degenerate states. We take θ = −2π/3 for
τ = 1 as an example. The energy level scheme is depicted
in Fig. 13(a), where obviously |φ1〉 and |φ3〉 are degenerate
states. A more interest fact is that there is a transition when
the absolute value of the transition coefficient t varies from
a negative value to a positive one. When t < 0, the |φ2〉 is
ground state. In contrast, when t > 0, the degenerate states
|φ1〉 and |φ3〉 become ground states.

Such a transition is depicted in Fig. 13(a). The numerical
calculation based on the lattice model shows the transition
occurs when the size of the triangular quantum dot is about
12.5 nm [Fig. 13(b)]. The transition coefficient t can also be
parameterized by the numerical calculation, which is shown
in Fig. 13(c). The absolute value of transition coefficient t

strongly depends on the overlap of the quasi-1D excitonic
wave functions at the corners of the triangular quantum dot.
For a small quantum dot, the electron confined in the quantum
dot and thus the overlap of the electron part supplies a rel-
atively large attractive Coulomb interaction to overcome the
kinetic energy. Therefore t has negative value. In contrast for
a large quantum dot, both the electron and hole spread over the
vicinity of the edges of the quantum dot, and thus the overlap
of the electron and hole are greatly decreased. In this sense,
the Coulomb interaction part becomes smaller than the kinetic
part resulting in positive t .

Among the above three excitons, only one state is a bright
exciton and the other two states are dark excitons when
pumping them with right (σ+) or left (σ−) circularly polarized
light. The optical transition matrix elements of those excitons
are proportional to 〈φi |P±|vac〉, (i = 1, 2, 3), where P± are
the dipole moments corresponding to the σ+ or σ− circularly
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FIG. 13. (a) The energy level schemes for t < 0 and t > 0 when
θ = ∓2π/3 for τ = ±1 valleys. The optical selection rules are
also depicted. Here, τ = ±1 are valley index denoting K and −K

valleys. The light red and light blue arrows, respectively, denote the
right (σ+) and left (σ−) polarizations of the light fields coupling
to the corresponding exciton states. (b) The numerical results of
the eigenenergies E and (c) the absolute value of the transition
coefficient t versus the size of the triangular quantum dot R. Ob-
viously, there is a transition when the ground state varies from a
nondegenerate state to a degenerate one. Additionally, the transition
coefficient changes from a negative value to a positive one.

polarized light and |vac〉 denotes the initial states with full
valence bands and empty conduction bands. Since under the
threefold rotation the transformations of the dipole moments
are

C−1
3 P±C3 = e±i 2π

3 P±,
(
C2

3

)−1
P±C2

3 = e±i 4π
3 P±, (24)

only the exciton states with appropriate phase factors of
coefficients have nonzero optical transition matrix elements
and thus are bright excitons. In this sense, the σ− circularly
polarized light can pump the |φ1〉 in the τ = −1 valley, and
σ+ circularly polarized light can pump the |φ2〉 in the τ = +1
valley. The corresponding optical selection rule is shown in
Fig. 13(a).

B. Numerical results of closed triangular sharp interface with
valley index

In the above discussion, only the interface excitons in the
same valley are discussed. However, due to the geometry of

the closed triangular sharp interface, the intervalley couplings
are inevitable which eventually couple interface excitons in
the opposite valleys. We start from the effective Hamiltonian
both including the threefold rotational symmetric excitons and
the intervalley couplings as

H inter
eff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E0 teiθ+ te−iθ+ p q q

te−iθ+ E0 teiθ+ q p q

teiθ+ te−iθ+ E0 q q p

p q q E0 teiθ− te−iθ−

q p q te−iθ− E0 teiθ−

q q p teiθ− te−iθ− E0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where the bases in the real space (i = 1, 2, 3) are

〈re, rh|φi, τ 〉≈exp (iτK · (re − rh))〈re, rh|φi〉×uK(re, rh)

(26)

and τ = ±1 is the valley index. The |φi〉 are the envelopes
of the excitonic states without considering the valley index
which are defined in Eqs. (21)–(23) and uK(re, rh) is the
periodic parts of the Bloch wave functions. We adopted the
assumption that uK+q(re, rh) ≈ uK(re, rh) for the sake of
simplicity. Here, E0 = 〈φi, τ |H |φi, τ 〉 is the binding energy
of the 1D interface exciton, t = 〈φi, τ |HC3|φi, τ 〉 is the in-
travalley interedge hoppings, p = 〈φi, τ |H |φi, τ 〉 is the inter-
valley intraedge hoppings, and q = 〈φi, τ |HC3|φi, τ 〉 is the
intervalley interedge hoppings. Here, the original Hamiltonian
H is introduced in Eq. (1). In order to make sure that the
ground state of the interface exciton still inherits the same
optical selection rule, which means that the σ+ (σ−) circularly
polarized light only pumps the ground states of the excitons in
the τ = +1 (τ = −1) valley, the phase factors for both valleys
are fixed as θ+ = −θ− = −2π/3.

Since the intervalley terms p(q ) are at least one order
smaller than the corresponding intravalley terms E0(t ) due
to the large momentum difference, and the intervalley terms
result from the wave-function overlap at the corners which
obviously become smaller when the size of the quantum dot
increases, the magnitudes of the parameters have the follow-
ing relations E0 � t ∼ p � q. In the following calculation,
we ignore the intervalley interedge hoppings q. The numerical
results of the intervalley intraedge hopping p versus the size
of quantum dot R is shown in Fig. 14. The magnitude of p

almost decreases exponentially as the size of the quantum
dot increases. For the large quantum dot, the value matches
the previous intervalley coupling results shown in Fig. 5 be-
cause the interface exciton degrades to a 1D interface exciton
without the wave-function overlap at the corners. For a small
quantum dot such as R < 5 nm it can reach to several meV.

Although q is small in comparison with t , it can still
couple the interface excitons in opposite valleys. By diago-
nalizing the effective Hamiltonian H inter

eff in Eq. (25), we can
obtain the lowest six interface excitonic states as

|�1〉 = cos ψ |φ2, τ 〉 + sin ψ |φ3, τ 〉, (27)

|�2〉 = cos ψ |φ1, τ 〉 + sin ψ |φ3, τ 〉, (28)
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FIG. 14. (a) The intervalley intraedge hopping p versus the size
of quantum dot R. The magnitude of p almost decreases exponen-
tially as the size of the quantum dot increases. (b) The energy level
schemes for t < 0 and t > 0 for θ+ = −θ− = −2π/3. The optical
selection rules are also depicted. The light red and light blue arrows,
respectively, denote the right (σ+) and left (σ−) polarizations of the
light fields coupling to the corresponding exciton states. The different
sizes of the arrows denote the coupling strengths between the exciton
states and the light field.

|�3〉 = − sin ψ |φ2, τ 〉 + cos ψ |φ3, τ 〉, (29)

|�4〉 = − sin ψ |φ1, τ 〉 + cos ψ |φ3, τ 〉, (30)

|�5〉 = 1√
2

(|φ1, τ 〉 − |φ2, τ 〉), (31)

|�6〉 = 1√
2

(|φ1, τ 〉 + |φ2, τ 〉), (32)

with tan ψ = 2p/(3t ) and the corresponding energies
E1 = E2 = E0 + 1

2 (t −
√

9t2 + 4p2), E3 = E4 =
E0 + 1

2 (t +
√

9t2 + 4p2), E5 = E0 − t − p, and E6 =
E0 − t + p. Since the intervalley coupling p actually couples
one bright exciton and one dark exciton such as |φ2, τ 〉
and |φ3, τ 〉, both the |�1〉 and |�3〉 become bright but with
different coupling strength with the same right circularly
polarized light field. The energy level and the complete
optical selection rule are shown in Fig. 14(b). According to
the orthogonality of the periodic parts of the Bloch wave
functions, the envelope wave function of the six excitonic
states with the valley index are analogous to the wave function
without the valley index shown in Fig. 12.

V. CONCLUSION

In this paper, we theoretically study the interface exciton
states at various lateral heterojunctions of monolayer semi-
conductors including single, double, and closed triangular
interfaces. When taking the distance dependent screening
of Coulomb interaction into consideration, we numerically
study the physical observables of the type II interface exciton
including the binding energy, effective radius between the
electron and hole, and optical dipole. Usually, such a problem
is quite difficult to be numerically solved by ab initio cal-
culations. We adopted two different approaches to calculate
excitons. One approach bases on a real-space tight-binding
model, and the other approach considers the perturbation
expansion in a hydrogenlike basis in an effective mass model.
The numerical study shows that even when the electron-hole
separation is much larger compared to the 2D excitons in
TMDs, the type II interface exciton still has strong binding
energy. When the effective radius between the electron and
the hole is up to four times of the Bohr radius of 2D excitons,
the binding energy remains 1/2 that of 2D excitons. This can
be interpreted by the weaker screening of Coulomb interaction
as the electron-hole spatial separation increases. Large energy
separation between the interface exciton and 2D excitons for
band offset above 0.2 eV ensures that such 1D interface exci-
tons are stable ones. Due to the spatial indirect nature of the
type II interface exciton, exciton radius increases while optical
transition dipole decreases as band offset increases. Still, the
optical dipole is comparable to that of 2D excitons at a moder-
ate band offset of 100 meV or below. Intervalley coupling that
arises from electron-hole exchange is also studied, which may
lead to the longitudinal-transverse splitting with the interface
breaking the rotational symmetry. The lateral heterojunctions
with closed triangular interface is also studied, which realizes
the 0D quantum dot confinement of exciton. The numerical
study shows that the energy level schemes and valley optical
selection rules of the exciton in a quantum dot depends on the
size of the quantum dot. Together with valley index, there are
more exciton states in a single quantum dot which can be used
to carry information. With its unique nature of having one
carrier confined within the triangle by the band offset and the
other carrier bounded to the proximity exterior of the triangle
by the strong Coulomb, it is possible to realize the strong
excitonic coupling between the neighboring quantum dots
for mediating controlled interplay between spins at different
dots [66]. In this sense, our investigation may facilitate the
quantum information procession based on the 2D monolayer
semiconductors.
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APPENDIX: GENERALIZED BORN-OPPENHEIMER
APPROXIMATION

The regular Born-Oppenheimer approximation only con-
sider the lowest order of the ratio between the reduced mass
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and the total mass κ = μ/M which corresponds to the relative
motion and the center-of-mass motion, respectively. The total
wave function is expressed as a product of the relative and
center-of-mass parts when the adiabatic condition is satisfied.
However, in the problem of our interface exciton there exist
nonadiabatic processes and higher order terms in the ratio κ

should be taken into consideration. In this sense, we present
the generalized Born-Oppenheimer approximation and the
corresponding second-order perturbation theory here.

The Schrödinger equation satisfied by one center-of-
mass motion and multiple relative motions is H�(R, {r}) =
E�(R, {r}) with Hamiltonian

H = − h̄2

2M
∇2

R + H ({r}) + V (R, {r}), (A1)

where the first term is the kinetic energy of the center-of-mass
motion, the second term describes the energy of the multi-
ple relative motions {r} = r1, r2, . . ., and the third term is
coupling between the center-of-mass motion and the relative
motions. For arbitrary center-of-mass space coordinate R, the
eigenvalue equation

[H ({r}) + V (R, {r})]�k (R, {r}) = Ek (R)�k (R, {r}) (A2)

can be solved to obtain the corresponding eigenvalues
Ek (R) and eigenfunctions �k (R, {r}). Since these bases
{�k (R, {r})} are orthogonal and complete, one expands
�(R, {r}) in bases {�k (R, {r})} as

�(R, {r}) =
∞∑

k=1

�k (R)�k (R, {r}). (A3)

Obviously, this expanded wave function satisfies the original
Schrördinger equation as well. The straightforward derivation
gives the set of the effective motion equations of the coeffi-
cients �k (R) as

Hk (R)�k (R) +
∑
k′

H 1
k,k′ (R)�k′ (R) = E�k (R), (A4)

where

Hk (R) = H 0
k (R) + H 1

k (R), (A5)

H 0
k (R) = − h̄2

2M
(∇R − iAk,k (R))2 + Ek (R), (A6)

H 1
k (R) =

∑
k′ �=k

h̄2

2M
Ak,k′ (R) · Ak′,k (R), (A7)

H 1
k,k′ (R) = i

h̄2

M

∑
k′ �=k

Ak,k′ (R) · ∇R�k′ (R)

+ i
h̄2

2M

∑
k′ �=k

∫
dr[∇R · Ak,k′ (R)]�k′ (R)

+ h̄2

2M

∑
k′ �=k,k′′

Ak,k′′ (R) · Ak′′,k′ (R)�k′ (R), (A8)

and the Berry connections are defined as Ak,q (R) ≡
i
∫

dr�∗
k (R, {r})∇R�q (R, {r}). So far the effective motion

equations are rigorous without any approximation. Here, the
H 0

k (R) and H 1
k (R) are adiabatic terms because they only

involve the kth energy level. However, H 1
k,k′ (R) involve the

transitions between different energy levels introducing the
nonadiabatic processes.

To obtain the explicit expression for Ak,q (R), differentiat-
ing the eigenvalue equation as Eq. (A2) leads to

[H ({r}) + V (R, {r}) − Ep(R)]∇R�p(R, {r})

= [∇REp(R) − ∇RV (R, {r})]�p(R, {r}). (A9)

Multiplying �∗
k (R, {r}) to both sides of the above equation

and integrating over all relative space coordinates {r} gives

[Ek (R) − Ep(R)]
∫

dr�∗
k (R, {r})∇R�p(R, {r})

= −
∫

dr�∗
k (R, {r})∇RV (R, {r})�p(R, {r}). (A10)

According to the definition of the Berry connection, the
explicit expression of the absolute value of the Berry connec-
tions is

|Ak,p(R)| =
∣∣∣∣
∫

dr�∗
k (R, {r})[∇RV (R, {r})]�p(R, {r})

Ek (R) − Ep(R)

∣∣∣∣.
(A11)

It is clear that the H 1
k (R) and H 1

k,k′ (R) are regarded as the
perturbations when the partial derivation of the coupling
∇RV (R, {r}) is much smaller than the energy level spacing
|Ek (R) − Ep(R)|. The order of the perturbations can be char-
acterized by the number of the Berry connections. In this sense
H 1

k (R) is the second order perturbation and H 1
k,k′ (R) contains

both the first order and the second order perturbations.
The Berry connections Ak,k (R) in the H 0

k (R) actually play
the role of a gauge field. It is important to indicate that for
Eq. (A2) the phase of the bases {�k (R, {r})} are not fixed
because the eigenvalue equation is unchanged under the trans-
formation �̃k (R, {r}) = �k (R, {r}) exp [−iθ (R)]. However,
the Berry connections of the transformed bases Ãk,q (R) ≡
i
∫

dr�̃∗
k (R, {r})∇R�̃q (R, {r}) accordingly become

Ãk,q (R) =
{

Ak,q (R), k �= q

Ak,k (R) + ∇Rθ (R), k = q
. (A12)

Therefore Ak,k (R) depends on the choice of the phase factor
θ (R) and thus we cannot decide its perturbation order. This
is actually the U (1) gauge transformation and the physical
observations are not influenced by the specific choice of the
phase factor. In our problem of the interface exciton, this
induced gauge field can be canceled out by choosing the
proper bases as Ak,k (R) = 0 for any k.

To apply the standard perturbation theory, we rewrite
Eq. (A3) in a matrix form as

�(R, {r}) = �(R)T · �(R, {r}), (A13)

where the coefficient vector �(R) and the base vector
�(R, r) are

�(R) =

⎡
⎢⎣

�1(R)
�2(R)

...

⎤
⎥⎦,�(R, r) =

⎡
⎢⎣

�1(R, {r})
�2(R, {r})

...

⎤
⎥⎦. (A14)

The Eqs. (A4) are rewritten as (H 0(R) + H 1(R))�(R) =
E�(R) with corresponding Hamiltonians in the matrix
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form as

H 0(R) =

⎡
⎢⎣

H 0
1 (R) 0 · · ·
0 H 0

2 (R) · · ·
...

...
. . .

⎤
⎥⎦ (A15)

and

H 1(R) =

⎡
⎢⎣

H 1
1 (R) H 1

12(R) · · ·
H 1

21(R) H 1
2 (R) · · ·

...
...

. . .

⎤
⎥⎦. (A16)

Here all the first order and the second order perturbations are
included into H 1(R). By applying the standard perturbation
theory, the second order eigenenergy and wave function,

respectively, as Ep = E0
p + E1

p and �p(R) = �0
p(R) +

�1
p(R), where

E1
p =

∑
k �=p

h̄2

2M

∫
dR�0,∗

p (R)Ap,k (R) · Ak,p(R)�0
p(R),

(A17)

�1
p(R) =

∑
k �=p

∫
dR′� (0),∗

k (R′)H 1
kp(R′)� (0)

p (R′)

E0
p − E0

k

�0
k (R),

(A18)

the zeroth order eigenenergy and wave function are deter-
mined by H 0(R) as H 0(R)�0

p(R) = E0
p�0

p(R) and H 1
kp(R′)

is the element of perturbation Hamiltonian H 1(R).
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